
Performance Evaluation of Parallel Sparse
Matrix–Vector Products on SGI Altix3700

Hisashi Kotakemori1, Hidehiko Hasegawa2, Tamito Kajiyama1, Akira Nukada1,
Reiji Suda1 and Akira Nishida1

1 CREST, Japan Science and Technology Agency
Graduate School of Information Science and Technology, University of Tokyo

7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
{kota, kajiyama, nukada, reiji, nishida}@is.s.u-tokyo.ac.jp

2 CREST, Japan Science and Technology Agency
Graduate School of Library, Information and Media Studies, University of Tsukuba

Tsukuba 305-8550, Japan
hasegawa@slis.tsukuba.ac.jp

Abstract. The present paper discusses scalable implementations of
sparse matrix-vector products, which are crucial for high performance
solutions of large-scale linear equations, on a cc-NUMA machine SGI
Altix3700. Three storage formats for sparse matrices are evaluated, and
scalability is attained by implementations considering the page alloca-
tion mechanism of the NUMA machine. Influences of the cache/memory
bus architectures on the optimum choice of the storage format are exam-
ined, and scalable converters between storage formats shown to facilitate
exploitation of storage formats of higher performance.

1 Introduction

Fast solution of linear equations with large sparse coefficient matrices is an
essential requirement of advanced computations in science and engineering, and
considerable research has been performed on solvers and preconditioners, and
high performance implementations have been conducted to that end. We are
planning to develop a new library for large-scale sparse matrix solutions that
features a wide range of iterative solvers, preconditioners, and storage formats
for sequential, shared memory and distributed memory parallel architectures. In
the present paper, we discuss the performance of sparse matrix-vector products
on a cc-NUMA machine SGI Altix3700.

The matrix-vector product is the most important kernel operation for itera-
tive linear solvers, and its performance has a significant effect on the performance
of linear solvers. We will show that satisfactory scalability cannot be attained
unless the implementation is aware of the page allocation mechanism of the cc-
NUMA machine. In addition, we will show that the storage format of the highest
performance may be different for different matrices and on different architectures
(CPU and memory), which indicates the importance of the availability of various

2

A =

 11
21 22

32 33
41 43 44

44
4

A.value43413332222111
A.index3132211

44
4

A.value43413332222111
A.index3132211

A.ptr96421 A.ptr96421

33 43 0 440 A.value324102202111
A.bindex211

33 43 0 440 A.value324102202111
A.bindex211

A.bptr421 A.bptr421

11 22 33 4443 A.value3221041000
A.index0-1-3

11 22 33 4443 A.value3221041000
A.index0-1-3

CRS

BSR

DIA

Fig. 1. Data structures of CRS, BSR and DIA. Example matrix A is stored in these
storage formats. The arrows in the figures of CRS and BSR designate that the elements
of (b)ptr are used as indices to (b)index. The BSR of the block size is r = 2 and
c = 2.

storage formats in a library. Since modifying their application programs for dif-
ferent storage formats is a burden on users, subroutines for conversions between
storage formats are necessary. We will show that scalable parallel implementa-
tions of storage conversion routines enable performance enhancements by use of
storage formats of higher performances.

2 Storage Formats and Their Implementations

A number of storage formats have been proposed for sparse matrices. They
have been proposed for various objectives, such as simplicity, generality, per-
formance, or convenience with respect to a specific algorithm. We implemented
seven formats: Compressed Row Storage (CRS), Compressed Column Storage
(CCS), Modified Compressed Sparse Row (MSR), Block Sparse Row (BSR), Di-
agonal (DIA), Ellpack-Itpack generalized diagonal (ELL) and Jagged Diagonal
(JDS). In addition to CRS as the baseline format, only BSR and DIA are dis-
cussed in the following experiments, because the performance of matrix–vector
products in the other formats was lower. In this section, the data structures and
the parallel implementations of the matrix–vector products of CRS, BSR and
DIA formats are discussed. The structures of the other formats can be found in
[1–5]. Figure 1 shows an example matrix A and data structures of CRS, BSR
and DIA for A. In the following explanation, mathematically A is assumed to
be a square n × n matrix.

