
Static Nonconcurrency Analysis of OpenMP Programs

Yuan Lin

Sun Microsystems, Inc.

yuan.lin@sun.com

1 Introduction

Writing correct and eÆcient parallel programs is more diÆcult than doing so for sequential pro-

grams. One of the challenges comes from the nature of concurrent execution of a parallel program by

di�erent threads.1 Determining exact concurrency is NP-hard[10], and is impossible for real-world

programs at compile time.

OpenMP provides an easy and incremental way to write parallel programs. The well-structured

OpenMP constructs and well-de�ned semantics of OpenMP directives make compiler analyses more

e�ective on OpenMP programs than on more loosely structured parallel programs that are solely

based on runtime libraries, such as MPI and Pthreads.

In this paper, we present a static nonconcurrency analysis technique that detects, at compile

time, whether two statements in an OpenMP program will not be executed concurrently by di�erent

threads in a team. Similar to the method presented in [5], ours is a close underestimation of the real

nonconcurrency in a program. When our method determines that the executions of two statements

are nonconcurrent, these two statements will not be executed concurrently. When the method fails,

the two statements may, but need not, execute concurrently.
Our nonconcurrency analysis models and uses the semantics of OpenMP directives. For exam-

ple, in the following codes,

1. !$omp parallel

2.

3. a = ...

4.

5. !$omp single

6. b = ...

7. c = ...

8. !$omp end single

9.

10. !$omp do

11. do i=1, 100

12. c(i) = ...

13. end do

14. !$omp end do nowait

15.

16. !$omp end parallel

there is one implicit barrier at line 8, which partitions the statements inside the parallel region

(lines 3-14) into two phases. Phase one contains statements 3 through 8, and phase two contains

statements 10 through 14. No two statements from di�erent phases (such as statements 3 and 12)

will ever be executed concurrently, while statements within the same phase (such as statements 3

1
Concurrency is where the execution order of di�erent threads is not enforced, and thus synchronization must be

used to control shared resources. Parallelism is where di�erent threads actually execute in parallel. Parallelism is an

instance of concurrency. Parallel execution is concurrent, but concurrent execution is not necessarily parallel.

1

ORC(N) the immediately enclosing OpenMP construct for node N .

ORC(N):type the type of ORC(N), i.e. root, do, sections, section,

critical, single, master, ordered.

ORC(N):crit:name the name for ORC(N) whose ORC(N):type is critical.

ORC(N):ordered:bound the binding worksharing do loop for ORC(N) whose

ORC(N):type is ordered

ORC(N):parent the parent OpenMP construct of ORC(N) in the OpenMP region tree

ORC(N):pregion the parallel region that encloses ORC(N)

Table 1: Notations: attributes of di�erent types OpenMP constructs

and 6, or two instances of statement 3) may. In addition, the single directive mandates only one

thread can execute statements 6 and 7. Therefore statements 6 and 7, though in the same phase,

will never execute concurrently. Our analysis is able to recognize the OpenMP directives and use

them to derive the nonconcurrency information.

This paper makes the following contributions,

� It gives a graph representation (OpenMP control ow graph) to model the control ow in

parallel OpenMP programs, and a tree representation (OpenMP region tree) to model the

hierarchical structure of loops and OpenMP constructs. Similar to the control ow graph and

loop tree representations for sequential programs, these two representations serve as the base

for further compiler analysis of parallel OpenMP programs.

� It presents an eÆcient static nonconcurrency analysis for OpenMP programs which are more

tractable than general parallel programs. The phase partitioning algorithm has a complexity

that is linear to the size of the program being analyzed for most real-life applications.

� It shows the usefulness of the nonconcurrency analysis by building a compile-time data race

detection technique upon it.

The rest of the paper is organized as follows. Section 2 describes the OpenMP control ow

graph and OpenMP region tree. Section 3 presents the phase partition algorithm. Section 4 gives

the static nonconcurrency analysis. Section 5 uses data race detection to illustrate the use of

nonconcurrency analysis. Section 6 compares related work and section 7 concludes the paper.

To be concise, we use Fortran as the base language, while our technique is not speci�c to Fortran.

