
Experiences with the OpenMP Parallelization of
DROPS, a Navier-Stokes Solver written in C++

Christian Terboven1, Alexander Spiegel1, Dieter an Mey1,
Sven Gross2, and Volker Reichelt2

1 Center for Computing and Communication, RWTH Aachen University, Germany
{Terboven|Spiegel|anMey}@rz.rwth-aachen.de,

WWW home page: http://www.rz.rwth-aachen.de
2 Institut für Geometrie und Praktische Mathematik, RWTH Aachen University,

Germany
{Gross|Reichelt}@igpm.rwth-aachen.de,

WWW home page: http://www.igpm.rwth-aachen.de

Abstract. In order to speed-up the Navier-Stokes solver DROPS, which
is developed at the IGPM (Institut für Geometrie und Praktische Mathe-
matik) at the RWTH Aachen University, the most compute intense parts
have been tuned and parallelized using OpenMP. The combination of
the employed template programming techniques of the C++ program-
ming language and the OpenMP parallelization approach caused prob-
lems with many C++ compilers, and the performance of the parallel
version did not meet the expectations.

1 Introduction

The Navier-Stokes solver DROPS [2] is developed at the IGPM (Institut für
Geometrie und Praktische Mathematik) at the RWTH Aachen University, as
part of an interdisciplinary project (SFB 540: Model-based Experimental Anal-
ysis of Kinetic Phenomena in Fluid Multi-phase Reactive Systems [1]) where
complicated flow phenomena are investigated.

The object-oriented programming paradigm offers a high flexibility and el-
egance of the program code facilitating development and investigation of nu-
merical algorithms. Template programming techniques and the C++ Standard
Template Library (STL) are heavily used.

In cooperation with the Center for Computing and Communication of the
RWTH Aachen University detailed runtime analysis of the code has been car-
ried out and the computationally dominant program parts have been tuned and
parallelized with OpenMP.

The UltraSPARC IV- and Opteron-based Sun Fire SMP-Clusters have been
the prime target platforms, but other architectures have been investigated, too.

It turned out that the sophisticated usage of template programming in combi-
nation with OpenMP is quite demanding for many C++ compilers. We observed
a high variation in performance and many compiler failures.

2

In chapter 2 the DROPS package is described briefly. In chapter 3 we take
a look at the performance of the original and the tuned serial code versions.
In chapter 4 we describe the OpenMP parallelization. The performance of the
OpenMP version is discussed in chapter 5. Chapter 6 contains a summary of our
findings.

2 The DROPS multi-phase Navier-Stokes solver

The aim of the ongoing development of the DROPS software package is to build
an efficient software tool for the numerical simulation of three-dimensional in-
compressible multi-phase flows. More specifically, we want to support the mod-
eling of complex physical phenomena like the behavior of the phase interface of
liquid drops, mass transfer between drops and a surrounding fluid, or the cou-
pling of fluid dynamics with heat transport in a laminar falling film by numerical
simulation. Although quite a few packages in the field of CFD already exist, a
black-box solver for such complicated flow problems is not yet available.

From the scientific computing point of view it is of interest to develop a code
that combines the efficiency and robustness of modern numerical techniques,
such as adaptive grids and iterative solvers, with the flexibility required for the
modeling of complex physical phenomena.

For the simulation of two-phase flows we implemented a levelset technique
for capturing the phase interface. The advantage of this method is that it mainly
adds a scalar PDE to the Navier-Stokes system and therefore fits nicely into the
CFD framework. But still, the coupling of the phase interface with the Navier-
Stokes equations adds one layer of complexity.

The main building blocks of the solution method are the following:
Grid generation and grid refinement. Only tetrahedral grids without hanging

nodes are used. The grids form a hierarchy of stable triangulations to enable the
use of multi-grid solvers. The hierarchical approach also facilitates the coarsening
of the grids.

Time discretization. For the stable time discretization of the instationary
problems an implicit Fractional Step scheme is used.

Spatial discretization. The LBB-stable Taylor-Hood Finite Element pair (P2-
P1) is used for the spatial discretization of the Navier-Stokes equations. For the
level set equation the quadratic P2 element is used.

