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Abstract. Multi–threaded web servers are typically parallelized by hand
using the pthreads library. OpenMP has rarely been used to parallelize
such kind of applications, although we foresee that it can be a great tool
for network servers developers. In this paper we compare how easy is to
parallelize the Boa web server using OpenMP, compared to a pthreads
parallelization, and the performance achieved. We present the results of
a parallelization based on OpenMP 2.0, the dynamic sections model and
pthreads.

1 Introduction & Motivation

OpenMP [1] has successfully been used to parallelize a great number of applica-
tions in the scientific domain. Extensive work has been done to fulfill the needs
of scientific applications in shared memory environments. The parallelism that
appears in numerical applications has significantly influenced the definition of
the OpenMP API. Most work distribution schemes are specifically designed to
support the main source of parallelism of scientific applications: parallel loops.
For synchronization mechanisms programmers can use barrier synchroniza-
tions, mutual exclusion and atomic synchronizations.

But scientific applications are not the only niche where parallelism can be
used to increase the performance of applications. In fact, with new generations
of architectures containing multiple cores, parallelism will be exploited in ap-
plications with characteristics and needs dramatically different from those of
the scientific world. We believe the OpenMP community should start studying
these characteristics. This study will either determine if the current OpenMP
API suites these new applications or whether it needs changes to support them
efficiently.

We have studied the feasibility of using OpenMP to parallelize a web server
to start exploring the characteristics that will be found in these new applica-
tions. Web servers are inherently parallel applications as the different requests
are unrelated and free of dependences between them. Thus, the requests can



be handled in parallel. Web servers have been traditionally parallelized with
threading techniques (mainly pthreads). Our objective is to specify useful exten-
sions if the OpenMP API does not easily support the parallelism found in web
servers.

We have selected the Boa [2] web server as the platform to be parallelized.
Different parallel strategies have been developed. An OpenMP version allowed
us to evaluate the programming effort and the resulting performance using the
current OpenMP standard. Also, we developed a version that uses the pro-
posed dynamic sections [3] constructions to check their usefulness. Finally, a
manual pthread based version was developed to do a comprehensive compar-
ison. All three versions were evaluated against the original version which is
single threaded.

The structure of the paper follows: section 2 describes the contributions of
this paper to the state of the art. Section 3 overviews the structure of the Boa
web server. In section 4 we describe our parallelized versions of Boa. Section
5 describes the experiments performed and the results obtained. Section 6 dis-
cusses our experiences with the different parallel versions. And finally, in sec-
tion 7 we present the conclusions of this work and we describe some lines for
future study.

2 Related Work

Several authors have compared OpenMP versus pthreads. These comparisons
have been in scientific applications or comparisons between basic language
constructions. Kuhn et al. compared the primitives provided by both models
concluding that OpenMP was easier to use but they also pointed out some prob-
lems with irregular applications [4]. Lee and Downar compared both languages
for a nuclear reactor transient code [5]. They obtained similar performance with
both OpenMP and pthreads but OpenMP was easier to use. Breshears and Lu-
ong compared both models in the context of a Coastal Ocean Circulation Model
[6]. Their conclusion was that OpenMP was easier to use yielding the same
performance than pthreads. Dedu et al. compared both models with some al-
gorithms from the artificial intelligence field [7]. They found that although for
regular applications OpenMP was easier to use and obtained the same perfor-
mance than pthreads for irregular applications OpenMP was difficult to use.

Some other works have tried to extend OpenMP to be able to cope with ir-
regular applications. Asenjo et al. explored some techniques to deal with point-
ers and traversal of structures [8]. Shah et al. introduced the workqueueing model
[9]. This proposal extends the OpenMP programming model with an alterna-
tive work distribution scheme based on the definition of queues of work from
where the executing threads extract work. The extension targets algorithms
traversing memory and linked data structures. The proposal has been success-
ful but introduces dramatic changes in the OpenMP execution model. We pre-
viously proposed to use dynamic sections [3] to minimize the changes of the
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workqueueing model, in which dynamic sections are based. We further extend the
semantics of the dynamic sections in this work.

Different works have evaluated the usefulness of threaded web servers. For
example, Roper et al. compared different web servers concluding that multi–
threaded servers can outperform traditional event driven servers [10] which
are not threaded. Jeong et al. showed in their work [11] that the use of multi-
ple CPUs with dynamic content increases the throughput obtained and reduces
the response time. Using multiple CPUs with static content does not increase
throughput but response time still decreases. The benefits of using multiple
CPUs in SSL enabled web servers were shown by Guitart et al.[12]. Other suc-
cessful multi–threaded servers include Apache [13], SEDA [14] and Flash [15].
All these works used a system thread packages, mainly pthreads. This work,
instead, explores the suitability of OpenMP as a language for the development
of a parallel web server.

