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Abstract. A multi-cluster computational environment with mixed-mode (MPI +
OpenMP) parallelism for estimation of unknown regional electrical conductiv-
ities of the human head, based on realistic geometry from segmented MRI up
to 2563 voxels resolution, is described. A finite difference multi-component al-
ternating direction implicit (ADI) algorithm, parallelized using OpenMP, is used
to solve the forward problem calculation describing the electrical field distribu-
tion throughout the head given known electrical sources. A simplex search in the
multi-dimensional parameter space of tissue conductivities is conducted in pa-
rallel across a distributed system of heterogeneous computational resources. The
theoretical and computational formulation of the problem is presented. Results
from test studies based on the synthetic data are provided, comparing retrieved
conductivities to known solutions from simulation. Performance statistics are also
given showing both the scaling of the forward problem and theperformance dy-
namics of the distributed search.

1 Introduction

The essence of most tomographic techniques is to determine unknown complex co-
efficients in PDEs governing the physics of the particular experimental modality. Such
problems are typically non-linear and ill-poised. The firststep in solving such an inverse
problem is to find a numerical method to calculate the direct (forward) problem. When
the physical model is three-dimensional and geometricallycomplex, the forward solu-
tion can be difficult to construct and compute. However, thisis only the first stage of the
tomographic solution. The second stage involves a search across a multi-dimensional
parameter space of unknown (to be found) model properties. The search employs the
forward problem with chosen parameter estimates and a function that determines the
error of the forward calculation with an empirically measured result. As the error resid-
uals of local inverse searches are minimized, the global search determines convergence
to final property estimates based on its knowledge of how wellthe parameter space has
been sampled.

Fundamental problems in neuroscience involving experimental modalities like elec-
troencephalography(EEG) and magnetoencephalograpy(MEG) are naturally expressed
as tomographic imaging problems. The difficult problems ofsource localization and
impedance imaging require modeling and simulating the associated bioelectric fields.



Forward calculations are necessary in the computational formulation of these problems.
Until recently, most practical research in this field has opted for analytical or semi-
analytical models of a human head in the forward calculations [1, 2]. This is in contrast
to approaches that use realistic 3D head geometry for purposes of significantly improv-
ing the accuracy of the forward and inverse solutions. To do so, however, requires that
the geometric information be available from MRI or CT scans.With such image data,
the tissues of the head can be better segmented and more accurately represented in the
computational model. Unfortunately, these realistic modeling techniques have intrin-
sic computational complexities that grow as the image resolution increases. This is the
primary reason such techniques have not be used in the past.

In source localization we are interested in finding the electrical source generators
for the potentials that might be measured by EEG electrodes on the scalp surface. Here,
the inverse search is looking for those sources (their position and amplitude) on the cor-
tex surface whose forward solution most accurately describes the electrical potentials
observed. The computational formulation of the source localization problem assumes
the forward calculation is without error. However, this assumption in turn assumes the
conductivity values of the modeled head tissues are known. In general, for any individ-
ual, they are not known. Thus, the impedance imaging problemis actually a predecessor
problem to source localization. In impedance imaging, the inverse search finds those tis-
sue impedance values whose forward solution best matches measured scalp potentials
when experimental stimuli are applied. In either problem, source localization or im-
pedance imaging, solving the inverse search usually involves the large number of runs
of the forward problem. Therefore, computational methods for the forward problem,
which are stable, fast and eligible for parallelization, aswell as intelligent strategies
and techniques for multi-parameter search, are of paramount importance.

To deal with complex geometries, PDE solvers use finite element (FE) or finite dif-
ference (FD) methods [3, 4]. The main computational idea behind these methods is to
reduce a continuous problem with infinitely many unknown field values to a finite num-
ber of unknowns by discretizing the solution region into elements. Application of each
of these approximation methods to the governing equations for the specific modality
yields eventually a system of linear equations of the formAX = b, which must be
solved to obtain the final solution. The solution techniquescan be broadly categorized
as direct and iterative solvers. The choice of the particular solution method is highly de-
pendent upon the approximation technique employed to obtain the linear system, upon
the size of the resulting system, and upon accessible computational resources.

Usually, for the geometry with the given complexity level, the FE methods are more
economical in terms of the number of unknowns (the size of thestiffness matrix A, is
smaller, as homogeneous segments do not need a dense mesh) and resulting computa-
tional cost. However, the FE mesh generation for a 3D, highlyheterogeneous subject
with irregular boundaries (e.g., the human brain) is a difficult task. The process involves
a significant degree of preprocessing and smoothing of the initial geometry through
manual means. A fully automated process of image segmentation and mesh generation
is unavailable at present.