2 OpenMP Control Flow Graph and OpenMP Region Tree

2.1 Program Model

The techniques in this paper work on OpenMP standard compliant programs[1]. Nested parallelism

and orphaned directives are allowed, recognized and handled accordingly. Our techniques also

recognize and use the properties of all OpenMP synchronization constructs and directives (such as

barrier, master, critical and ordered).

We assume 1) all parallel regions can be active and none is serialized; 2) there is an in�nite

number of threads available; and 3) the exact number of threads that execute any particular parallel

region is unspeci�ed. These assumptions not only simplify the problem but also make the result

of our nonconcurrency analysis independent of runtime environment. We ignore calls to OpenMP

runtime lock routines, and make no attempt to recognize `roll-your-own' synchronizations, such as

busy-waiting. Knowledge of this information could add to the nonconcurrency result, but could

never invalidate a nonconcurrency relationship between statements that our method �nds.

2

Figure 1: Directive nodes in OpenMP control ow graph (solid lines are ow edges and dotted lines

are construct edges)

Figure 2: (a) simple phases in one parallel region. (b) phases when there is a branch (c) phases in

a loop. (d) phases in nested parallel regions. (e) orphan phases

3

2.2 OpenMP Control Flow Graph

An OpenMP control ow graph (OMPCFG) models the transfer of control ow in a subroutine of

an OpenMP program.

The statements in an OpenMP subroutine are partitioned into basic blocks and each OpenMP

directive is put into an individual block. Each block becomes a node in OMPCFG. The nodes

representing basic blocks are called basic nodes, and the nodes representing directive blocks are

called directive nodes. A single Entry node and a single Exit node are created for an OMPCFG.

In an OMPCFG, to make compiler analysis easier, implicit barriers are made explicit2, and each

combined parallel work-sharing construct (such as parallel do and parallel sections) is separated

into a nowait work-sharing construct nested in a parallel region. parallel begin directive nodes

and parallel end directive nodes are considered as barrier nodes in the parallel region de�ned by

the two directive nodes. Fortran speci�c `WORKSHARE' construct can be converted into a set of

other OpenMP constructs, therefore it is not presented directly in an OMPCFG.

An edge in OMPCFG represents a possible transfer of control ow executed by a thread. Edges

between basic nodes are created in a way similar to that in sequential programs. Edges between

basic nodes and directive nodes and edges between directive nodes are created according to OpenMP

semantics.

Statements inside an OpenMP construct form a single-entry/single-exit region. For each OpenMP

construct, an edge is created from the directive begin node to the single entry node of the region

for the construct, and an edge is created from the single exit node of the region to the directive end

node. Edges to and from the barrier and ush nodes are created as if they are basic nodes. An

edge is created from a sections begin node to each binding section begin node. And an edge is

created from each section end node to its binding sections end node. For the do construct, the

loop control statements are not represented in the OMPCFG.

Figure 1 illustrates all the directive nodes and the corresponding edges. The construct edges

(dotted lines) are explained in the next section.

2.3 OpenMP Region Tree

In OpenMP programs, we use a region tree to model both the hierarchical loop structure and the

hierarchical OpenMP construct structure in a subroutine.

In OMPCFG, for each OpenMP construct (except for do constructs), we add an edge from the

end construct directive node to the begin construct directive node. We call this edge a construct

edge and represent it using a dotted line in an OMPCFG. A construct edge does not reect any

control ow. It is inserted so that an OpenMP construct forms a cycle in the OMPCFG. Therefore,

the normal loop tree detection algorithm for sequential programs can be used to �nd both loops

and OpenMP construct regions in an OMPCFG.

Because the statements in an OpenMP construct form a single-entry/single-exit region, the

OpenMP constructs in a subroutine are properly nested. If we treat the whole subroutine as a

root construct, then all the OpenMP constructs form a tree structure. The OpenMP constructs

are also properly nested with loops in the subroutine. When we combine the loop tree with the

OpenMP construct tree, we get the OpenMP region tree. Each node in an OpenMP region tree

represents either a loop or an OpenMP construct.

For a node N in an OMPCFG, we use ORC(N) to represent the immediately enclosing OpenMP

construct for node N in the OpenMP region tree. Table 1 lists the notations used to represent the

attributes of di�erent types of OpenMP construct.