Iterative solution methods. We decouple the Navier-Stokes-Level-Set system
via a fixed point iteration which is also used to linearize the Navier-Stokes equa-
tions. The linearized equations which are of Stokes-type are treated by a Schur
complement (inexact Uzawa) technique. The resulting convection-diffusion prob-
lems are solved by Krylov-subspace or multi-grid methods.

The several layers of nesting in the solvers (from the outer fixed point it-
eration down to the convection-diffusion-type solvers) induced by the structure
of the mathematical models require fast inner-most solvers as well as fast dis-
cretization methods since many linear systems have to be regenerated in each

3

time step. Apart from the numerical building blocks, software engineering as-
pects such as the choice of suitable data structures in order to decouple the grid
generation and finite element discretization (using a grid based data handling)
as much as possible from the iterative solution methods (which use a sparse
matrix format) are of main importance for performance reasons.

The code is programmed in C++ and uses several attractive facilities offered
by this programming language.

3 Portability and Performance of the Serial Program
Version

3.1 Platforms

The main development platform of the IGPM is a standard PC running Linux
using the popular GNU C++ compiler [3]. Because this compiler does not sup-
port OpenMP, we had to look for adequate C++ compilers supporting OpenMP
on our target platforms.

Table 1 lists compilers and platforms which we considered for our tuning
and parallelization work. It also introduces abbreviations for each combination
of hardware, operating system and compiler, which will be referred to in the
remainder of the paper.

The programming techniques employed in the DROPS package (Templates,
STL) caused quite some portability problems due to lacking standard confor-
mance of the compilers (see table 3). The code had to be patched for most
compilers.

From the early experiences gathered by benchmarking the original serial
program and because of the good availability of the corresponding hardware we
concentrated on the OPT+icc and USIV+guide platforms for the development
of the OpenMP version. We used XEON+icc (running Windows) for verification
of the OpenMP codes using the Intel ThreadChecker.

3.2 Runtime profile

The runtime analysis (USIV+guide platform) shows that assembling the stiffness
matrices (SETUP) costs about 52% of the total runtime, whereas the PCG-
method including the sparse-matrix-vector-multiplication costs about 21% and
the GMRES-method about 23%. Together with the utility routine LINCOMB
these parts of the code account for 99% of the total runtime. All these parts
have been considered for tuning and for parallelization with OpenMP.

It must be pointed out that the runtime profile heavily depends on the num-
ber of mesh refinements and on the current timesteps. In the beginning of a pro-
gram run the PCG-algorithm and the matrix-vector-multiplication take about
65% of the runtime, but because the number of iterations for the solution of the
linear equation systems shrinks over time, the assembly of the stiffness matrices
is getting more and more dominant. Therefore we restarted the program after

4

code machine processor operating system compiler

XEON+gcc333 standard PC 2x Intel Xeon Fedora-Linux GNU C++ V3.3.3
XEON+gcc343 2.66 GHz GNU C++ V3.4.3

XEON+icc81 standard PC 2x Intel Xeon Fedora-Linux and Intel C++ V8.1
2.66 GHz Windows 2003

XEON+pgi60 standard PC 2x Intel Xeon Fedora-Linux PGI C++ V6.0-1
2.66 GHz

XEON+vs2005 standard PC 2x Intel Xeon Windows 2003 MS Visual Studio 2005
2.66 GHz beta 2

OPT+gcc333 Sun Fire V40z 4x AMD Opteron Fedora-Linux GNU C++ V3.3.3
OPT+gcc333X 2.2 GHz GNU C++ V3.3.3, 64bit

OPT+icc81 Sun Fire V40z 4x AMD Opteron Fedora-Linux Intel C++ V8.1
OPT+icc81X 2.2 GHz Intel C++ V8.1, 64bit

OPT+pgi60 Sun Fire V40z 4x AMD Opteron Fedora-Linux PGI C++ V6.0-1
OPT+pgi60X 2.2 GHz PGI C++ V6.0-1, 64bit

OPT+path20 Sun Fire V40z 4x AMD Opteron Fedora-Linux PathScale EKOpath 2.0
OPT+path20X 2.2 GHz PathScale EKOpath 64bit