At the same time, the FD method with a regular cubed grid is generally the easiest
method to code and implement. It is often chosen over FE methods for simplicity and



the fact that MRI/CT segmentation map is also based on a cubedlattice of nodes. There-
fore, meshes are relatively easy to construct (once segmentation is accomplished) as the
cubic/rectangular elements can be "mapped" directly from the voxels of the medical im-
ages (3D MRI scans). Many anatomical details (e.g., olfactory perforations and internal
auditory meatus) or structural defects in case of trauma (e.g., skull cracks and punc-
tures) can be included as the computational load is based on the number of elements
and not on the specifics of tissues differentiation. Thus, the model geometry accuracy
can be the same as the resolution of MRI scans (e.g.,1× 1× 1mm), while in the FEM
approach, simplification of the geometry is unavoidable as aresult of mesh generation.
In addition, the multiscale (multigrid) strategy of calculations on a hierarchy of coarser
grids (starting with64× 64× 44 and feeding the results into the next cycle of iterations
on the finer grid) can be easily implemented in a FD forward solver. The FD grid can be
made non-uniform and/or applied in the spherical coordinates to capture more details
in the regions of interest.

In the present work we adopt a model based on FD methods and construct a hetero-
geneous distributed and mixed-mode parallel simulation environment for conductivity
optimization through inverse simplex search. FE simulation [7] is used to solve for rela-
tively simple phantom geometries that we then apply as "goldstandards" for validation.

2 Mathematical Description of the Problem

The relevant frequency spectrum in EEG and MEG is typically below 1kHz, and
most studies deal with frequencies between0.1 and 100Hz. Therefore, the physics
of EEG/MEG can be well described by the quasi-static approximation of Maxwell’s
equations, the Poisson equation. The electricalforward problem can be stated as fol-
lows: given the positions, orientations and magnitudes of current sources, as well as
geometry and electrical conductivity of the head volumeΩ calculate the distribution of
the electrical potential on the surface of the head (scalp)ΓΩ. Mathematically, it means
solving the linear Poisson equation:

∇ · σ(x, y, z)∇φ(x, y, z) = S, (1)

in Ω with no-flux Neumann boundary conditions on the scalp:

σ(∇φ) · n = 0, (2)

on ΓΩ . Hereσ = σij(x, y, z) is an inhomogeneous tensor of the head tissues conduc-
tivity and S is the source current. Having computed potentialsφ(x, y, z) and current
densitiesJ = −σ(∇φ), the magnetic fieldB can be found through the Biot-Savart law.
In this paper, we do not consider anisotropy or capacitance effects (the latter because
the frequencies of interest are too small), but they can be included in a straightforward
manner. (Eq.(1) becomes complex-valued, and complex admittivity should be used.)

We have built a finite difference forward problem solver for Eq. (1) and (2) based
on the multi-component alternating directions implicit (ADI) algorithm [8, 9]. It is a
generalization of the classic ADI algorithm as described byHielscher et al [6], but
with improved stability in 3D (the multi-component FD ADI scheme is unconditionally



Fig. 1. A visualization of a 3D human head CT scan with the measuring electrodes

stable in 3D for any value of the time step [8, 9]). The algorithm has been extended to
accommodate anisotropic tissues parameters and sources. To describe the electrical con-
ductivity in the heterogeneous biological media within arbitrary geometry, the method
of the embedded boundaries has been used. Here an object of interest is embedded into
a cubic computational domain with extremely low conductivity values in the external
complimentary regions. This effectively guarantees thereare no current flows out of the
physical area (the Neuman boundary conditions, Eq.(2), is naturally satisfied). The idea
of the iterative ADI method is to find the solution of Eq. (1) and (2) as a steady state
of the appropriate evolution problem. At every iteration step the spatial operator is split
into the sum of three 1D operators, which are evaluated alternatively at each sub-step.
For example, the difference equations inx direction is given as [9]
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i + φn
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τ
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n
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whereτ is a time step andδx,y,z is a notation for the appropriate1D second order spatial
difference operator (for the problems with variable coefficients it is approximated on a
“staggered” mesh). Such a scheme is accurate toO(τ +∆x2 +∆y2 +∆z2). In contrast
with the classic ADI method, the multi-component ADI does not require the operators
to be commutative. In addition, it uses the regularization (averaging) for evaluation of
the variable at the previous instant of time.