2
To model the dataow in an OpenMP program, it would be better to make all implicit ushes explicit. To be

concise, we do not do so in this paper because our nonconcurrency analysis does not depend on inter-thread dataow

information.

4

OMPCFG Phase Nodes in Phase

(a) hNb
1 ; N

b
3 i N2

hNb
3 ; N

b
6 i N4, N5

hNb
6 ; N

b
8 i N7

(b) hNb
1 ; N

b
3 i N2

hNb
1 ; N

b
4 i N2

hNb
3 ; N

b
10i N5, N7, N8

hNb
3 ; N

b
11i N5, N7, N9

hNb
4 ; N

b
10i N6, N7, N8

hNb
4 ; N

b
11i N6, N7, N9

hNb
10; N

b
13i N12

hNb
11; N

b
13i N12

(c) hNb
1 ; N

b
4 i N2, N3

hNb
4 ; N

b
4 i N5, N3

hNb
4 ; N

b
7 i N5, N6

(d) hNb
1 ; N

b
3 i N2

hNb
3 ; N

b
10i N4, N

b
5 , N6, N

b
7 , N8, N

b
9

hNb
5 ; N

b
7 i N6

hNb
7 ; N

b
9 i N8

(e) hNb
3 ; N

b
3 i N1, N2, N4, N5

Table 2: Phases and nodes in each phase for each OMPCFG in Figure 2

3 Phase Partitioning

3.1 Phases in a Parallel Region

Barrier is the most frequently used synchronization method in OpenMP. Barriers can be inserted

by using the BARRIER directive, and are also implied at the end of worksharing constructs or

parallel constructs.

In addition, OpenMP standard requires[1]

BARRIER directives must be encountered by all threads in a team or by none at

all, and they must be encountered in the same order by all threads in a team.

The restriction the OpenMP standard imposes on the use of barriers essentially partitions the

execution of a parallel region into a set of distinct, non-overlapping run-time phases. No two

statement instances in two di�erent run-time phases will ever be executed concurrently by di�erent

threads in a team. For example, the barriers in Figure 2(a) (barrier nodes are marked with a

superscript b) put the non-barrier nodes into three phases - one phase with node N2, another phase

with node N4 and node N5, and yet another with node N7. Statements in N2 and statements in

N4 will not be executed concurrently by di�erent threads in a team. We should also note that the

restriction the OpenMP language imposes on barriers does not apply to threads in di�erent teams.

3.2 Static Phases

In this section, we give an algorithm that computes the static phases in an OpenMP subroutine at

compile-time. Our algorithm works on basic blocks instead of statements. All construct edges in

OMPCFG are ignored since they do not represent any control ow. A special edge from the Exit

node to the Entry node is added to help analysis of subroutines that contain orphaned OpenMP

directives.

A static phase hN b
i ; N

b
j i consists of a sequence of nodes along all barrier free paths in the

OMPCFG that start at one barrier node N b
i and end at another (possibly the same) barrier node

N b
j in the same parallel region. Table 2 lists the phases for each OMPCFG in Figure 2.

Note that in Figure 2(e), node N2 and node N4 are in the same phase. Node N b
3
is an orphaned

barrier, and there is no lexically visible parallel region in the subroutine. It is possible that the

5

call-site of the subroutine is inside a loop, therefore there might be a barrier free path from node

N4 to node N2 at runtime. Without interprocedural analysis, we have to assume such a loop exists.

That's the reason why a special edge from the Exit node to the Entry node is inserted.

Also note that a node may belong to di�erent static phases. For example, in Figure 2(b), node

N5 belongs to two both phase hN b
3
; N b

10
i and phase hN b

3
; N b

11
i.

Each static phase has its owner parallel region, which is its immediate enclosing parallel region.

A static phase is not considered as a static phase in a parallel region that is not its owner parallel

region. For example, in Figure 2(d), the owner parallel region of static phase hN b
5
; N b

7
i is the inner

parallel region, and it is not a static phase in the outer parallel region. For a static phase that

starts and ends at orphaned barriers, its owner parallel region is root.

3.3 Algorithm to Compute Static Phases

The algorithm to partition an OMPCFG into phases is shown in Figure 3. In the following text,

when we say `phase', we mean `static phase'.