OPT+ss10 Sun Fire V40z 4x AMD Opteron Solaris 10 SunStudio C++ V10
2.2 GHz

USIV+gcc331 Sun Fire E2900 12x UltraSPARC IV Solaris 9 GNU C++ V3.3.1
1.2 GHz, dual core

USIV+ss10 Sun Fire E2900 12x UltraSPARC IV Solaris 9 Sun Studio C++ V10
1.2 GHz, dual core

USIV+guide Sun Fire E2900 12x UltraSPARC IV Solaris 9 Intel-KSL Guidec++
1.2 GHz, dual core V4.0 + Sun Studio 9

POW4+guide IBM p690 16x Power4 AIX 5L V5.2 Intel-KSL Guidec++ V4.0
1.7 GHz, dual core

POW4+xlC60 IBM p690 16x Power4 AIX 5L V5.2 IBM Visual Age C++ V6.0
1.7 GHz, dual core

POW4+gcc343 IBM p690 16x Power4 AIX 5L V5.2 GNU C++ V3.3.3
1.7 GHz, dual core

IT2+icc81 SGI Altix 3700 128x Itanium 2 SGI ProPack Linux Intel C++ V8.1
1.3 GHz

Table 1. Compilers and platforms

100 time steps and let it run for 10 time steps with 2 grid refinements for our
comparisons.

3.3 Data Structures

In the DROPS package the Finite Element Method is implemented. This includes
repeatedly setting up the stiffness matrices and then solving linear equation
systems with PCG- and GMRES-methods.

Since the matrices arising from the discretization are sparse, an appropriate
matrix storage format, the CRS (compressed row storage) format is used, in
which only nonzero entries are stored. It contains an array val - which will be

5

referred to later - for the values of the nonzero entries and two auxiliary integer
arrays that define the position of the entries within the matrix.

The data structure is mainly a wrapper class around a valarray<double>
object, a container of the C++ Standard Template Library (STL).

Unfortunately, the nice computational and storage properties of the CRS
format are not for free. A disadvantage of this format is that insertion of a
non-zero element into the matrix is rather expensive. Since this is unacceptable
when building the matrix during the discretization step, a sparse matrix builder
class has been designed with an intermediate storage format based on STL’s map
container that offers write access in logarithmic time for each element. After the
assembly, the matrix is converted into the CRS format in the original version.

3.4 Serial Tuning Measures

On the Opteron systems the PCG-algorithm including a sparse-matrix-vector-
multiplication and the preconditioner profits from manual prefetching. The per-
formance gain of the matrix-vector-multiplication is 44% in average, and the
speed-up of the preconditioner is 19% in average, depending on the addressing
mode (64bit mode profits slightly more than 32bit mode).

As the setup of the stiffness matrix turned out to be quite expensive we
reduced the usage of the map datatype. As long as the structure of the matrix
does not change, we reuse the index vectors and only fill the matrix with new data
values. This leads to a performance plus of 50% on the USIV+guide platform
and about 57% on the OPT+icc platform. All other platforms benefit from this
tuning measure as well.

Table 2 lists the results of performance measurements of the original serial
version and the tuned serial version. Note that on the Opteron the 64bit ad-
dressing mode typically outperforms the 32bit mode, because in 64bit mode the
Opteron offers more hardware registers and provides an ABI which allows for
passing function parameters using these hardware registers. This outweights the
fact that 64bit addresses take more cache space.

4 The OpenMP Approach

4.1 Assembly of the Stiffness Matrices

The matrix assembly could be completely parallelized, but it only scales well up
to about 8 threads, because the overhead increases with the number of threads
used (see table 4).

The routines for the assembly of the stiffness matrices typically contain loops
like the following:

for (MultiGridCL::const_TriangTetraIteratorCL
sit=_MG.GetTriangTetraBegin(lvl),
send=_MG.GetTriangTetraEnd(lvl);
sit != send; ++sit)

6

code compiler options runtime [s] runtime [s]
original version tuned version

XEON+gcc333 -O2 -march=pentium4 3694.9 1844.3
XEON+gcc343 -O2 -march=pentium4 2283.3 1780.7

XEON+icc81 -O3 -tpp7 -xN -ip 2643.3 1722.9

XEON+pgi60 -fast -tp piv 8680.1 5080.2

XEON+vs2005 compilation fails n.a. n.a.

