
CCRG OpenMP Compiler: Experiments and
Improvements

Huang Chun and Yang Xuejun

National Laboratory for Parallel and Distributed Processing, P.R. China
{chunhuang73 }@hotmail.com

Abstract. In this paper, we present the design and experiments of a
practical OpenMP compiler for SMP, called CCRG OpenMP Compiler,
with the focus on its performance comparison with commercial Intel
Fortran Compiler 8.0 using SPEC OMPM2001 benchmarks. The pre-
liminary experiments showed that CCRG OpenMP is a quite robust and
efficient compiler for most of the benchmarks except mgrid and wupwise.
Then, further performance analysis of mgrid and wupwise are provided
through gprof tool and Intel optimization report respectively. Based on
the performance analysis, we present the optimized static schedule im-
plementation and inter-procedural constant propagation techniques to
improve the performance of CCRG OpenMP Compiler. After optimiza-
tion, all of the SPEC OMPM2001 Fortran benchmarks can be executed
on SMP systems efficiently as expected.

1 Introduction

The OpenMP[1] has gained momentum in both industry and academy, and has
become the de-facto standard for parallel programming on shared memory mul-
tiprocessors. The open source compilers and runtime infrastructures promote
the development and acceptance of OpenMP effectively. There have been sev-
eral recent attempts, such as NanosCompiler[2] and PCOMP[3] for Fortran77,
Omni[4] and Intone[5] for Fortran77 and C, OdinMP[6] for C/C++, and Nanos
Mercurium[7] on top of Open64 compilers. All of them are source-to-source trans-
lators that transform the code into the equivalent version with calls to the asso-
ciated runtime libraries.

CCRG OpenMP Compiler1 (CCRG, for short) aims to create a freely avail-
able, fully functional and portable set of implementations of the OpenMP For-
tran specification for a variety of different platforms, such as Symmetric Multi-
processor (SMP) as well as Software Distributed Shared Memory (SDSM) sys-
tem. As the above compilers, CCRG also uses the approach of the source-to-
source translation and runtime support to implement OpenMP. CCRG has the
following features.

1 Both the compiler and runtime library will be available from the CCRG Fortran95
Compiler project web site at http://cf95.cosoft.org.cn

– Generate only one external subroutine for each subprogram which may spec-
ify one or several parallel regions, and the parallel regions in the subprogram
are implemented using ENTRY statements. Therefore, the size of code gen-
erated by the source-to-source translator has been reduced significantly.

– Fully support Fortran90/95 programming languages except the type decla-
ration statements whose kind-selector involves the intrinsic procedure.

– Be robust enough to enable testing with real benchmarks.
– Support multiple target processors and platforms, including Digital alpha[9],

Intel Itanium and Pentium, SDSM - JIAJIA[10] and SMP.

In this paper, we present the design and experiments of CCRG for SMP, with
the focus on performance comparison with commercial Intel OpenMP Compiler
8.0[11] using SPEC OMPM2001 benchmarks[12]. The preliminary experiments
showed that most of the Fortran benchmarks with CCRG OpenMP are executed
as fast as with Intel OpenMP Compiler on SMP, except mgrid and wupwise.
Based on performance analysis for mgrid and wupwise, we present the optimized
static schedule implementation and inter-procedural optimization(IPO) which
improve the performance of mgrid and wupwise as desired.

In the next section we briefly outline the design of the CCRG OpenMP Com-
piler. Section 3 describes the experiments and performance analysis using SPEC
OMPM2001 in detail. Section 4 presents the optimization techniques based on
the result of section 3 and reports the performance improvements. Conclusion
and future work are given in section 5.