We use the following notations in the algorithm:

� phase(N b
i ; N

b
j)

the set of nodes that belong to phase hN b
i ; N

b
j i.

� in phase(N)

the set of phases that node N belongs to.

� p start(N)

the set of starting barriers of phases that nodeN belongs to, i.e. fN b
i jhN

b
i ; N

b
j i 2 in phase(N)g.

� p end(N)

the set of ending barriers of phases that node N belongs to, i.e. fN b
j jhN

b
i ; N

b
j i 2 in phase(N)g.

The algorithm does a forward depth-�rst-search, and a backward depth-�rst-search from each

barrier node (including pseudo barrier nodes, i.e. Entry, Exit, parallel-begin, and parallel-end).

During each search, if a barrier node in the same parallel region is encountered, the search does

not continue with successors or predecessors of the barrier node. In a forward search from a

barrier N b, we put N b in p start(N) of each node N reached. In a backward search from a

barrier N b, we put N b in p end(N) of each node N reached. After all searches �nish, for each

non-barrier node N , we compute in phase(N) as fhN b
i ; N

b
j i j N b

i 2 p start(N), N b
j 2 p end(N),

ORC(N b
i):pregion = ORC(N b

j):pregiong.

In general, the complexity of this algorithm is O(
PK

i=1

PMi

j=1 node(i; j)nbar(i; j)). Basically, if

the OMPCFG for a parallel region is disconnected at each barrier node, then the OMPCFG is

separated into several disconnected sub-graphs. Here, K is the number of parallel regions; Mi is

the number of the disconnected sub-graphs for parallel region i; node(i; j) is the number of nodes

in sub-graph j of parallel region i; and nbar(i; j) is the number of barrier nodes that separates

sub-graph j from other sub-graphs in parallel region i. Nested-parallel regions are rarely used and

each sub-graph of a parallel region contains only two barrier nodes (one starting barrier node and

one ending barrier). Therefore, in most cases, the complexity of the algorithm is O(n), where n is

the number of nodes in OMPCFG.

4 Nonconcurrency Analysis

In this section, we describe our static nonconcurrency analysis. Given two statements in a sub-

routine and an OpenMP parallel region, the analysis detects at compile time whether these two

statements can be executed concurrently by di�erent threads in the team for the parallel region.

6

foreach barrier Nb
i in OMPCFG

foreach successor Nj of Nb
i

forward mark(Nj ; N
b
i) ;

foreach predecessor Nk of Nb
i

backward mark(Nk; N
b
i) ;

foreach non-barrier node N in OMPCFG

foreach Nb
i in p start(N)

foreach Nb
j in p end(N) that ORC(Nb

i):pregion = ORC(Nb
j):pregion

phase(Nb
i ; N

b
j) := phase(Nb

i ; N
b
j) [fNg ;

in phase(N) := in phase(N) [fhNb
i ; N

b
j ig ;

forward mark(N;Nb
)

f
if (N is a barrier node and ORC(N):pregion = ORC(Nb

):pregion)

return ;

p start(N) := p start(N) [fNbg ;

foreach successor Nj of N

forward mark(Nj ; N
b
) ;

g

backward mark(N;Nb
)

f

if (N is a barrier node and ORC(N):pregion = ORC(Nb
):pregion)

return ;

p end(N) := p end(N) [fNbg ;

foreach predecessor Nk of N

backward mark(Nk; N
b
) ;

g

Figure 3: Algorithm: phase partitioning

7

The algorithm in Section 3 partitions a subroutine into phases. Depending on whether the two

statements belong to the same phase or not, we use two di�erent methods to check the noncon-

currency. Because two statements are executed concurrently if and only if their basic blocks are

executed concurrently, we will work on basic blocks instead of statements.

4.1 Two Nodes in Di�erent Phases

If two nodes in a parallel region do not share any static phase, then the runtime instances of these

two nodes will be in di�erent runtime phases. Therefore these two nodes will not be executed

concurrently by di�erent threads in the team that executes the parallel region.

For example, in Figure 2(a), nodeN2 and nodeN4 will never be executed concurrently. However,

node N4 and node N5 may be executed concurrently, because N4 2 hN b
3
; N b

6
i, and N5 2 hN b

3
; N b

6
i.