OPT+gcc333 -O2 -march=opteron -m32 2923.3 1580.3
OPT+gcc333X -O2 -march=opteron -m64 3090.9 1519.5

OPT+icc81 -O3 -ip -g 2516.9 1760.7
OPT+icc81X -O3 -ip -g 2951.3 1521.2

OPT+pgi60 -fast -tp k8-32 -fastsse 6741.7 5372.9
OPT+pgi60X -fast -tp k8-64 -fastsse 4755.1 3688.4

OPT+path20 -O3 -march=opteron -m32 2819.3 1673.1
OPT+path20X -O3 -march=opteron -m64 2634.5 1512.3

OPT+ss10 -fast -features=no%except 3657.8 2158.9
-xtarget=opteron

USIV+gcc331 -O2 9782.4 7845.4

USIV+ss10 -fast -xtarget=ultra3cu 7749.9 5198.0
-xcache=64/32/4:8192/512/2

USIV+guide -fast +K3 -xipo=2 -xtarget=ultra4 7551.0 5335.0
-xcache=64/32/4:8192/128/2 -lmtmalloc

POW4+guide +K3 -backend -qhot -backend -O3 5251.9 2819.4
-backend -g [-bmaxdata:0x80000000]

POW4+xlC60 compilation fails n.a. n.a.

POW4+gcc343 -O2 -maix64 -mpowerpc64 3193.7 2326.0

IT2+icc81 -O3 -ip -g 9479.0 5182.8
Table 2. Platforms, compiler options and serial runtime of the original and the tuned
versions. Note that we didn’t have exclusive access to the Power4 and Itanium2 based
systems for timing measurements.

Such a loop construct cannot be parallelized in OpenMP, because the loop it-
eration variable is not of type integer. Therefore the pointers of the iterators
are stored in an array in an additional loop, so that afterwards a simpler loop
running over the elements of this array can be parallelized.

Reducing the usage of the map STL datatype during the stiffness matrix
setup as described in chapter 3 turned out to cause additional complexity and
memory requirements in the parallel version. In the parallel version each thread
fills a private temporary container consisting of one map per matrix row. The
structure of the complete stiffness matrix has to be determined, which can be
parallelized over the matrix rows. The master thread then allocates the valarray
STL objects. Finally, the matrix rows are summed up in parallel.

If the structure of the stiffness matrix does not change, each thread fills a
private temporary container consisting of one valarray of the same size as the
array val of the final matrix.

7

This causes massive scalability problems for the guidec++-compiler. Its STL
library obviously uses critical regions to be threadsafe. Furthermore the guidec++
employs an additional allocator for small objects which adds more overhead.
Therefore we implemented a special allocator and linked to the Sun-specific
memory allocation library mtmalloc which is tuned for multithreaded applica-
tions to overcome this problem.

4.2 The Linear Equation Solvers

In order to parallelize the PCG- and GMRES-method, matrix and vector opera-
tions, which beforehand had been implemented using operator overloading, had
to be rewritten with C-style for loops with direct access to the structure ele-
ments. Thereby some synchronizations could be avoided and some parallelized
for-loops could be merged.

The parallelized linear equation solvers including the sparse-matrix-vector-
multiplication scale quite well, except for the intrinsic sequential structure of the
Gauss-Seidel preconditioner which can only be partially parallelized. Rearrang-
ing the operations in a blocking scheme improves the scalability (omp block)
but still introduces additional organization and synchronization overhead.

A modified parallelizable preconditioner (jac0) was implemented which af-
fects the numerical behavior. It leads to an increase in iterations to fulfill the
convergence criterium. Nevertheless it leads to an overall improvement with four
or more threads.

The straight-forward parallelization of the sparse matrix vector multiplica-
tion turned out to have a load imbalance. Obviously the nonzero elements are not
equally distributed over the rows. The load balancing could be easily improved
by setting the loop scheduling to SCHEDULE(STATIC,128).