It is worth noting, that the multi-component ADI algorithm can be also easily
adapted for solving PDEs describing other tomographic modalities. In particular, we



have used it in other related studies, for example, in simulation of photon migration (dif-
fusion) in a human head in near-infrared spectroscopy of brain injuries and hematomas.

The inverse problem for the electrical imaging modality hasthe general tomo-
graphic structure. From the assumed distribution of the head tissue conductivities,σij ,
and the given injection current configuration,S, it is possible to predict the set of poten-
tial measurement values,φp , given a forward modelF (Eq. (1), (2)), as the nonlinear
functional [5, 6]:

φp = F (σij(x, y, z)). (4)

Then an appropriate objective function is defined, which describes the difference
between the measured,V , and predicted data,φp, and a search for the global minimum
is undertaken using advanced nonlinear optimization algorithms. In this paper, we used
the simple least square error norm:

E =

(

1

N

N
∑
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(φp
i − Vi)

2

)1/2

, (5)

whereN is a total number of the measuring electrodes (cl. Fig. 1). Tosolve the non-
linear optimization problem in Eq.(5) , we employed the downhill simplex method of
Nelder and Mead as implemented by Press et al[3]. In the strictest sense, this means
finding the conductivity at each node of the discrete mesh. Insimplified models with the
constraints imposed by the segmented MRI data, one needs to know only the average
regional conductivities of a few tissues, for example, scalp, skull, cerebrospinal fluid
(CSF) and brain, which significantly reduces the demensionality of the parameter space
in the inverse search, as well as the number of iterations in converging to a local mini-
mum. To avoid the local minima, we used a statistical approach. The inverse procedure
was repeated for hundreds sets of conductivity guesses fromappropriate physiological
intervals, and then the solutions closest to the global minimum solutions were selected
using the simple critireaE < Ethreshold.

3 Parallel Computional Design

The solution approach maps naturally to a multi-level computational design that can
benefit from parallel execution both in the parametric search for conductivities and the
forward problem calculations. Fig. 2 gives a schematic viewof the approach we ap-
plied in a heterogeneous environment of parallel computingclusters. Theconductivity
optimizer (CO) is responsible for launching new inverse problems withguesses of con-
ductivity values. Upon completion, the inverse solvers return conductivity solutions and
error results to the master. Inverse solvers run on a separate computational server. The
system design allows for the servers to be added dynamicallyand the number of proces-
sors per inverse solve to be decided at execution time, thus trading off inverse search
parallelism versus forward problem speedup.

The CO interacts with each server using a TCP/IP-based interface. We use MPI to
parallelize the inverse solvers as a master-worker computation. Theinverse master (IM)
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Fig. 2. Schematic view of the parallel computational system

manages multiple solvers at the same time. For each , the IM supplies new conductiv-
ity search values, lunches the simplex search and collects the results . The CO passes
the initial seed to the IM to start simplex refinement for eachnew inverse worker. The
IM sends a MPI message containing conductivity values to a freeinverse worker (IW)
to use in the forward calculation. The IM then waits to receives a solution from any
IW, knowing which IW is working on what inverse solution. Theforward solver (FS)
is parallelized using OpenMP. It has been chosen over MPI as in the shared memory
environment we avoid high data traffic naturally in solving PDE at 3D geometry. Paral-
lelization of the ADI algorithm is straightforward, as it consists of nests of independent
loops over “bars” of voxels for solving the effective 1D problem (Eq. (3)) at each it-
eration. These loops can be easily unrolled for efficient execution on a shared memory
multiprocessor system.

The inverser solver MPI program executes as a mixed-mode parallel computation.
Based on the number of cluster processors available and how the cluster is organized, we
decide at runtime how many inverse workers to create and how many threads to assign
to the forward calculation. In this manner, the program can be ported without change to
both distributed memory and shared memory parallel clusters, and can naturally scale
to meet available processing resources.