In Figure 2(b), node N5 and node N6 will never be executed concurrently. Node N5 and node

N9 may be executed concurrently.

In Figure 2(c), node N2 and node N5 will never be executed concurrently. Node N3 and node

N5 may be executed concurrently.

In Figure 2(d), node N6 and node N8 will never be executed concurrently by di�erent threads

in the team that executes the inner parallel region. However, these two nodes may be executed

concurrently by di�erent threads in the team that executes the outer parallel region.

In Figure 2(e), node N2 and node N4 may be executed concurrently.

In summary, given two nodes N1 and N2 whose immediate common enclosing parallel region is

PR (could be root), if there does not exist a phase in in phase(N1) \ in phase(N2) whose owner

parallel region is PR, then N1 and N2 will not be executed concurrently by di�erent threads in the

team that executes PR.

4.2 Two Nodes in the Same Phase

The semantics of OpenMP constructs also prohibits some statements within the same phase to be

executed concurrently, e.g. statement 6 and statement 7 in the example at the beginning of this

paper.

Given two basic blocks N1 and N2 (possibly the same) that hN b
i ; N

b
j i 2 in phase(N1) \

in phase(N2), and the owner parallel region of hN b
i ; N

b
j i is PR, the two blocks N1 and N2 will

not be executed concurrently by di�erent threads in a team that executes PR in the following

situations.

1. master

Both N1 and N2 are in master constructs that belong to PR.

ORC(N1):type = ORC(N2):type = master ; ORC(N1):pregion = ORC(N2):pregion = PR

2. ordered

Both N1 and N2 are in ordered constructs in PR and are bound to the same do construct.

ORC(N1):type = ordered ; ORC(N2):type = ordered

ORC(N1):pregion = ORC(N2):pregion = PR

ORC(N1):ordered:bound = ORC(N2):ordered:bound

3. single

Both N1 and N2 are in the same single construct in PR

ORC(N1) = ORC(N2); ORC(N1):type = ORC(N2):pregion = single

8

ORC(N1):pregion = ORC(N2):pregion = PR

and one of the following is true.

� the single construct is not in any loop within the parallel region PR.

� the single construct is in a loop within the parallel region PR, and there is no barrier-

free path from the single end directive node to the header of the immediately enclosing

loop.

� the single construct is in a loop within the parallel region, and there is no barrier-free

path from the header of the immediately enclosing loop to the single begin directive

node.

OpenMP requires a single construct to be executed by only one thread in a team. However, it

does not specify which thread. If the single construct is inside a loop, then two di�erent threads

may each execute one instance of the single construct in di�erent iterations. If there is no barrier,

then the two threads may execute the construct concurrently.

Also note that we do not check for critical sections. A critical section enforces serial execution,

but does not enforce synchronization. Di�erent instances of the statements in a critical section

cannot be executed in parallel, but can be executed concurrently.

5 Application: Static Race Detection

Static nonconcurrency analysis can help many useful analyses and optimizations, such as race de-

tection, lock/barrier removal, synchronization optimization, etc. A static nonconcurrency analysis

similar to the above has been implemented in Sun Studio
TM

9 compilers. It serves as one of the

analysis engines for the OpenMP autoscoping feature, which automatically detects the data shar-

ing attributes of variables in an OpenMP application[6]. It also serves as an engine for the static

OpenMP error detection feature provided in Sun compilers. Here, we show how to build a static

race detection algorithm upon the static nonconcurrency analysis.

5.1 The Method

There are two di�erent types of races, synchronization races and data races, which are collectively

called general races [8]. A general race happens when the order of two accesses (at least one is

write) to the same memory location is not enforced by synchronizations. A data race happens

when a general race happens and the access to the memory is not guarded by a critical section.

A general race that is not a data race is called synchronization race. A correct OpenMP program

may contain synchronization races, but is usually expected to be free of data race. For example, in

a producer/consumer code, the producer and the consumer may execute asynchronously, but they

should not corrupt the shared data. Many OpenMP programs are parallelized from serial codes

and their behavior is usually deterministic. Such programs should be free of both synchronization

races and data races.

