
On the Interaction of Tiling and
Automatic Parallelization

Zhelong Pan, Brian Armstrong, Hansang Bae
Rudolf Eigenmann

Purdue University, ECE

2005.06.01

2

Outline

 Motivation

 Tiling and Parallelism

 Tiling in concert with parallelization

 Experimental results

 Conclusion

3

Motivation

 Apply tiling in a parallelizing compiler (Polaris)
• Polaris generates parallelized programs in OpenMP

• Backend compilers generate executable

 Investigate performance on real benchmarks

Parallelizing
CompilerSource Code

Backend
Compiler Executable

Tiled OpenMP
Program

4

Issues

 Tiling interacts with parallelization passes
• Data dependence test, induction, reduction, …

 Load balancing is necessary

 Parallelism and locality are compromised

5

Outline

 Motivation

 Tiling and parallelism

 Tiling in concert with parallelization

 Experimental results

 Conclusion

6

Tiling

 (a) Matrix Multiply
DO I = 1, N
 DO K = 1, N
 DO J = 1, N
 Z(J,I) = Z(J,I) + X(K,I) * Y(J,K)

 Loop strip-mining
• Li strip-mined into Li’ and Li’’

• Cross-strip loops: Li’

• In-strip loops: Li’’

 Loop permutation

(b) Tiled Matrix Multiply
DO K2 = 1, N, B
 DO J2 = 1, N, B
 DO I = 1, N
 DO K1 = K2, MIN(K2+B-1,N)
 DO J1 = J2, MIN(J2+B-1,N)
 Z(J1,I) = Z(J1,I) + X(K1,I) * Y(J1,K1)

7

Possible Approaches

 Tiling before parallelization
• Possible performance degradation

 Tiling after parallelization
• Possible wrong result

 Our approach
• Tiling in concert with parallelization

8

Direction Vector after Strip-mining

 Lemma.
 Strip-mining may create more direction vectors,

 i.e. = ==, < =< or <*, > => or >*

1 2 3 4

1

2

3

4

Cross-strip loop

In-strip loop

“<“

in-strip dependence, “=<”

cross-strip dependence, “<>”

cross-strip dependence, “<=”
cross-strip dependence, “<<”

9

Parallelism after Tiling
Theorem.
 After tiling, the in-strip loops have the same parallelism as the

original ones, but some cross-strip loops may change to serial.
“<” makes the corresponding cross-strip loop serial.

DO L1 = 1, 4
 DO L2 = 1, 4
 A(L1,L2) = A(L1+1,L2+1)

S
P

DO LC1 = 1, 4, 2
 DO LC2 = 1, 4, 2
 DO LI1 = LC1, LC1+1, 1
 DO LI2 = LC2, LC2+1, 1
 A(LI1,LI2) = A(LI1+1,LI2+1)

S
S

S
P

L1

L2

A Tile

Tiling after parallelization is unsafe

10

Outline

 Motivation

 Tiling and Parallelism

 Tiling in concert with parallelization

 Experimental results

 Conclusion

11

Trading off Parallelism and Locality

 Enhancing locality may reduce parallelism

 Tiling may change fork-join overhead
• [SP] [SSP], increase fork-join overhead.
• [SP] [PSP], decrease fork-join overhead.
• [PS] [SPS], increase fork-join overhead.
• [SS] [SSS], no change of fork-join overhead.
• [PP] [PPP], no change of fork-join overhead.

DO J=1,N
DO I=1,N
 A(I,J) = A(I,J+1)

12

Tile Size Selection

 Data references in a tile should be close to the cache size.

(d) Cross-strip loop is parallel.
Machine has a shared cache.

RefT = CS / P

(b) Cross-strip loop is parallel.
Machine has distributed caches.

RefT = CS

…

(a) Loop is sequential.

RefT = CS

.

.

.

(e) In-strip loop is parallel.
Machine has a shared cache.

RefT = CS

…

(c) In-strip loop is parallel.
Machine has distributed caches.

RefT = CS * P

Cache

Tile

RefT : Mem ref.
 in a tile

CS : Cache size

P: # of Proc.

13

Load Balancing

 Balance the parallel cross-strip loop
 (a) Before tiling (balanced)

 DO I = 1, 512

 DO J = 1, 512

 (b) After tiling (not balanced)

 DO J1 = 1, 512, 80

 DO I = 1, 512

 DO J = 1, MIN(J1+79,512)

 Balanced tile size

 PTPI

I
S

)/(
=

S: Balanced tile size
T: Tile size by LRW
P: Number of processors
I: Number of iterations

T = 80
P = 4
I = 512

 S = 64

14

Impact on parallelization passes

 Tiling does not change the loop body

 Limited effect on parallelization passes
• Induction variable substitution

• Privatization

• Reduction variable recognition

15

Tiling in Concert with Parallelization

 Find the best tiled version in favor of
• parallelism first and then locality

 Compute tile size based on
• parallelism and cache configuration

 Tune the tile size to balance load

 Update reduction/private variable attribute

 Generate two versions if iteration number I unknown:
• Original parallel version is used when I is small

• Otherwise, tiled version is used

16

Outline

 Motivation

 Tiling and Parallelism

 Tiling in concert with parallelization

 Experimental results

 Conclusion

17

Result on SPEC CPU 95

0

0.2

0.4

0.6

0.8

1

1.2

1.4

applu apsi fpppp hydro2d mgrid su2cor swim tomcatv turb3d wave5 GeoMean

P
er

fo
rm

an
ce

 r
el

at
iv

e
to

 n
o

n
-t

ile
d

 p
ar

al
le

l
ve

rs
io

n

pre-parallelization tiling post-parallelization tiling tiling in concert with parallelization

18

Result on SPEC CPU 2000

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

applu apsi mgrid swim sixtrack wupwise GeoMeanP
e
rf

o
rm

a
n

c
e
 r

e
la

ti
v
e
 t

o
 n

o
n

-t
il
e
d

 p
a
ra

ll
e
l
v
e
rs

io
n

pre-parallelization tiling post-parallelization tiling tiling in concert with parallelization

19

On the performance bound

(19.70%)5759274362WAVE5

(22.20%)11124364TURB3D

(95.90%)551416TOMCATV

(60.10%)331524SWIM

(14.90%)2237177208SU2COR

(86.40%)882438MGRID

(53.70%)2121117170HYDRO2D

(5.80%)8153749FPPPP

(19.50%)59111310388APSI

(97.60%)5455125149APPLU

w/o CallNestedReuseTotalBenchmark

Percentage of tilable loops based on reuse

20

Conclusion

 Tiling and parallelism

 Tiling in concert with parallelization

 Comprehensive evaluation