2.1 Compressed Row Storage (CRS)

The CRS format is shown by three arrays (ptr,index,value). Let nnz be
the number of the non-zero elements in matrix A. The double-precision array
value of length nnz stores the value of non-zero elements of matrix A as they
are traversed row-wise. The integer array index of length nnz stores the column
indices of the non-zero elements as stored in the array value. The integer array

3

ptr of length n + 1 stores pointers to the beginning of each row in the arrays
value and index.

The following code shows the implementation of the matrix–vector product
y = Ax in the CRS format. It is parallelized at the outer loop, and thus (the
computations related to) the rows of the matrix are distributed to the threads.

#pragma omp parallel for private(i,j,t)

for(i=0; i<n; i++) {

t = 0.0;

for(j=A.ptr[i];j<A.ptr[i+1];j++)

t += A.value[j] * x[A.index[j]];

y[i] = t;

}

2.2 Block Sparse Row (BSR)

For BSR, the matrix is split into r × c submatrices (called blocks), where r
and c are fixed integers. BSR stores the non-zero blocks (submatrices with at
least one non-zero element) in a manner similar to CRS. Let nr = n/r and nnzb
be the number of non-zero blocks in A. BSR is shown by three arrays (bptr,
bindex, value). The double precision array value of length nnzb× r× c stores
the elements of the non-zero blocks: the first r × c elements are of the first non-
zero block, and the next r × c elements are of the second non-zero block, etc.
The integer array bindex of length nnzb stores the block column indices of the
non-zero blocks. The integer array bptr of length nr + 1 stores pointers to the
beginning of each block row in the array bindex.

The code of the parallel matrix–vector product for BSR of the 2 × 2 block
(i.e. r = 2 and c = 2) is shown below. A larger r reduces the number of load
instructions for the elements of the vector x, and a larger c works as the unrolling
of the inner loop, but this wastes memory and CPU power because of the zero
elements in the non-zero blocks.

#pragma omp parallel for private(i,j,jj,t0,t1)

for(i=0; i<nr; i++) {

t0 = t1 = 0.0;

for(j=A.bptr[i];j<A.bptr[i+1];j++) {

jj = A.bindex[j];

t0 += A.value[j*4+0] * x[jj*2+0] + A.value[j*4+2] * x[jj*2+1];

t1 += A.value[j*4+1] * x[jj*2+0] + A.value[j*4+3] * x[jj*2+1];

}

y[2*i+0] = t0; y[2*i+1] = t1;

}

2.3 Diagonal (DIA)

DIA is shown by two arrays (index, value). The double precision array
value of length nnd × n stores the non-zero diagonals of the matrix A, where
nnd is the number of non-zero diagonals. The integer array index of length nnd
stores the offsets of each of the diagonals with respect to the main diagonal.

4

Itanium2 1.3GHz Itanium2 1.3GHz

SHUB

FSB 6.4GB/s

DDR333DDR333DDR333
DDR333 SDRAM

NUMAlink3 3.2GB/s

NUMAlink4 6.4GB/s

Total 10.8GB/s

Inter-node comm

NUMAlink4 NUMAlink3

16NODES

Fig. 2. System configuration of the SGI Altix3700. The left-hand side illustrates the
inside of each node, and the right-hand side depicts the interconnections among the 16
nodes.

The code of the parallel matrix–vector product for DIA is shown below. In
our implementation the storage scheme is modified so that the matrix elements
accessed by each thread is stored in a contiguous region of memory. The inner
loop is strip-mined with the number of threads, and interchanged with the outer
loop.