2 CCRG OpenMP Compiler

CCRG OpenMP Compiler has fully implemented OpenMP 1.0 and part features
of OpenMP 2.0 Fortran API on the POSIX thread interface. As most of the
open source OpenMP compilers[2–7], it includes a source-to-source translator to
transform OpenMP applications into the equivalent Fortran programs with the
runtime library calls. The source-to-source translator is based on Sage++[14]
and consists of two parts, a Fortran OpenMP syntax parser and a translator
which converts the internal representation into the parallel execution model of
the underlying machine. Sage++ is an object-oriented compiler preprocessor
toolkit for building program transformation systems for Fortran 77, Fortran
90, C and C++ languages. Though many features of Fortran 90/95 are not
supported in Sage++, it is not very difficult to add new elements to the system
because of its well-structured architecture. In the syntax parser, the OpenMP
syntax description is added for supporting OpenMP directives as well as the new
Fortran90/95 languages elements, as shown in Fig.1.

The parser recognizes the OpenMP directives and represents their semantics
in a machine independent binary internal form. A .dep file is produced to store
the internal representation for each OpenMP source file. The translator reads
the .dep file and exports the normal Fortran program with calls to the run-
time library. In [2–7], a subroutine is generated for each parallel region by the

omp directive:

omp parallel

| omp paralleldo

| omp parallelsections

| omp parallelworkshare

| omp single

| omp master

|;

omp parallel:

PARALLEL end spec needkeyword omp clause opt keywordoff

{
omp binding rules (OMP PARALLELNODE);

$$ = get bfnd (fi, OMP PARALLELNODE, SMNULL, $4, LLNULL, LLNULL);

}

Fig. 1. OpenMP Syntax Description

translators. Two separate subroutines are needed to implement the two parallel
regions in Fig.2, which means that many same declare statements are included.
The internal subroutine can be used to reduce the size of code generated by the
source-to-source translator. Some commercial OpenMP compilers use this strat-
egy to implement OpenMP parallel region, such as IBM XLF compiler[13]. But
the special support of compilers is needed because the Fortran standard specifies
some constraints on using an internal subroutine. Therefore, we use an alterna-
tive approach by using ENTRY statement to eliminate these same statements
in CCRG OpenMP. If a subroutine contains one or more ENTRY statements,
it defines a procedure for each ENTRY statement and permits this procedure
reference to begin with a particular executable statement within the subroutine
in which the ENTRY statement appears. Therefore, ENTRY name can be used
to guide all the threads to execute parallel regions correctly, such as test $1
and test $2 shown in Fig.3.

SUBROUTINE test(a)

DIMENSION a(100)

!$OMP PARALLEL DO PRIVATE(K)

DO 100 k = 1, 100

100 a(k) = 0.9

.........

!$OMP PARALLEL NUMTHREADS(4)

.........

!$OMP END PARALLEL

END

Fig. 2. An OpenMP Example

The source-to-source translator encapsulates all parallel regions of a main
program or subprogram into one external subroutine. The ENTRY procedures
are generated to implement parallel regions, as shown in Fig.3. So, only one
external subroutine test $0 is generated for the OpenMP example in Fig.2,
which contains two ENTRY procedures test $1 and test $2 . The procedures

defined by ENTRY statements share the specification parts. Therefore, the code
size generated by the translator is reduced largely.

SUBROUTINE test $0(a)

DIMENSION a(100)

INTEGER lc k

INTEGER omp dolo, omp dohi, comp static more

!The first parallel region

ENTRY test $1 ()

CALL comp static setdo (1, 100, 1, 0)

DO WHILE (compstatic more(omp dolo, omp dohi, 1).eq.1)

DO 100 lc k = omp dolo, omp dohi, 1

100 a(lc k) = 0.9

END DO

CALL comp barrier()

RETURN

!The second parallel region

ENTRY test $2()

.........

CALL comp barrier()

RETURN

END

SUBROUTINE test(a)

DIMENSION a(100)

CALL comp runtime init ()

CALL comp parallel (test $1, 0, 1, a)

.........

