On the Interaction of Tiling and
Automatic Parallelization

Zhelong Pan, Brian Armstrong, Hansang Bae
Rudolf Eigenmann
Purdue University, ECE

2005.06.01

-

Outline

Motivation

-~

Motivation

~

_

Apply tiling in a parallelizing compiler (Polaris)
Polaris generates parallelized programs in OpenMP
Backend compilers generate executable

Parallelizing Tiled OpenMP
(ouce c002) = [Gombier | (rogam) >

Backend
Compiler

— (Executable

Investigate performance on real benchmarks

/

-

Issues

Tiling interacts with parallelization passes
Data dependence test, induction, reduction, ...

Load balancing is necessary
Parallelism and locality are compromised

-~

Outline

Tiling and parallelism

-

Tiling

_

Loop strip-mining

L. strip-mined into L’ and L,”

Cross-strip loops: L/
In-strip loops: L;”
Loop permutation

(a) Matrix Multiply

DOI=1,N

DOK=1,N
DOJ=1,N
Z(J1) = Z(J,1) + X(K,I) * Y(J,K)

(b) Tiled Matrix Multiply
DOK2=1,N,B
DOJ2=1,N, B
DOI/=1,N
DO K1 = K2, MIN(K2+B-1,N)
DO J1 = J2, MIN(J2+B-1,N)

Z(J1,0) = Z(J1,1) + X(K1,1) * Y(J1,K1) /

6

-~

Possible Approaches

Tiling before parallelization
Possible performance degradation

Tiling after parallelization
Possible wrong result

Our approach
Tiling in concert with parallelization

4 N

Direction Vector after Strip-mining

Lemma.
Strip-mining may create more direction vectors,
je.==> == <> =<or<* >-=>0or>*
e T i
1 2 § -4
O —» O —» o —» o ﬁ
_ 4 ﬁ in-strip dependence, f=<”
>
°© °© H 13 ”
) 2 T\’T 4 cross-strip dependence, <>
=. S
© e . € ”
= ’ cross-strip dependence, “<=
S 1 © »>e 3 . € ”
S cross-strip dependence, <<

>
k Cross-strip loop /

-~

Parallelism after Tiling

X
5

S[DOLC1=1,4,2
DOLC2=1,4,2

i

Theorem.

Tiling after parallelization is unsafe

sS~—DOL1=1,4 A
E:EDOL2=1,4

L2
A(L1,L2) = A(L1+1,L2+1)

J

DO LI1 =LC1, LC1+1, 1
O LI2=LC2, LC2+1, 1

A(LI1,LI2) = A(LI1+1,LI12+1)

X

R —

-

Outline

Tiling in concert with parallelization

10

4 N

Trading off Parallelism and Locality

Enhancing locality may reduce parallelism

DO J=1,N
DO I=1,N
A(l,J) = A(l,J+1)

Tiling may change fork-join overhead

SP] = [SSP], increase fork-join overhead.
SP] = [PSP], decrease fork-join overhead.
PS] = [SPS], increase fork-join overhead.
SS] =2 [SSS], no change of fork-join overhead.

K PP] = [PPP], no change of fork-join overhead. /

N2 20\ 20 20\

11

-~

Tile Size Selection

~

.

——————

(a) Loop is sequential.

Ref;=CS

(b) Cross-strip loop is parallel.
Machine has distributed caches.

Ref; = CS

r—--

(c) In-strip loop is parallel.

Machine has distributed caches.

Ref;=CS *P

(d) Cross-strip loop is parallel.
Machine has a shared cache.

Ref;=CS/P

——————

(e) In-strip loop is parallel.
Machine has a shared cache.

Ref;=CS

-

Tl

Data references in a tile should be close to the cache size.

Cache

Ref;: Mem ref.

in a tile

CS: Cache size

P:

of Proc.

/

12

Load Balancing

Balance the parallel cross-strip loop

(a) Before tiling (balanced)

DOI1=1,512
DO J=1,512
(b) After tiling (not balanced) T =80
DO J1=1,512, 80 P=4 _
DO =1, 512 B > S=64

DO J = 1, MIN(J1+79,512) | =512

Balanced tile size

S: Balanced tile size

_ 4 T: Tile size by LRW
T /(P*T)]* P P: Number of processors
|_ /()-l I: Number of iterations

/

13

-~

Impact on parallelization passes

~

Tiling does not change the loop body

Limited effect on parallelization passes
Induction variable substitution
Privatization
Reduction variable recognition

14

-

Tiling in Concert with Parallelization

~

_

Find the best tiled version in favor of
parallelism first and then locality

Compute tile size based on
parallelism and cache configuration

Tune the tile size to balance load
Update reduction/private variable attribute

Generate two versions if iteration number [unknown:
Original parallel version is used when [is small
Otherwise, tiled version is used

15

-~

Outline

_

Experimental results

16

Result on SPEC CPU 95

= pre-parallelization tiling m post-parallelization tiling o tiling in concert with parallelization

14

1.2

0.8 -

06 -

04 -

0.2 4

Performance relative to non-tiled parallel version

0 1 T T T T T T T T T
applu apsi foppp hydro2d mgrid su2cor swim tomcatv turb3d waveb GeoMean

L

17

/

Result on SPEC CPU 2000

\

O pre-parallelization tiling m post-parallelization tiling O tiling in concert with parallelization

1.6

1.4

1.2

0.8 -

0.6 -

0.4 -

0.2 -

Performance relative to non-tiled parallel version

applu apsi mgrid swim sixtrack wupwise

GeoMean

18

-~

On the performance bound

~

Percentage of tilable loops based on reuse

Benchmark | Total | Reuse | Nested w/o Call
APPLU 149 125 55 54 1(97.60%)
APSI 388 | 310 111 59 (19.50%)
FPPPP 49 37 15 8 |(5.80%)

HYDRO2D | 170 117 21 21 (53.70%)
MGRID 38 24 8 8 [(86.40%)
SU2COR | 208 177 37 22 ((14.90%)
SWIM 24 15 3 3 1(60.10%)

TOMCATV | 16 14 5 5 1(95.90%)
TURB3D 64 43 12 11 [(22.20%)
WAVES 362 | 274 59 57 1(19.70%)

19

-~

Conclusion

Tiling and parallelism
Tiling in concert with parallelization
Comprehensive evaluation

20