#pragma omp parallel for private(i)

for(i=0; i<n; i++)

y[i] = 0.0;

#pragma omp parallel for private(i,j,k,is,ie,n1,n2,jj,ii)

for(k=0;k<threads;k++) {

n1 = n/threads; n2 = n%threads;

is = k<n2 ? (n1+1)*k : n1*k+n2;

ie = k<n2 ? is+n1+1 : is+n1;

for(j=0;j<nnd;j++) {

jj = A.index[j]; ii = _max(is,-jj)-_min(ie,n-jj);

for(i=_max(is,-jj);i<_min(ie,n-jj);i++)

y[i] += A.value[nn*k*nnd + j*nn + ii++] * x[jj+i];

}

}

2.4 The NUMA Architecture and Data Allocation for NUMA

The experiments reported in Section 3 are carried out on a cc-NUMA machine
SGI Altix3700 that consists of 16 nodes, and as illustrated in the left-hand side
of Fig. 2, each node has one memory controller called SHUB, to which two
Itanium2 Madison 1.3-GHz processors with 16-KB L1 cache, 256-KB L2 cache,
and 3-MB L3 cache for each are connected with a 6.4-GB/s shared front-side bus
and four modules of 512-MB DDR333 SDRAM are connected with 10.8 GB/s.
Two nodes are linked by a 6.4-GB/s NUMAlink4 interconnect, and four nodes
are connected to one router through a 3.2-GB/s NUMAlink3, as shown in the
right-hand side of Fig. 2.

The data is distributed by the first-touch mechanism, i.e. each page is stored
in the memory of the node with a processor that accesses the page first. Because
data must be transferred via interconnects when it is accessed by a processor
out of the node that owns the data, each page should be assigned to the node
with the processor that most often accesses the page in order to attain good
performance.

5

To control page allocation, the arrays for matrix storage are initialized with
zeros by the same threads as the matrix-vector products.

2.5 Conversion of Storage Format

Routines for the conversions from CRS to the other formats are based on those
in the SPARSKIT [3]. Several modifications were necessary to control page al-
location. For example, sequential implementation of the conversion from CRS
to BSR fills three arrays (bptr, bindex and value) at the same time, but paral-
lel implementation requires bptr to be filled first, because accesses to the arrays
bindex and value are distributed referring to bptr as shown in the code in Section
2.2.

3 Experimental Results

The experiments are carried out on a cc-NUMA machine SGI Altix3700. An
Intel C/C++ Compiler 8.1 is used with option -O3. In the experiments with 16
or fewer threads, the threads are allocated to different nodes using the dplace
command, so that the front-side bus is dedicated to a single thread. In the
experiments with 32 processors, the bus of each node is shared with the two
processors in the node, and the effective memory access performance can be
lowered.

Table 1 shows the dimensions, the number of non-zero elements, and the
average number of non-zero elements per row for each test matrix used in the
experiments. Matrices (a)–(e) are matrices from the Matrix Market[6], and ma-
trix (f) is obtained by finite element discretization of the three–dimensional
Poisson equation on a cube.

3.1 Parallel Performance

Table 2 shows the execution time in seconds for 1,000 iterations of matrix–
vector products in various storage formats and numbers of threads. Other than
CRS as the baseline, the storage formats that give the highest performance,
designated in bold face digits, are presented.

First note the dependency of the performance on the matrix. For matrices
(a), (c), (d), and (e), the best performance is attained by the same BSR 41.
However, the relative performance of BSR 41 is less than twice that of CRS for
most cases of (c) and (d), but is more than double that of CRS for (a) and (e).
For matrix (b) BSR with another block size is the optimum, and for matrix (f)
BSR with yet another block size is the best for eight threads or less and DIA is
the best for 16 and 32 threads. These results lead to observations that (1) the
performance is improved by optimizing the choice of the matrix storage format,
and that (2) the best storage format differs for different matrices and machines
(here, the number of processors used), and thus the availability of various storage
formats in a library package is important.

6

Table 1. Test matrices for the experiments. Matrices (a) to (e) are from Matrix Market,
and (f) is obtained by finite element discretization of the three–dimensional Poisson
equation on a cube. The average number of the non-zero elements per row is shown in
the column ”Ave.”.

Name Application area Dimension Nonzeros Ave.