4.3 Compilers

Unfortunately not all of the available OpenMP-aware compilers were able to
successfully compile the final OpenMP code version. Table 3 gives a survey of
how successful the compilers have been.

Only the GNU C++ and the Pathscale C++ compilers were able to compile
the DROPS code without any source modifications. Unfortunately the GNU
C++ compiler does not support OpenMP, and the Pathscale C++ compiler
currently does not support OpenMP in conjunction with some C++ constructs.

The Intel C++ compiler does not respect that a valarray is guaranteed
to be filled with zero after construction. This is necessary for DROPS work-
ing correctly, so we changed the declaration by explicitly forcing a zero-filled
construction.

In all cases marked with an (ok) modifications were necessary to get the serial
DROPS code to compile and run.

8

code DROPS OpenMP DROPS
serial support parallel

XEON+gcc333 ok no n.a.
XEON+gcc343 ok no n.a.

XEON+icc81 (ok) yes ok

XEON+pgi60 (ok) yes compilation fails

XEON+vs2005 compilation fails yes compilation fails

OPT+gcc333 ok no n.a.
OPT+gcc333X ok no n.a.

OPT+icc81 (ok) yes ok
OPT+icc81X (ok) yes compilation fails

OPT+pgi60 (ok) yes compilation fails
OPT+pgi60X (ok) yes compilation fails

OPT+path20 ok no n.a.
OPT+path20X ok no n.a.

OPT+ss10 (ok) yes compilation fails

USIV+gcc331 ok no n.a.

USIV+ss10 (ok) yes ok

USIV+guide (ok) yes ok

POW4+guide (ok) yes ok

POW4+xlC60 compilation fails yes compilation fails

POW4+gcc343 ok no n.a.

IT2+icc81 (ok) yes 1 thread only
Table 3. Compiler’s successes

5 Performance of the OpenMP Version

OpenMP programs running on big server machines operating in multi-user mode
suffer from a high variation in runtime. Thus it is hard to see clear trends con-
cerning speed-up. This was particularly true for the SGI Altix. Exclusive access
to the 24 core Sun Fire E2900 system helped a lot.

On the 4-way Opteron systems the taskset Linux command was helpful to
get rid of negative process scheduling effects.

5.1 Assembly of the Stiffness Matrices

Setting up the stiffness matrices could be completely parallelized as described
in the previous chapter. Nevertheless the scalability of the chosen approach is
limited. The parallel algorithm executed with only one thread clearly performs
worse than the tuned serial version, because the parallel algorithm contains the
additional summation step as described above (see 4.1). It scales well up to
about 8 threads, but then the overhead which is caused by a growing number
of dynamic memory allocations and memory copy operations increases. On the
USIV+ss10 platform there is still some speedup with more threads, but on the
USIV+guide platform we had to limit the number of threads used for the SETUP
routines to a maximum of eight in order to prevent a performance decrease for

9

a higher thread count (table 7 and 8). Table 4 shows the runtime of the matrix
setup routines on the USIV+guide platform.

code serial serial parallel (jac0)
original tuned 1 2 4 8 16

XEON+icc81 1592 816 1106 733 577 n.a. n.a.

OPT+icc81 1368 778 1007 633 406 n.a. n.a.

USIV+guide 4512 2246 2389 1308 745 450 460

USIV+ss10 4604 2081 2658 1445 820 523 383

POW4+guide 4580 2119 2215 2285 3659 4726 5995
Table 4. C++ + OpenMP: matrix setup

5.2 The Linear Equation Solvers

The linear equation solvers put quite some pressure on the memory system.
This clearly reveals the memory bandwidth bottleneck of the dual processor
Intel-based machines (XEON+icc).

The ccNUMA-architecture of the Opteron-based machines (OPT+icc) ex-
hibits a high memory bandwidth if the data is properly allocated. But it turns
out that the OpenMP version of DROPS suffers from the fact that most of the
data is allocated by the master thread because of the usage of the STL datatypes.

As an experiment we implemented a modification of the stream benchmark
using the STL datatype valarray on one hand and simple C-style arrays on the
other hand. These arrays are allocated with malloc and initialized in a parallel
region.