CALL comp parallel (test $2, 4, 1, a)

CALL comp exit ()

END

Fig. 3. Fortran Program using ENTRY Statement after Transformation

The CCRG OpenMP runtime library for SMP has been implemented based
on the standard POSIX thread interface. The library is platform-independent ex-
cept few functions, such as comp parallel , comp barrier and comp flush .
It focuses on three tasks: thread management, task schedule, and implementation
of OpenMP library routines and environment variables. The “comp ” functions
shown in Fig.3 are main functions for thread management and task schedule.
comp runtime init initializes the runtime system and reads the associated
environment variables. comp exit terminates all the slaves in the thread pool
and releases memory. Function comp static setdo and comp static more
implement the static schedule in OpenMP. comp barrier synchronizes all the
threads in the current thread team. comp parallel is the most complex func-
tion in the library, which creates slave threads when necessary and starts the
slave threads in the thread pool to execute the parallel region procedures. It has
following form.

comp parallel (parallel region procedure name,

num threads, num parameter, param1, param2,...)

If there is no NUMTHREADSclause in a OpenMP parallel region directive,
num threads is 0, as shown in the first parallel region in Fig.3. comp parallel
decides the number of the threads in the team according to the environment
variable or library calls, or the default value which is equal to the number of
physical processors of the underlying target.

3 Experiments

To evaluate CCRG OpenMP Compiler, SPEC OMPM2001[12] Fortran bench-
marks are compiled and executed. The host platform for the experiments is a HP
server rx2600 with four Itanuim2 processors (1.5GHz) and Linux IA-1 2.4.18-
e.12smp.

3.1 Result

The backend compiler of CCRG can be any compilers executed over the tar-
get machines, including commercial compilers(Intel, PGI, etc.) and GNU com-
piler. To compare CCRG with commercial Intel compiler exactly, Intel Fortran
Compiler 8.0 is used as the backend compiler of CCRG. Fig.4 and Fig.5 show
the Base Ratios of SPEC OMPM2001 Fortran benchmarks of CCRG and In-
tel OpenMP Compiler 8.02 with four OpenMP threads . “-O3” and “-O3 -ipo”
options are used respectively. “-ipo” option enables inter-procedural optimiza-
tion(IPO) across files.

0

2000

4000

6000

8000

10000

12000

B
as

e
R

at
io

wupwise
 swim
 mgrid
 applu
 apsi
 gafort
 fma3d

CCRG
 Intel

Fig. 4. Base Ratios of CCRG and Intel with-
out IPO

0

2000

4000

6000

8000

10000

12000

B
as

e
R

at
io

wupwise
 swim
 mgrid
 applu
 apsi
 gafort
 fma3d

CCRG
 Intel

Fig. 5. Base Ratios of CCRG and Intel with
IPO

The performance data in Fig.4 and Fig.5 suggest that CCRG indeed makes
good use of the multiprocessing capabilities offered by the underlying platform
as Intel OpenMP Compiler with two exceptions: mgrid and wupwise. The Base
Ratio of mgrid with CCRG is only half of that with Intel whether inter-procedure
optimization option is used or not. When “-ipo” option is used, the performance
of wupwise with Intel can be improved greatly, while CCRG seems to block some
further optimization.
2 318.galgel can not execute correctly using Intel OpenMP Compiler 8.0 on our server.

3.2 Performance Analysis

For most of the SPEC OMPM2001 Fortran benchmarks, CCRG OpenMP Com-
piler results in almost exactly the same Base Ratios as Intel OpenMP Compiler.
But the performance of mgrid and wupwise with CCRG are much worse than
that with Intel OpenMP Compiler. In this section, we analyze and explain why
mgrid and wupwise perform poorly in detail. HP server rx2600 with 2 Itanuim2
processors (1.0GHz) is used for performance analysis here.

mgrid Fig.6 shows the execution time of the top six pocedures3 in mgrid with
“TRAIN” input sets. “ p1” and “ p2” denote the procedures generated for the
first and second parallel regions in one procedure respectively. For example,
the column of resid p1 in Fig.6 denotes the execution time of the first parallel
region of resid . The procedures resid p1 , psinv p1 , rprj3 p1 , interp p1
and interp p2 cause the different execution time between CCRG and Intel.