3 The Boa web server

The Boa web server architecture is a single threaded event–driver HTTP server
architecture. This kind of architecture, unlike traditional web servers, does not
fork for each incoming connection. Instead, Boa comes with an integrated task
scheduler that handles multiple requests concurrently but not in parallel. Boa
multiplexes all ongoing requests, trying to maximize the throughput and mini-
mize the response time. The scheduler uses two request queues: the ready queue
keeps those requests available for further processing. The blocked queue keeps
those requests waiting for any data dependence to be satisfied. Iteratively, the
server traverses the ready queue and further processes each request. The server
uses a round–robin technique to avoid large requests starving other ready re-
quests. Boa logically divides each request in smaller chunks of work and each
time a request is processed a single chunk is consumed. Figure 1 shows a sim-
plified code that processes the requests from the ready queue. After a request is
processed

1. It is kept in the ready queue because it should be further processed ( i.e. it
has more chunks and all data are available ).

2. It is moved to the blocked queue because the server detected an unsatisfied
dependence ( e.g. it needs to read data from a socket ).

3. It is freed because the last chunk of the request was consumed.

The server traverses the blocked queue and for each request it checks if the
request dependences are satisfied using the information it collects with the select
system call. When a request has no further dependences it is moved again to
the ready queue.

Figure 2 shows the structure of the main loop of the server. This loop is
infinite and in each iteration the server

1. processes any pending signal.
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1 for each request in the ready queue
2 {
3 update_time;
4 result = process_step(request);
5 accept new requests (if any);
6 if ( result == BLOCK ) block(request);
7 else if ( result == FINISHED ) free(request);
8 else keep it in the queue
9 }

Fig. 1. Request processing loop pseudo–code

2. traverses the blocked queue to check the dependences of blocked requests.
3. establishes pending new connections using the accept system call.
4. traverses the ready queue to process more chunks of the unblocked requests.
5. calls select to obtain information about new connections and the status of

incoming and outgoing data.

1 while (1)
2 {
3 process signals (if any)
4 move requests from blocked to ready using select result
5 accept new connections (if any)
6 process requests in the ready queue
7 select system call
8 }

Fig. 2. Main loop pseudo–code

Boa tries to reduce the number of issued system calls by mmaping local
files into the server memory. A cache of open files (i.e active maps), which it
is checked each time a new file is requested, avoids mmaping twice the same
file.

The server performs all input/output with non-blocking system calls to en-
sure that no single request blocks the processing of others that are ready.

4 Parallelizing Boa

The main source of parallelism in the Boa web server is the possibility of over-
lapping the computations related to different requests. As explained in section
3 the requests are placed in the ready and blocked queues and the server itera-
tively traverses these queues. Parallel processing is possible by processing each
element of the queues in parallel. The server can also do different tasks in paral-
lel (e.g. accepting new requests and processing new requests ). All the versions
described exploit these sources of parallelism.

Different points in the server require serialization. First, modification of
global variables (e.g. the number of active connections ). Second, manipulations
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of the ready and blocked queues. Third, acceptance of new connections. Fourth,
access to the cache of open files. And last, write access to the server log files to
avoid mixing the output of different threads.

The original version uses a lot of static variables insides functions. These
variables were converted to extra parameters of the function they were in. An-
other possible option was to use per thread variables ( e.g. threadprivate in OpenMP
).

We have developed three parallel versions: a pthreads version, a pure OpenMP
version and a version using dynamic sections which are non–standard.

4.1 Pthreads parallel version

The pthread parallel version exploits the possibility of processing different re-
quests in parallel, as they are unrelated. The parallelization uses a producer–
consumer approach. One thread executes all the tasks in the main Boa loop,
described in Figure 2, except requests processing. This thread is the producer
of new ready requests. The remaining threads consume the ready requests and
process them as explained in section 3. Figure 3 shows the code the consumer
threads execute. The pthread version uses the same round–robin mechanism of
the serial version. So, each time a thread extracts a request a single chunk is
consumed and the request may be queued again to the ready queue.

This version uses different mutex locks to protect accesses to the ready queue,
accesses to the blocked queue, accesses to global variables, and writing to the
server log files. The cache of open files is also protected by a mutex lock per
entry, to maximize concurrency, and a global mutex lock for global cache vari-
ables.

1 for ( ; ; ) {
2 while( not pending requests );
3 pthread_mutex_lock(&ready_lock);
4 if ( pending requests ) {
5 req = dequeue(request_ready);
6 }
7 pthread_mutex_unlock(&ready_lock);
8 if ( req )
9 process_request(req);

10 }

Fig. 3. Code for thread consumers in the pthread Boa version.