Table 5 lists the memory bandwidth in GB/s for the four stream kernel loops
and a varying number of threads. It is obvious that the memory bandwidth does
not scale when valarrays are used. The master thread allocates and initializes
(after construction a valarray has to be filled with zeros by default) a contiguous
memory range for the valarray and because of the first touch memory allocation
policy, all memory pages are put close to the master thread’s processor. Later on,
all other threads have to access the master thread’s memory in parallel regions
thus causing a severe bottleneck.

The Linux operating system currently does not allow an explicit or automatic
data migration. The Solaris operating system offers the Memory Placement Op-
timization feature (MPO), which can be used for an explicit data migration. In
our experiment we measured the Stream kernels using valarrays after the data
has been migrated by a ”next-touch” mechanism using the madvise runtime
function, which clearly improves parallel performance (see table 5).

This little test demonstrates how sensitive the Opteron architecture reacts
to disadvantageous memory allocation and how a ”next-touch” mechanism can
be employed beneficially.

10

On the USIV+guide and USIV+ss10 platforms we were able to exploit the
MPO feature of Solaris to improve the performance of DROPS, but currently
there is no C++ compiler available for Solaris on Opteron capable of compiling
the parallel version of DROPS.

Stream Data Initialization 1 2 3 4
kernel structure method Thread Threads Threads Threads

assignment valarray implicit 1.60 1.84 1.94 1.79
valarray implicit+madvise 1.60 3.19 4.78 6.36
C-array explicit parallel 1.69 3.35 5.00 6.64

scaling valarray implicit 1.51 1.81 1.93 1.78
valarray implicit+madvise 1.50 2.98 4.47 5.94
C-array explicit parallel 1.62 3.22 4.81 6.38

summing valarray implicit 2.12 2.16 2.16 2.03
valarray implicit+madvise 2.12 4.20 6.22 8.22
C-array explicit parallel 2.19 4.34 6.42 8.49

saxpying valarray implicit 2.11 2.16 2.15 2.03
valarray implicit+madvise 2.10 4.18 6.20 8.20
C-array explicit parallel 2.15 4.26 6.30 8.34

Table 5. Stream benchmark, C++ (valarray) vs. C, memory bandwidth in GB/s on
OPT+ss10

On the whole the linear equation solvers scale reasonably well given that
frequent synchronizations in the CG-type linear equation solvers are inevitable.
The modified preconditioner takes more time than the original recursive algo-
rithm for few threads, but it pays off for at least four threads. Table 6 shows the
runtime of the solvers.

code serial serial parallel (omp block) parallel (jac0)
original tuned 1 2 4 8 16 1 2 4 8 16

XEON+icc81 939 894 746 593 780 n.a. n.a. 837 750 975 n.a. n.a.

OPT+icc81 1007 839 823 590 496 n.a. n.a. 699 526 466 n.a. n.a.

USIV+guide 2682 2727 2702 1553 1091 957 878 1563 902 524 320 232

USIV+ss10 2741 2724 2968 1672 1162 964 898 2567 1411 759 435 281

POW4+guide 398 428 815 417 333 1171 18930 747 267 308 12268 37142
Table 6. C++ + OpenMP: linear equation solvers

5.3 Total Performance

Table 7 shows the total runtime of the DROPS code on all platforms for which a
parallel OpenMP version could be built. Please note that we didn’t have exclusive
access to the POW4 platform. Table 8 shows the resulting total speedup.

11

code serial serial parallel (omp block) parallel (jac0)
original tuned 1 2 4 8 16 1 2 4 8 16

XEON+icc81 2643 1723 2001 1374 1353 n.a. n.a. 2022 1511 1539 n.a. n.a.

OPT+icc81 2517 1761 2081 1431 1093 n.a. n.a. 1962 1382 1048 n.a. n.a.