0

10

20

30

40

50

S
ec

o
n
d
s

resid_p1
 psinv_p1
 rprj3_p1
 interp_p1
 interp_p2
 comm3_p1

CCRG

Intel

Fig. 6. Execution Time of Top 6 Procedures in mgrid

resid p1 , psinv p1 , rprj3 p1 , interp p1 and interp p2 are the pro-
cedures generated for the simple PARALLEL DOconstructs. In CCRG, the struc-
ture of the procedure is same as that shown in Fig.3. Most of the execution time
of the procedures are spent to execute the nested DO-loop. Comparing with Intel
OpenMP Compiler, CCRG introduces an additional loop level to implement the
schedule types in OpenMP.

DO WHILE (compstatic more(omp dolo, omp dohi, omp doin).eq.1)
.........

END DO

This additional loop is a while loop whose control condition is a logical ex-
pression containing a function call. It encloses the original loops and becomes the
most outer loop. Therefore, the performance of the whole procedure degrades
significantly.

3 In Intel OpenMP Compiler, the procedure should be the “T-region”.

wupwise Unlike mgrid, the performance of wupwise is affected by IPO largely.
Table 1 shows the execution time of the top four procedures in wupwise with
“TRAIN” input sets. The time of subroutine zgemmwith CCRG is 82.10 seconds,
while the time with Intel is only 7.91 seconds.

Table 1. Execution Time of Top 4 procedures in wupwise

CCRG Intel

Subroutine Execution time(sec) Subroutine Execution time(sec)

1 zgemm 82.10 dlaran 9.77

2 gammul 10.77 zaxpy 8.57

3 zaxpy 7.74 zgemm 7.91

4 dlaran 7.35 lsame 1.87

The Intel compiler provides the extensive support for inter-procedural anal-
ysis and optimization, such as points-to analysis and mod/ref analysis required
by many other optimizations. However, only the equivalent version transformed
by the source-to-source translator of CCRG can be seen by the backend com-
piler Intel Fortran Compiler. Because the parallel region procedures are called
by function comp parallel as actual parameters, the source-to-source trans-
lator dose not keep the information about the caller-callee relationship between
the original procedures. So, the backend compiler can not process the further
inter-procedural analysis and optimization.

High Level Optimizer Report for: zgemm
Block, Unroll, Jam Report:
(loop line numbers, unroll factors and type of transformation)
Loop at line 2194 unrolled with remainder by 6
Loop at line 2177 unrolled with remainder by 6
Loop at line 2158 unrolled with remainder by 6
.........

(a) For Program Transformed by CCRG

High Level Optimizer Report for: zgemm
Block, Unroll, Jam Report:
(loop line numbers, unroll factors and type of transformation)
Loop at line 2377 completely unrolled by 3
Loop at line 2379 completely unrolled by 3
Loop at line 2360 completely unrolled by 3
.........

(b) For Source OpenMP Program

Fig. 7. Optimization Report Generated by Intel Fortran Compiler 8.0

Though zgemm is only called in su3mul with several constants which are
used to control the loops of zgemm, these constants have not been propagated
to zgemm in CCRG. From the above two optimization reports, it is obvious
that inter-procedural constant propagation has been applied to zgemm when

using Intel OpenMP Compiler. Many loops in zgemmare completely unrolled
according to the value of actual parameter.

4 Optimization

Section 3.1 describes the key factors which influence on the performance of mgrid
and wupwise programs. In this section, the optimized static schedule imple-
mentation and inter-procedural optimization are presented to CCRG OpenMP
Compiler for the improvement of performance of these programs.

4.1 Optimized Static Schedule

In the following three cases, function comp static more is .TRUE. only once
for each thread when executing a parallel region procedure in CCRG.

– Absence of the SCHEDULEclause.
– Static schedule without chunk, i,e. SCHEDULE(STATIC) is specified.
– Static schedule, and both chunk size and number of iteration are known dur-

ing compile time, and (chunk size × number of threads) ≤ number
of iteration .

Therefore, the parallel region subroutine code in Fig.3 can be replaced with
the codes in Fig.8. comp static once is called only once to implement the
PARALLEL DOdirective in Fig.2.