At the University of Oregon, we have access to a computational systems environ-
ment consisting of seven multiprocessor clusters. Of the shared memory clusters, three
are 8-processor IBM Power4+ p655 machines, one is a 16-processor IBM Power4 p690
machine, and two (Phoenix and Optix) are 16-processor SGI Itaninum-2 machines, an



Altix and Prism machine. The one distributed memory clusteris a Dell 16x2-processor
Pentium Xeon machine. All of the clusters run Linux and are connected by a high-speed
gigabit network. The conductivity optimizer can run on any machine, including a work-
station. In our experiments below, we show results only for the shared memory clusters.
Also, the mixed-mode inverse solve program allocated four threads for the OpenMP
forward calculation in each inverse worker.
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Fig. 3. Segmented MRI data (64x64x44 voxels resolution), top row, and calculated absolute value
of potential, bottom row, for two points current injection (top and back of the head)

4 Computational Results

The forward solver was tested and validated against a 4-shell spherical phantom, and
low (64×64×44) and high(256×256×176) voxels resolution human MRI data. For
comparison purposes, the initial MRI data segmentation into ten tissues types as it is
shown in the top row of Fig.3 was reduced to only four tissue types. Their values were
set to those in the spherical model (cl. Table 1). We computedpotentials at standard
locations for the129 electrodes configuration montage on the spherical phantom and
compared the results with the analytical solution [2] available for a 4-shell spherical
phantom in Fig. 4. One can we see very good agreement, save forsome minor discrep-
ancies caused by the mesh orientation effects (the cubic versa spherical symmetry).
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Fig. 4. Validation of the forward solver accuracy against analytics for a 4-shell spherical phantom.

Table 1. Tissues parameters in 4-shell models[2]

Tissue typeσ(Ω−1
m

−1) Radius(cm)Reference
Brain 0.25 8.0 Geddes(1967)
Csf 1.79 8.2 Daumann(1997)
Skull 0.018 8.7 Law(1993)
Scalp 0.44 9.2 Burger(1943)

Similarly, we found the good agreement for spherical phantoms between our re-
sults and the solution of the Poisson equation using the standard FEM packages such as
FEMLAB [7]. Also, we have performed a series of computationsfor electric potentials
and currents inside a human head with surgical or traumatic openings in the skull. We
found that generally low resolution (64 × 64 × 44 voxels)like the one which is shown
in the bottom row of Fig. 3 is not enough for accurate description of the current and
potentials distribution through the head, as the coarse discretization creates artificial
shunts for currents (mainly in the skull). With increased resolution (128× 128 × 88 or
256×256×176 voxels) our model has been shown to be capable to capture the fine de-
tails of current/potential redistribution caused by the structural perturbation. However,
the computational requirements of the forward calculationincrease significantly.

The forward solver was parallelized using OpenMP. The performance speedups (ex-
ecution times) for256 × 256 × 176 sized problems on the IBM and SGI machines are
shown in Fig. 5. While the performance is reasonable at present, we believe there are
still optimizations that can be made, particularly on the SGI machines. The importance
of understanding the speedup performance on the cluster compute servers is to allow
flexible allocation of resources between inverse and forward processing.

To investigate the best balance of parallelism between inverse and forward process-
ing, we conducted an experiment to optimize the numbers of MPI tasks and openMP
threads at 12 processors of the 16-processors p690 machine.In this experiment we
considered the total number of forward solutions performedby the cluster for several
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Fig. 6. Forward solutions throughput for different resource allocations between the forward and
inverse problems. The total number of available processorsis fixed to 12 in all configurations.

configurations in a fixed period of time. The number of iterations per a forward solution
was fixed. The total number of forward solutions performed bya given cluster con-
figuration was chosen as the figure of merit over the number of total inverse solutions
due to the variation of the required number of forward computations in different in-
verse searches. The results are presented at Fig. 6. It can beseen that allocation of four
threads per an inverse worker (3x4) gives the highest throughput for the total number of
forward solutions.

In the inverse search the initial simplex was constructed randomly based upon the
mean conductivity values (cl. Table 1) and their standard deviations as it is reported
in the related biomedical literature. In the present test study we did not use the real
experimental human data, instead, we simulated the experimental set of the reference
potentialsV in Eq. 5 using our forward solver with the mean conductivity values from
Table 1, which had been assumed to be true, but not known a priory for a user running
the inverse procedure. The search was stopped when one or twocriteria were met. The
first is when the decrease in the error function is fractionally smaller than some toler-
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Fig. 7. Results of the inverse search. Dynamics of the individual search (left) and statistics of the
retrieved conductivities for about 200 initial random guesses. The actual number of the solutions
shown is 71, their error function is less than 1 microvolt.

ance parameter. The second is when the number of steps of the simplex exceeds some
maximum value. During the search, the conductivities were constrained to stay within
their pre-defined plausible ranges. If the simplex algorithm attempted to step outside of
the acceptable range, then the offending conductivity was reset to the nearest allowed
value. Our procedure had the desired effect of guiding the search based on prior knowl-
edge. Some number of solution sets included conductivitiesthat were separated from
the bulk of the distribution. These were rejected as outliers, based on the significant
larger square error norm in Eq. (5) (i.e., the solution sets were filtered according to the
criteriaE < Ethreshold). We have found empirically that settingEthreshold = 1µV in
most of our runs produced a fair percentage of solutions close to the global minimum.