4.2 OpenMP standard parallelization

For our OpenMP parallelization we targeted the request processing loop Fig-
ure 1. We wanted to distribute all the requests in the ready queue among the
available threads by using a workshare. The number of requests in the queue
can vary during its traversal (e.g. if a request is free ). Because in OpenMP all
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threads must see the same iterations we splitted the loop in two new loops:
one does not remove requests the queue while the other does. In the first new
loop, the server processes each request in the ready queue. The result of each
processing is stored in a new field of the request structure. This loop was par-
allelized using a parallel construct and we used a single workshare to distribute
the different iterations. Using the result from the first loop the server modifies
the queues in the second loop which must be done single-threaded. Figure 4
shows the OpenMP parallelization of the new loops. When new requests are
accepted they are added to the beginning of the queue. Before the server ac-
cepts any request all threads grab the head of the queue. This guarantees they
will traverse the same elements.

1 #pragma omp parallel
2 {
3

4 get head of ready queue
5 #pragma omp barrier
6 for each request in the ready queue
7 {
8 #pragma omp master
9 update time;

10 #pragma omp single nowait
11 request.result = process step(request);
12 #pragma omp master
13 accept new requests (if any);
14 }
15 }
16

17 for each request in the ready queue
18 {
19 if ( request.result == BLOCK ) block(request);
20 else if ( request.result == FINISHED ) free(request);
21 else keep it in the queue
22 }

Fig. 4. OpenMP request processing loop pseudo–code

Access to the cache of open files was protected with a critical section for the
global cache variables and an OpenMP lock per cache entry. We used another
critical construction to guarantee correct access to the log files. Several critical
sections protect access to Boa global variables.

4.3 Dynamic sections parallelization

The previous presented parallelizations were in previous section were mainly
possible because the serial version had already embedded a complex code that
dealt with request blocking and their scheduling ( i.e. the ready queue ). Our
question now is: could OpenMP make this work easy to the programmer?

The available parallelism can be seen as a collection of tasks. We have used
the dynamic sections proposed extension to express this parallelism easily. Under
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this model a single thread is in charge of performing the serial work ( accept-
ing requests, extracting them from the blocked queue, . . . ) while the remaining
threads execute the parallel tasks that are created (i.e. a dynamic section).

In this version, we have removed part of the integrated schedule: the ready
queue has been removed. Instead of queueing requests in the ready queue now
the threads create new dynamic sections. A new dynamic section is created

– When a new request is accepted, a new section is created for the first chunk
of the request.

– When a request has completed a chunk, if it was not the last, a new section
is created for the next chunk. This dynamic section is created inside an-
other. We have extended the original model to allow nesting of SECTION
constructs.

– When a request is unblocked, because their dependences are fulfilled, a new
section is created for the next chunk.

1 #pragma omp parallel
2 #pragma omp sections dynamic
3 while (1)
4 {
5 process signals (if any)
6 foreach request from the blocked queue {
7 if ( request dependences are met ) {
8 extract from the blocked queue
9 #pragma omp section captureprivate(request)

10 serve_request(request)
11 }
12 }
13 if ( new connection ) {
14 accept it
15 #pragma omp section captureprivate(new connection)
16 server_request (new connection)
17 }
18 select system call
19 }

Fig. 5. Main loop pseudo–code with dynamic sections

Figure 5 shows our parallelization of the code of the main loop using the
dynamic sections.

As in the previous version, several critical constructions protect accesses to
the open files cache, access to the global variables and access to the server log
files.

5 Evaluation

5.1 Environment

For our experiments we used a 4-way Intel Xeon at 1.4GHz with 2GB of RAM
to run the web server and a 2-way Intel Xeon at 2.4 GHz with 2GB of RAM to
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run the benchmark client. All the machines were running a 2.6 Linux kernel.
The network that connected the machines was a switched Gigabit network.

5.2 Workload generator

We used Httperf[16] to generate the different workloads for the experiments.
This tool allows the creation of a continuous flow of HTTP requests to the
server machine. The tool accepts as one of its parameters the number of clients
per second. For each client, it opens a session with the server through a persis-
tent HTTP connection. Then a series of requests are issued by the client, some
of them pipelined, some spaced by a think time. Another parameter of Httperf
is the sessions database from where clients get the requests they ask for and
the think times to wait. We have used a database extracted from the Surge[17]
workload generator.

The scenario produced by Surge is a static content workload characterized
by short session lengths and low computational costs for each request serviced.
The Surge distribution is based on a model developed from the observation of
real web server logs.

5.3 Experiments

We evaluated all different versions of the Boa web server using the Surge work-
load with different loads of clients. These load configurations ranged from a
low load of clients (10 per second) to heavy load of clients (800 clients per sec-
ond). In the following plots, we labeled the different Boa versions as follows:

– original boa refers to the unmodified single–thread Boa server.
– boa-pthreads refers to the parallel version that uses pthreads.
– boa-omp refers to the parallel version that uses standard OpenMP construc-

tions.
– boa-dsections refers to the parallel version that uses dynamic sections.