(a) af23560 flows over airfoils 23,560 484,256 20.55
(b) fidapm37 finite element modeling 9,152 765,944 83.69
(c) fidap011 finite element modeling 16,614 1,091,362 65.69
(d) bcsstk30 structural engineering 28,924 2,043,492 70.65
(e) s3dkq4m2 cylindrical shell 90,449 4,820,891 53.30
(f) Poisson Poisson eq. on a cube 1,000,000 26,463,592 26.46

Table 2. Execution times (in seconds) of 1000 iterations of matrix–vector products
(performance relative to CRS in parentheses). The block size for BSR is shown as
BSR rc for r × c blocks. The fastest implementation for each matrix and parallelism
are shown in bold.

of threads 1 2 4 8 16 32
Matrix Format

(a) CRS 3.79 (1.00) 1.89 (1.00) 0.91 (1.00) 0.46 (1.00) 0.24 (1.00) 0.14 (1.00)

BSR 41 1.46 (2.59) 0.72 (2.64) 0.28 (3.22) 0.15 (3.04) 0.09 (2.64) 0.07 (2.07)

(b) CRS 2.53 (1.00) 1.33 (1.00) 0.63 (1.00) 0.32 (1.00) 0.18 (1.00) 0.10 (1.00)

BSR 22 2.24 (1.13) 1.19 (1.12) 0.57 (1.11) 0.24 (1.34) 0.14 (1.26) 0.09 (1.18)

(c) CRS 3.87 (1.00) 1.98 (1.00) 1.01 (1.00) 0.48 (1.00) 0.26 (1.00) 0.15 (1.00)

BSR 41 2.51 (1.54) 1.30 (1.52) 0.65 (1.55) 0.24 (2.04) 0.13 (1.91) 0.09 (1.63)

(d) CRS 6.81 (1.00) 3.53 (1.00) 1.88 (1.00) 0.97 (1.00) 0.46 (1.00) 0.24 (1.00)

BSR 41 4.48 (1.52) 2.34 (1.51) 1.30 (1.44) 0.61 (1.60) 0.23 (1.96) 0.14 (1.75)

(e) CRS 20.87 (1.00) 10.47 (1.00) 5.26 (1.00) 2.71 (1.00) 1.43 (1.00) 0.68 (1.00)

BSR 41 9.17 (2.28) 4.65 (2.25) 2.39 (2.20) 1.30 (2.08) 0.62 (2.29) 0.27 (2.49)

(f) CRS 149.50 (1.00) 74.96 (1.00) 37.43 (1.00) 18.76 (1.00) 9.51 (1.00) 4.97 (1.00)

BSR 31 85.60 (1.75) 43.25 (1.73) 21.53 (1.74) 10.92 (1.72) 5.63 (1.69) 4.87 (1.02)

DIA 178.50 (0.84) 89.19 (0.84) 44.34 (0.84) 16.40 (1.14) 4.72 (2.02) 2.81 (1.77)

The speed-up ratios for the parallel matrix–vector products are shown in
Table 3. The parallelization speed-ups are nearly ideal in most cases. Super linear
speed-ups (speed-up ratios larger than the number of threads) are sometimes
observed, possibly due to the improved cache hit rates because of much smaller
data size. The speed-ups for 32 threads are much less than twice those for 16
threads, which may be due to sharing the bus with the two processors on a node.
The lower speed-up ratios for 32 threads are most obvious for BSR formats,
perhaps because BSR requires a greater number of memory accesses.

DIA outperforms BSR only for matrix (f), which has a regular 27-diagonal
structure, and thus is stored very efficiently in the DIA format. However, DIA is
still slower than BSR for eight threads or less. For 16 threads, the parallelization
speed-up ratio of DIA is more than twice the number of threads, which may be
ascribed to the lower memory requirement of DIA, which is approximately half

7

Table 3. Speed-up ratios for parallel matrix–vector products.