SUBROUTINE test $0(a)

DIMENSION a(100)

INTEGER lc k

ENTRY test $1 ()

CALL comp static setdo(1,100,1,0)

CALL comp static once(omp dolo, omp dohi,1)

DO 100 lc k= omp dolo, omp dohi,1

100 a(lc k)=0.9

CALL comp barrier()

RETURN

END

Fig. 8. Implementation of STATIC Schedule without Chunk Size

After optimization, the execution time of all procedures in Fig.6 has been
reduced significantly. The middle columns in Fig.9 are the execution time using
the optimized static schedule implementation. Obviously, the performance of
whole mgrid has been improved largely too.

SCHEDULEclause is not specified in most of OpenMP programs, we can just
use comp static once instead of comp static more with introducing an
additional outer loop.

0

10

20

30

40

50

S
ec

o
n

d
s

resid_p1
 psinv_p1
 rprj3_p1
 interp__p1
 interp_p2
 comm3_p1

CCRG

CCRG-OPT

Intel

Fig. 9. Execution time of Main Procedures after Optimization

4.2 Inter-Procedural Constant Propagation

Because CCRG uses the source-to-source approach, some inter-procedural opti-
mizations may no longer be applicable for some OpenMP programs. For example,
in wupwise, subroutine zgemmis called only once in subroutine su3mul where
the third, fourth and fifth actual parameters are integer constants. But these
constants have not been propagated to zgemm.

This is a native problem of source-to-source OpenMP compilers. We present
an approach to solving it by adding inter-procedural optimization in source-to-
source translator. Inter-procedural optimization contains two-pass compilation,
as shown in Fig.10.

First Pass
 Parser : f2dep
 tmp_filename.i

Second Pass

Parser : f2dep

.dep

Translator:omp2f
 filename_omp.f

Inter-Procedural

Analysis

Fig. 10. Inter-Procedural Optimization

In the first pass, the parser scans all the project files to record the informa-
tion about procedure calls, such as procedure name, formal parameters, proce-
dure name and actual parameters called by the procedures in the files. Tempo-
rary file tmp filename.i is generated for each file in the project. For example,
tmp su3mul.i for su3mul.f in wupwise contains the information as follows.

{SUBROUTINE "SU3MUL"

(FORMAL ("U" COMPLEX*16 DIMENSION(2 3 *))

("TRANSU" CHARACTER*1 SCALAR)

("X" COMPLEX*16 DIMENSION(1 *))

("RESULT" COMPLEX*16 DIMENSION(1 *)))

(SUBROUTINE "ZGEMM"

(ACTUAL (TRANSU, ’NO TRANSPOSE’,3,4,3, ONE,U,3,X,3,ZERO,RESULT,3)

}

In the second pass, the parser reads and analyzes all of the temporary files
firstly. If the callers always use the same integer constant as certain actual pa-
rameter to call a procedure, the parser inserts an assignment statement before
the first executable statement in the callee. The constant is assigned to the
parameter in the assignment statement(see Fig.11).

SUBROUTINE ZGEMM (TRANSA, TRANSB, M, N, K, ALPHA, A, LDA, B, LDB,

$ BETA, C, LDC)

! Variables Declaration Statements.........

! Assignment to Formal parameters

M = 3

N = 4

K = 3

!Other Executable Statements

END

Fig. 11. Inserts the Assignment Statements in the Callee

Therefore, the constant propagation is implemented through assignments to
formal parameters. That is, the source-to-source translator only provides the ini-
tial values of the formal parameters after inter-procedural analysis, the backend
compiler utilizes the information to make further optimization. After optimiza-
tion, the execution time of wupwise has been reduced significantly as shown
in Fig.12, whose middle columns are the execution time after inter-procedural
optimization.

0

50

100

150

200

S
e
c
o
n
d
s

1
 2

CCRG

CCRG-OPT

Intel

Fig. 12. Execution Time of wupwise after Optimization

Complete inter-procedure constant propagation needs to be supported by
other optimizations, such as source-level data flow analysis and constant prop-
agation within a procedure. At present only integer constant actual parameters
can be propagated cross procedures.