The distribution of the retrieved conductivities is shown in Fig. 7 (right). The fact
that the retrieved conductivities for the intracranial tissues (CSF and brain) have wider
distributions is consistent with the intuitive physical explanation that the skull, as hav-
ing the lowest conductivity, shields the currents injectedby the scalp electrodes from the
deep penetration into the head. Thus, the deep intracranialtissues are interrogated less
in comparison with the skull and scalp. The dynamics of an individual inverse search
convergence for a random initial guesses is shown in Fig. 7 (left). In general, the con-
ductivities for the extra cranial tissue and skull convergesomewhat faster than the brain
tissues, due to the better interrogation by the injected current.

After filtering data according to the error norm magnitude, we fitted the individual
conductivities to the normal distribution. The mean retrieved conductivitiesσ(Ω−1m−1)
and their standard deviations∆σ are: Brain (0.24 / .01), CSF (1.79 / .03), Skull (0.0180
/ .0002), and Scalp (0.4400 / .0002). It is interesting to compare these values to the
"true" conductivities from Table 1. We can see excellent estimates for the scalp and
skull conductivities and a little bit less accurate estimates for the intracranial tissues.
We also have done some preliminary runs with the realistic noise included. These runs
and the similar investigation in Ref. [2] for a spherical phantom suggest that noise leads
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to some deterioration of the distributions and more uncertainty in the results. In general,
it still allows the retrieval of the unknown tissue parameters.

Finally, in Fig. 8 we present the dynamics of the performanceof the inverse search
in our distributed multi-cluster computational environment. Six curves with different
markers show the dynamics of the inverse solution flux at the conductivity optimizer.
The markers correspond to the instances of inverse solutions arrival to CO from a spe-
cific inverse master (cluster). The inverse solution rate varies between the clusters based
on several factors: the number of processors available, thespeed of the forward solve,
and inverse search convergence rate. The markers seated at the "zero" error function
line represent solutions that contribute to the final solution distribution, with the rest of
the solutions rejected as outliers. In average, the throughput was 15 minutes per one
inverse solution for the128 × 128 × 88 MRI resolution test case. The second graph
shows the number of inverse solutions completed by the different clusters. Since we
chose four threads to use in the OpenMP forward solve, the graph shows the number of
inverse solutions completed per inverse worker.



5 Conclusion

We have built an accurate and robust 3D Poisson solver based on a finite difference
multi-components ADI algorithm for modeling electrical and optical problems in het-
erogeneous biological tissues. We focus in particular on modeling the conductivity
properties of the human head. The computational formulation utilizes realistic head
geometry obtained from segmented MRI datasets. This is important to the effective use
of impedance imaging and source localization in clinical neuroimaging applications
where diagnostic accuracy depends significantly on the degree to which individual dif-
ferences in head structure can be represented. The computational formulation of the
problem is as a multi-cluster mixed-mode calculation suitable for parallel execution
on a computational grid. Our results validate FDM approach for impedance imaging
and provide a performance assessment of parallel computation on six clusters of the
University of Oregon’s ICONIC grid

In the future, we will enhance the computational framework in several ways. Addi-
tional cluster resources will be used to naturally scale theperformance of the conduc-
tivity optimization. In particular, we will add the 16-node, 2-processor per node Dell
cluster to the mix. Consistent with the ICONIC grid, our intent is to evolve the present
interprocess communication (IPC) socket-based code to onethat uses grid middleware
support, allowing the impedance imaging program to more easily access available re-
sources and integrate with neuroimaging workflows. Finally, intrinsically parallel multi-
component ADI algorithms [9] in a forward solver and more intelligent schemes of
conductivity search based on multi-resolution approachescould be tried. The idea here
is to first start with fast, low-resolution solutions which can then narrow the range of
and guide initial conductivity guesses for high-resolution, more accurate investigation.
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