All parallel versions were run with 2 and 4 threads.
Figure 6 shows for each load of clients the throughput obtained by each Boa

version. All versions, except the boa-omp version, obtained a similar through-
put up to a workload of 700 clients per second. The boa-omp version was out-
performed because the server did not run as much time in parallel as the other
versions do. Doubling the number of threads in the parallel versions did not re-
sult in a noticeable increase of throughput because Surge is not CPU–intensive
workload as it works with static content. With 700 clients per second the limit
of the Gigabit network was reached and all versions throughput deteriorated
as they were saturated. Saturation happens earlier using more threads because
contention in shared resources have a greater impact. The Boa server uses a
mechanism that minimizes the effect of saturation limiting the number of ac-
tive connections. We disabled this mechanism on purpose so we could find the
point at which each parallel version saturates.
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Figure 7 shows the average response time for each load of clients and each
Boa version. All parallel versions achieved a lower response time than the orig-
inal Boa version. With a load of 800 clients per second response time was re-
duced as much as by three. Doubling the number of threads in boa-dsections
and boa-pthreads was useful reducing the response time. With four threads boa-
dsections and boa-pthreads behaved so closely that their lines are overlapped.
With two threads they behaved similarly except with a load of 700 clients per
second where boa-pthreads response time was lower. The average response time
for the boa-omp version was very low, near to zero. This result is misleading
because the server was rejecting more than 75% of the requests.

6 Comparison

In this section we compare the programming effort required by the three paral-
lel versions: pthreads, OpenMP and dynamic sections.

One of the most consuming tasks in parallelizing all the versions was re-
moving the static variables in local functions. Due to the large amount of static
variables that may appear in serial C codes compilers could provide an option
that transformed any variable with static storage to a variable with thread private
storage. This option would reduce time spent in parallelizing large C codes.

Another effort, common in all versions, was protecting shared data with
critical sections and locks. This work in was quicker done with OpenMP than
with pthreads as you only need to add the appropriate directive instead of hav-
ing to declare a mutex variable and using lock and unlock calls. Nevertheless,
when you need a critical section for each element of a structure (e.g. the open
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files cache) for improving performance, it is as difficult in OpenMP as it is
in pthreads because you need to use omp_locks. We think a possible way to
solve this problem would be allowing dynamically named critical sections (e.g.
cache_lock[i] ). With these kind of critical sections the same code protecting a
single entry of an complex structure would work for all the entries while each
one will still have its own lock.

The pthread version required several modifications to the original source
code. Code for the consumer threads was developed. And, although it was not
very difficult because there was only one type of task to consume (i.e. requests)
it required some expertise to handle access to the queue correctly and efficiently.
Some other changes were required to the code of the producer thread includ-
ing: creating the consumers, initializing the locks, and removing the request
processing loop. Also, mutex locks were added to protect the access to the ready
and blocked queues. The overall effort was moderate.

The OpenMP version did not require as many changes in the source code
compare as the pthread version. But, it needed a great deal of attention to main-
tain the correctness of the single workshare (i.e. that all threads executed all
the iterations). This restriction also caused the reduction in performance. In
the other versions, the threads could execute a task as soon as it was ready, or
even run in parallel request processing and accepting new connections. In the
OpenMP version all threads must wait until all the requests, that were avail-
able when the traversal started, are processed even if there are new requests to
process. This suggests that current workshares are not well suited for handling
irregular parallelism.
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But both the pthread version and the OpenMP version were easier to develop
because the original version had integrated a complex code that enabled re-
quest concurrency. Otherwise, the programming effort would have been greater.
On the other hand, the dynamic sections version was simpler as the program-
mer did not need to code the management of the ready tasks. Even from a sim-
pler version of the serial version the programming effort with dynamic sections
would have been minor.

Dynamic sections also allow to easily mix different kinds of parallel tasks.
While the pthreads code would became more and more complex if it had to
deal with different kinds of parallel tasks the dynamic section complexity would
remain constant.

7 Conclusions and Future work

In this paper, we have explored the use of OpenMP to parallelize a web server.
We have shown how, adding a few directives, the request processing loop of
the web server can be parallelized. But this simple version did not perform
efficiently. We used the proposed dynamic sections to implement a simpler par-
allel web server (i.e. without application level task management ). Evaluation
showed that this version had a performance, in throughput and average re-
sponse time, as good as the performance obtained by the server developed with
pthreads. But in the pthread version the programmer needed to develop a spe-
cific task management for the application whereas the dynamic sections version
simplified the programming.

In the future, we will apply OpenMP to other web scenarios where studies
have pointed out that there can improvements in throughput by using multi-
ple processors: SSL enabled applications[12] and dynamic content applications
[11].
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