USIV+guide 7551 5335 5598 3374 2319 1890 1796 4389 2659 1746 1229 1134

USIV+ss10 7750 5198 6177 3629 2488 2001 1782 5683 3324 2067 1457 1151

POW4+guide 5252 2819 3467 3310 4534 7073 26037 3290 2871 4338 17465 43745
Table 7. C++ + OpenMP: total runtime

Version USIV+guide USIV+ss10 OPT+icc
omp block jac0 omp block jac0 omp block jac0

serial (original) 1.00 — 1.00 — 1.00 —

serial (tuned) 1.42 — 1.49 — 1.43 —

parallel (1 Thread) 1.35 1.72 1.26 1.36 1.21 1.28
parallel (2 Threads) 2.24 2.84 2.14 2.33 1.76 1.82
parallel (4 Threads) 3.26 4.32 3.11 3.75 2.30 2.40
parallel (8 Threads) 3.99 6.14 3.87 5.32 — —
parallel (16 Threads) 4.20 6.66 4.35 6.73 — —
Table 8. Speedup for the USIV+guide, USIV+ss10 and OPT+icc platforms

6 Summary

The compute intense program parts of the DROPS Navier-Stokes solver have
been tuned and parallelized with OpenMP. The heavy usage of templates in
this C++ program package is a challenge for many compilers. As not all C++
compilers support OpenMP, and some of those which do fail for the parallel
version of DROPS, the number of suitable platforms turned out to be quite
limited.

We ended up with using the guidec++ compiler from KAI (which is now
part of Intel) and the Sun Studio 10 compilers on our UltraSPARC IV-based
Sun Fire servers (platform USIV+guide) and the Intel compiler in 32 bit mode
on our Opteron-based Linux cluster (OPT+icc).

The strategy which we used for the parallelization of the Finite Element
Method implemented in DROPS was straight forward. Nevertheless the obstacles
which we encountered were manifold, many of them are not new to OpenMP
programmers.

Finally the USIV+guide and USIV+ss10 versions exhibit some scalability.
The best effort OpenMP version runs 6.7 times faster with 16 threads than
the original serial version on the same platform. But as we improved the serial
version during the tuning and parallelization process the speed-up compared to
the tuned serial version is only 4.7.

As an Opteron processor outperforms a single UltraSPARC IV processor
core it only takes 3 threads on the Opteron-based machines to reach the same
absolute speed. On the other hand Opteron processors are not available in large
shared memory machines. So shorter elapsed times are not attainable.

12

As tuning is a never ending process, there still is room for improvement.
Particularly the data locality has to be improved for the ccNUMA-architecture
of the 4-way Opteron machines.

Acknowledgements
The authors would like to thank Uwe Mordhorst at University of Kiel and Bernd
Mohr at Research Center Jülich for granting access to and supporting the usage
of their machines, an SGI Altix 3700 and an IBM p690.

References

1. Arnold Reusken, Volker Reichelt, Multigrid Methods for the Numerical Simulation
of Reactive Multiphase Fluid Flow Models (DROPS),
http://www.sfb540.rwth-aachen.de/Projects/tpb4.php

2. Sven Gross, Jörg Peters, Volker Reichelt, Arnold Reusken, The DROPS package
for numerical simulations of incompressible flows using parallel adaptive multigrid
techniques,
ftp://ftp.igpm.rwth-aachen.de/pub/reports/pdf/IGPM211 N.pdf

3. GNU Compiler documentation, http://gcc.gnu.org/onlinedocs/
4. Intel C/C++ Compiler documentation,

http://support.intel.com/support/performancetools/c/linux/manual.htm
5. Guide-Compiler of the KAP Pro/Toolset,

http://support.rz.rwth-aachen.de/Manuals/KAI/KAP Pro Reference.pdf,
http://developer.intel.com/software/products/kappro/

6. PGI-Compiler documentation,
http://www.pgroup.com/resources/docs.htm

7. KCC-Compiler, component of guidec++,
http://support.rz.rwth-aachen.de/Manuals/KAI/KCC docs/index.html

8. Pathscale-Compiler, http://www.pathscale.com
9. Sun Analyzer of Sun Studio 9,

http://developers.sun.com/tools/cc/documentation/ss9 docs/
10. Intel Threading Tools, http://www.intel.com/software/products/threading/
11. Sven Karlsson, Mats Brorsson, OdinMP OpenMP C/C++ Compiler,

http://odinmp.imit.kth.se/projects/odinmp