If any two accesses to the same memory location cannot be executed concurrently, then these

two accesses must be ordered and a general race is impossible. If the two accesses can be executed

concurrently and the accesses are guarded by critical sections, then a synchronization race may

happen while a data race is impossible. Based on the above logic and our nonconcurrency analysis,

we can develop a static race detection method for OpenMP programs.

Given two statements s1 and s2 that access the same shared memory location (at least one of

them writes to the location) and a parallel region PR, the following steps detect whether the two

statements may cause a race in PR.

1. Find the basic block N1 for s1 and the basic block N2 for s2.

9

2. Use the method in Section 4 to check the nonconcurrency relationship between N1 and N2 in

parallel region PR.

3. If N1 and N2 will not be executed concurrently, then the two statements will not cause a race

in PR.

4. Otherwise, if both N1 and N2 are in critical constructs that have the same name or both are
unnamed.

ORC(N1):type = critical ; ORC(N2):type = critical

ORC(N1):crit:name = ORC(N2):crit:name

then the two statement may cause a synchronization race, but will not cause a data race in

PR.

5. Otherwise, the two statements may cause a data race in PR.

5.2 Example

1. function foo (n, x, y)

2. integer n, i

3. real x(*), y(*)

4. real w, mm, m, foo

5.

6. w = 0.0

7.

8. c$omp parallel private(i,mm,t), firstprivate(n),

9. c$omp+ shared(m,x,y), reduction(+:w)

10.

11. c$omp single

12. m = 0.0

13. c$omp end single nowait

14.

15. mm = 0.0

16.

17. c$omp do

18. do i = 1, n

19. t = x(i)

20. y(i) = t

21. if (t .gt. mm) then

22. w = w + t

23. mm = t

24. end if

25. end do

26. c$omp end do nowait

27.

28. c$omp critical

29. if (m .le. mm) then

30. m = mm

31. end if

32. c$omp end critical

33.

34. c$omp end parallel

35.

36. foo = w - m

37.

38. return

39. end

10

Function foo contains a parallel region (line 8-34), whose purpose is to copy array x() to array

y(), set the maximum value of all positive elements of x() to a scalar variable m, and compute the

sum w of some elements of x(). Scalar m is a shared variable. A single construct (line 11-13) is

used to initialize m. Each thread uses a private variable mm to store the maximum value the thread

gets in the worksharing do loop (line 17-26). At the end of the parallel region, the shared variable

m is updated by all threads in a critical section (line 28-32) which is used to avoid data race.

In an attempt to speed up the execution of the parallel region, two nowait clauses (line 13

and line 26) are inserted to remove the implicit barriers. Threads not executing the single can go

ahead to work on the worksharing do without having to wait for the thread who is initializing m.

And threads that have �nished their share of the work in the do can continue to update the shared

variable m, and don't have to wait for other threads.

However, the program may not deliver the expected result because of the use of these two

nowait clauses. Our nonconcurrency analysis will �nd that statements 11 through 32 are all in

one static phase, and statements 12 and 29, as well as statements 12 and 30 may be executed

concurrently. Because statement 12 is not guarded by a critical section, either case will cause a

data race and lead to a nondeterministic execution result.

Sun Studio 9 Fortran compiler will give the following warning when the above code is compiled

with the parallel error checking option -vpara.

>f90 -xopenmp -vpara -xO3 -c t.f

``t.f'', line 8: Warning: inappropriate scoping

variable 'm' may be scoped inappropriately as 'SHARED'

. write at line 30 and write at line 12 may cause data race

If the single construct is changed to a critical construct, then our race detection method

will �nd that the code may cause a synchronization race and the execution result may still be

nondeterministic.

If either one of the two nowait clauses is not there, our nonconcurrency analysis will �nd that

the parallel region is partitioned into two nonconcurrent phases - one contains statement 12 and

the other contains statement 29 and statement 30. Therefore statement 12 will never be executed

concurrently with either statement 29 or statement 30. According to the our race detection method,

the code has no race conditions now.

6 Related Work

Many researchers [4][3][2][7] have proposed di�erent methods to detect race conditions and non-

determinacy in parallel programs that use low-level event variable synchronization, such as post/wait

and locks. Our technique is di�erent from theirs because ours uses high-level semantic informa-

tion exposed by OpenMP directives and constructs. Our method is simpler and more eÆcient for

analyzing OpenMP programs. It is not clear how to represent OpenMP semantics using event vari-

ables. Nevertheless, since our method does not handle OpenMP lock API calls, their techniques

can be incorporated into our method to re�ne analysis results.