of threads 1 2 4 8 16 32
Matrix Format

(a) CRS 1.00 2.00 4.18 8.19 15.51 27.16
BSR 41 1.00 2.04 5.19 9.59 15.77 21.69

(b) CRS 1.00 1.90 3.99 7.93 14.23 24.14
BSR 22 1.00 1.88 3.91 9.42 15.90 25.18

(c) CRS 1.00 1.95 3.82 8.03 15.13 26.50
BSR 41 1.00 1.93 3.83 10.60 18.75 28.03

(d) CRS 1.00 1.93 3.63 7.00 14.91 28.07
BSR 41 1.00 1.91 3.45 7.34 19.22 32.21

(e) CRS 1.00 1.99 3.97 7.70 14.61 30.72
BSR 41 1.00 1.97 3.83 7.04 14.73 33.63

(f) CRS 1.00 1.99 3.99 7.97 15.72 30.07
BSR 31 1.00 1.98 3.97 7.84 15.20 17.58
DIA 1.00 2.00 4.03 10.88 37.84 63.51

Table 4. Execution times (in seconds) of 1000 iterations of matrix–vector products.
Results of another set of experiments for matrix (f) in BSR 31.

of threads 1 2 4 8 16 32

One thread per node 85.60 43.25 21.53 10.92 5.63 —

Two threads per node — 73.07 36.58 18.48 9.33 4.87

All data on a single node 85.60 80.88 149.21 224.83 264.22 267.94

that of BSR. With 32 threads, the parallelization speed-up ratio of BSR drops,
which may be ascribed to the higher memory requirements of BSR. These results
exemplify the heavy influences of the memory architecture (cache and shared
bus) on the optimum choice of the storage format.

Table 4 shows the results of another set of experiments on the matrix (f)
in BSR 31. The first line reproduces the results in Table 2. The second line
gives the execution times with two threads assigned to each node. Here, the
influences of the share of the front-side bus by the processors in a node on the
performance are observed, and the absolute performances are much lower than
in the previous experiments (expect for 32 threads). The speed-ups relative to
the performance with two threads are steady up to 32 threads, which confirms
that the shared bus is the reason for the lower speed-up ratio for 32 threads.
For the third line of Table 4, the data structure of BSR 31 is constructed by a
single thread, and thus all of the data are allocated to a single node. The data
for the computations on the other node are accessed via the interconnections,
and the resulting performances were poor. This confirms the importance of the
data distribution discussed in Section 2.4.

8

Table 5. Conversion times Tconv (in milliseconds with the threshold numbers of iter-
ations Nth in parentheses) for the same sets of experiments as in Table 2.

of threads 1 2 4 8 16 32
Matrix Format

(a) BSR 41 61.2 (27) 30.7 (27) 15.0 (24) 8.5 (28) 6.7 (45) 10.4 (144)

(b) BSR 22 96.9 (332) 50.8 (366) 24.9 (410) 12.4 (153) 7.7 (209) 8.5 (531)

(c) BSR 41 132.8 (98) 68.1 (100) 35.4 (99) 17.8 (73) 11.1 (92) 14.1 (251)

(d) BSR 41 247.6 (107) 132.3 (112) 69.8 (122) 35.9 (99) 20.2 (90) 22.2 (215)

(e) BSR 41 575.9 (50) 292.7 (51) 148.5 (52) 78.2 (56) 47.7 (60) 53.5 (132)

(f) BSR 31 3370.8 (53) 1720.3 (55) 1073.5 (68) 478.6 (61) 303.8 (79) 439.2 (4306)

DIA 907.4 (-31) 485.6 (-34) 270.3 (-39) 178.0 (76) 165.7 (35) 178.8 (83)

Table 6. Speed-up ratios for parallel conversion from CRS to target storage format.

of threads 1 2 4 8 16 32
Matrix Format

(a) BSR 41 1.00 1.99 4.07 7.21 9.11 5.90

(b) BSR 22 1.00 1.91 3.89 7.79 12.54 11.44

(c) BSR 41 1.00 1.95 3.75 7.47 11.92 9.38

(d) BSR 41 1.00 1.87 3.54 6.90 12.28 11.15

(e) BSR 41 1.00 1.97 3.88 7.37 12.08 10.76

(f) BSR 31 1.00 1.96 3.14 7.04 11.10 7.68
DIA 1.00 1.87 3.36 5.10 5.48 5.07

3.2 Performance of Storage Format Conversions

Assume that a matrix A is given in the CRS format (e.g. the user prefers the
CRS format for some reason) and is to be multiplied to many vectors (e.g. an
iterative linear solver is used). If a certain storage format (referred to hereinafter
as the target format) is known to attain a higher performance than CRS in
matrix–vector products for A, then it may be better to convert into the target
format before the matrix–vector multiplications.