5 Conclusion and Future Work

The CCRG OpenMP Compiler is a mature source-to-source compiler for OpenMP.
All SPEC OMPM2001 Fortran benchmarks have been compiled and executed on

SMP system efficiently. CCRG supports OpenMP Fortran90/95 programming,
and all of the Fortran benchmarks achieve the comparable Base Ratios as Intel
OpenMP Compiler.

In the paper, we show our experience for performance improvement of CCRG.
We analyze two benchmarks mgrid and wupwise whose execution time with
CCRG were much longer than that with Intel. Two optimization techniques,
namely, optimized static schedule and inter-procedural constant propagation,
are presented to resolve the performance problems in these two programs. After
optimization, the performances of mgrid and wupwise are improved significantly.

In the future, we plan to design and implement more source-to-source opti-
mization strategies and complete inter-procedural optimization framework. This
framework will be applicable for not only IPO but also for profile-guided op-
timization aimed at OpenMP. In addition, the performance of CCRG will be
evaluated on the large SMP systems.

Acknowledgements

This work was supported by National 863 Hi-Tech Programme of China under
grant No. 2002AA1Z2101 and 2004AA1Z2210.

References

1. The OpenMP Forum. OpenMP Fortran Application Program Interface, Version
2.0, November 2000. See http://www.OpenMP.org.

2. M. Gonzalez, E. Ayguade, J. Labarta, X. Martorell, N. Navarro and J. Oliver.
NanosCompiler: A Research Platform for OpenMP Extensions. In Proc. of the
1st European Workshop on OpenMP (EWOMP’99). Lund, Sweden, October,
1999.

3. Seung Jai Min, Seon Wook Kim, Michael Voss, Sang Ik Lee, and Rudolf Eigen-
mann. Portable Compilers for OpenMP. In Proc. of the 2nd Workshop on
OpenMP Applications and Tools (WOMPAT’01), Lecture Notes in Computer
Science, 2104 pages 11-19, July 2001.

4. Omni OpenMP Compiler Project. http://phase.hpcc.jp/Omni/

5. INTONE: Innovative Tools for Non Experts, IST/FET project (IST-1999-
20252). http://www.cepba.upc.es/intone/

6. C. Brunschen and M. Brorsson. OdinMP/CCp - A Portable Implemen-
tation of OpenMP for C. In Proc. of the 1st European Workshop on
OpenMP(EWOMP’99). Lund, Sweden, October 1999.

7. J. Balart, A. Duran, M. Gonz‘alez, X. Martorell, E. Ayguade and J. Labarta,
Nanos Mercurium: a Research Compiler for OpenMP, In Proc. of the 6th Euro-
pean Workshop on OpenMP (EWOMP’04), Stockholm, Sweden. October, 2004.

8. Open64 Compiler and Tools. http://sourceforge.net/projects/open64

9. Huang Chun and Yang Xuejun. Performance Analysis and improvement of
OpenMP on Software Distributed Shared Memory System. In Proc. of the 5th
European Workshop on OpenMP (EWOMP’03). Aachen, Germany. September,
2003.

10. Weiwu Hu, Weisong Shi and Zhimin Tang. JIAJIA: An SVM System Based on
A New Cache Coherence Protocol. In Proc. of the High Performance Computing
and Networking (HPCN’99), Lecture Notes in Computer Science 1593, pp. 463-
472, Springer, Amsterdam, Netherlands. April, 1999.

11. Intel Corporation. Intel Fortran Compilers for Linux Application Development,
2003. http://www.intel.com/software/products/compilers/linux.

12. V. Aslot, M. Domeika, R. Eigenmann, G. Gaertner, W.B. Jones and B. Parady.
SPEComp: A New Benchmark Suite for Measuring Parallel Computer Perfor-
mance. In Proc. of the Workshop on OpenMP Applications and Tools (WOM-
PAT’01), Lecture Notes in Computer Science 2104, pages 1-10, July 2001.

13. Charles Grassl. Shared Memory Programming: Pthreads and OpenMP.
http://www.csit.fsu.edu/ burkardt/fsu/7.OpenMP.pdf. October, 2003.

14. Sage++ Users Guide. http://www.extreme.indiana.edu/sage/.