Jeremisassen and Eggers [5] present a compile-time nonconcurrency analysis using barriers.

Their method assumes the SPMD model and is similar to our method in Section 4.1 as it also

divides the program into a set of phases separated by barriers. They assume a general SPMD

model that is not OpenMP speci�c. Therefore they cannot take advantage of restrictions that

OpenMP has on the use of barriers. For example, their method will say node N5 and node N6 in

Figure 2(b) may be executed concurrently while ours does not. Their method is purely based on

barriers and does not detect nonconcurrency within one phase.

In [9], Satoh et. al. describe a `parallel ow graph' that is similar to our OMPCFG. They connect

ush operations with special edges that present the ordering constraints between the ushes. They

11

do not have construct edges as they do not build a hierarchical structure like our OpenMP region

tree. The two representations are di�erent because they serve di�erent purposes. Theirs is more

data ow oriented, while ours is more control ow oriented. It is possible to combine these two

graphs together.

7 Conclusion

We have presented a method for compile-time detection of nonconcurrency information in OpenMP

programs. The analysis uses the semantics of OpenMP directives and takes advantage of the fact

that standard compliant OpenMP programs are well-structured. The analysis has a complexity

that is linear to the size of the program in most applications, and can handle nested parallelism

and orphaned OpenMP constructs. The OpenMP control ow graph and the OpenMP region tree

developed in this work can be used for other compiler analyses/optimizations of OpenMP programs

as well. We have also demonstrated the use of the nonconcurrency information by building a

compile-time race detection algorithm upon it.

Acknowledgement The author would like to thank Nawal Copty and Eric Duncan for reviewing the

paper and providing insightful comments.

References

[1] OpenMP Fortran Application Program Interface, Version 2.0. http://www.openmp.org/specs, November

2000.

[2] Vasanth Balasundaram and Ken Kennedy. Compile-time detection of race conditions in a parallel

program. In Conference Proceedings, 1989 International Conference on Supercomputing, pages 175{

185, Crete, Greece, June 5{9, 1989. ACM SIGARCH.

[3] David Callahan, Ken Kennedy, and Jaspal Subhlok. Analysis of event synchronization in a parallel

programming tool. In Proceedings of the Second ACM SIGPLAN Symposium on Principles and Practice

of Parallel Programming, pages 21{30, Seattle WA, March 1990.

[4] P. Emrath and D. Padua. Automatic detection of nondeterminacy in parallel programs. In Proceedings

of the ACM SIGPLAN and SIGOPS Workshop on Parallel and Distributed Debugging, volume 24(1),

pages 89{99, New York, NY, January 1989. ACM Press.

[5] T. E. Jeremiassen and S. J. Eggers. Static analysis of barrier synchronization in explicitly parallel

programs. In International Conference on Parallel Architectures and Compilation Techniques, pages

171{180, August 1994.

[6] Yuan Lin, Christian Terboven, Dieter an Mey, and Nawal Copty. Automatic scoping of variables in

parallel regions of an openmp program. In Proceedings of the 2004 Workshop on OpenMP Applications

and Tools, Houston, TX, May 2004.

[7] Robert H. B. Netzer and Sanjoy Ghosh. EÆcient race condition detection for shared-memory programs

with post/wait synchronization. In Kang G. Shin, editor, Proceedings of the 1992 International Con-

ference on Parallel Processing. Volume 2: Software, pages 242{246, Ann Arbor, MI, August 1993. CRC

Press.

[8] Robert H. B. Netzer and Barton P. Miller. What are race conditions? Some issues and formalizations.

ACM Letters on Programming Languages and Systems, 1(1):74{88, March 1992.

[9] Shigehisa Satoh, Kazuhiro Kusano, and Mitsuhisa Sato. Compiler optimization techniques for openMP

programs. Scienti�c Programming, 9(2-3):131{142, 2001.

[10] Richard N. Taylor. Complexity of analyzing the synchronization structure of concurrent programs. Acta

Informatica, 19:57{84, 1983.

12