Let Tcrs and Ttgt be the execution times of the matrix–vector product in the
CRS and target formats, respectively, and let Tconv be the execution time of
the conversion from the CRS format to the target format. Define the threshold
number of iterations Nth as Nth = ⌈Tconv/(Tcrs−Ttgt)⌉. If the number of matrix–
vector multiplications is at least Nth, then it is better to use the target format;
otherwise, it is better to use CRS format without conversion.

Table 5 tabulates the conversion times Tconv (with the threshold numbers
of iterations Nth in parentheses) for the same set of matrices, storage formats,
and numbers of threads as Table 2. Note that the number of threads (if it is 16
or less) has little effect on Nth in most cases of BSR. This is the case in which
the parallelization speed-up ratios for the matrix–vector products in CRS and in
BSR and for the conversion from CRS to BSR are similar. The speed-up ratios
of the conversion routines are shown in Table 6.

9

With 32 threads, however, Tconv tends to be longer than that with 16 threads,
which can be ascribed to the share of the memory bus by the processors in a
node. In this case, a strange phenomenon occurs. For matrix (a), execution by
16 threads takes less time than execution by 32 threads if the number of matrix–
vector products is from 134 to 185, because the conversion time is shorter with
16 threads than with 32 threads. Accordingly, the threshold number of iterations
Nth for 32 threads is much larger than those for 16 threads or less. If the code
is added using 32 threads, but following the conversion routine for 16 threads,
then processors 2n and 2n + 1 (n = 0, ..., 15) become the same node. Therefore,
efficient execution is possible, because the data locality changes only slightly for
16 threads or 32 threads.

omp_set_num_threads(16);

#pragma omp parallel

cpubind(omp_get_thread_num()*2);

The Storage Format Conversion

omp_set_num_threads(32);

#pragma omp parallel

cpubind(omp_get_thread_num());

　 The Matrix-Vector Products

The conversion times Tconv for the DIA format are shorter than those for
BSR, perhaps because the amount of data to be stored for DIA is approximately
half that for BSR. Negative Nth means Tdia > Tcrs, thus it is better NOT to
convert the matrix into DIA format irrespective of the number of iterations.

4 Related Works

There are a variety of portable software packages that are applicable to the
iterative solver of sparse linear systems. SPARSKIT [3] is a toolkit for sparse
matrix computations written in Fortran. SPARSKIT provides a number of ma-
trix storage formats, each of which has a pair of converters to and from the
CRS format. Together with a rich set of matrix computation subroutines, the
toolkit contains several sequential iterative solvers implemented based on reverse
communication [7]. PETSc [8] is a C library for the numerical solution of par-
tial differential equations and related problems, and can be used in application
programs written in C, C++, and Fortran. The library provides an extensible
set of matrix storage formats including various specialized formats that can be
directly passed to external libraries. PETSc includes parallel implementations
of iterative solvers and preconditioners based on MPI. Aztec [9] is another li-
brary of parallel iterative solvers and preconditioners and is written in C. Aztec
provides two matrix storage formats. The library is fully parallelized using MPI
and can be used in applications written in C and Fortran. From the viewpoint of
functionality, our library and all three of the libraries mentioned above support
different sets of matrix storage formats, iterative solvers, and preconditioners.
Moreover, our library is parallelized using OpenMP and takes the cc-NUMA
architecture into consideration.

10

The performance-enhancing techniques of sparse matrix–vector products are
reported in [10, 11]. A related issue is the selection of the best storage format
for a given matrix and machine. In order to address this problem, E. Im [12]
and Demmel et al. [13] proposed an automated empirical tuning mechanism for
sparse matrix computations that selects an appropriate matrix storage format
and solver implementation based on benchmarking data gathered in advance
and structural characteristics of non-zero elements in a sparse matrix in hand.

5 Conclusions

In the present paper, we have discussed the parallel performance of matrix-
vector product routines, which is crucial for high performance implementation of
iterative linear solvers, on a cc-NUMA machine SGI Altix3700. Implementations
that take into account the page allocation mechanism have attained satisfactory
scalabilities. The memory architecture (specifically, the cache and the mem-
ory bus) have been observed to greatly affect the performance of matrix-vector
products, and, consequently, storage formats that require more memory are in-
fluenced more. The baseline format CRS has scaled well up to 32 threads, and
the performance of the BSR format that requires the most memory began to
decrease at 32 threads, and the DIA format that requires the least memory has
become faster for 16 threads or more. In order to maximize the performance of
a machine, users must be able to choose an appropriate storage format for each
matrix and each machine, and our scalable implementations of matrix-vector
products and storage format conversions in a variety of storage formats enable
such selection.

The target machine examined herein (SGI Altix3700) is a cc-NUMA ma-
chine. We are planning to port and to evaluate our codes to other shared memory
parallel machines, including those having UMA (Uniform Memory Access) and
SDSM (Software Distributed Shared Memory) architectures. Parallelization for
distributed memory parallel machines through MPI and MPI-OpenMP hybrid
parallelization is our next goal. We will also work toward high-performance iter-
ative linear solvers using these kernel routines and effective preconditioners for
the solvers, with the goal of developing a complete sparse linear solver library
for sequential, shared memory and distributed memory parallel architectures.

Acknowledgements

The authors would like to thank Associate Professor Kengo Nakajima (Tokyo
University), Professor Yoshio Oyanagi (Tokyo University) and Dr. Akihiro Fujii
(Kogakuin University) who provided valuable advice and discussions regarding
the advanced research.

References

1. R. Barrett, et al.. Templates for the Solution of Linear Systems: Building Blocks
for Iterative Methods. SIAM, 1994.

11

2. I. Duff, R. Grimes and J. Lewis. Sparse matrix test problems. ACM Trans. Math.
Soft., 15:1–14, 1989.

3. Y. Saad. SPARSKIT: a basic took kit for sparse matrix computations, version 2,
June 1994. http://www.cs.umn.edu/ saad/software/SPARSKIT/sparskit.html.

4. D. Kincaid, T. Oppe, J. Respess and D. Young. ITPACKV2C User’s Guide, Report
CNA191. The University of Texas at Austin, 1984.

5. Y. Saad. Krylov subspace methods on supercomputers. SIAM J. Sci. Stat. Com-
put., 10:1200–1232, 1989.

6. Matrix Market. http://math.nist.gov/MatrixMarket.
7. J. Dongarra, V. Eijkhout, and A. Kalhan. Reverse communication interface for

linear algebra templates for iterative methods. Technical Report UT-CS-95-291,
University of Tennessee, May 1995.

8. S. Balay, K. Buschelman, V. Eijkhout, W. Gropp, D. Kaushik, M. Knepley, L.
McInnes, B. Smith, and H. Zhang. PETSc users manual. Technical Report ANL-
95/11, Argonne National Laboratory, August 2004.

9. R. S. Tuminaro, M. Heroux, S. A. Hutchinson, and J. N. Shadid. Official Aztec
user’s guide, version 2.1. Technical Report SAND99-8801J, Sandia National Lab-
oratories, November 1999.

10. S. Toledo. Improving the memory-system performance of sparse-matrix vector
multiplication. IBM Journal of Research and Development, 41(6):711–725, 1997.

11. Ali Pinar and Michael T. Heath. Improving Performance of Sparse Matrix-Vector
Multiplication. Supercomputing 99, 1999

12. E.J. Im. Optimizing the performance of sparse matrix-vector multiplication. Ph.D.
thesis, University of California, May 2000.

13. J. Demmel, J. Dongarra, V. Eijkhout, E. Fuentes, A. Petitet, R. Vuduc, R. C
Whaley, and K. Yelick. Self adapting linear algebra algorithms and software. Pro-
ceedings of the IEEE: Special Issue on Program Generation, Optimization, and
Adaptation, 93(2):293–312, February 2005.

