
On the Interaction of Tiling and
Automatic Parallelization

Zhelong Pan, Brian Armstrong, Hansang Bae
Rudolf Eigenmann

Purdue University, ECE

2005.06.01

2

Outline

 Motivation

 Tiling and Parallelism

 Tiling in concert with parallelization

 Experimental results

 Conclusion

3

Motivation

 Apply tiling in a parallelizing compiler (Polaris)
• Polaris generates parallelized programs in OpenMP

• Backend compilers generate executable

 Investigate performance on real benchmarks

Parallelizing
CompilerSource Code

Backend
Compiler Executable

Tiled OpenMP
Program

4

Issues

 Tiling interacts with parallelization passes
• Data dependence test, induction, reduction, …

 Load balancing is necessary

 Parallelism and locality are compromised

5

Outline

 Motivation

 Tiling and parallelism

 Tiling in concert with parallelization

 Experimental results

 Conclusion

6

Tiling

 (a) Matrix Multiply
DO I = 1, N
 DO K = 1, N
 DO J = 1, N
 Z(J,I) = Z(J,I) + X(K,I) * Y(J,K)

 Loop strip-mining
• Li strip-mined into Li’ and Li’’

• Cross-strip loops: Li’

• In-strip loops: Li’’

 Loop permutation

(b) Tiled Matrix Multiply
DO K2 = 1, N, B
 DO J2 = 1, N, B
 DO I = 1, N
 DO K1 = K2, MIN(K2+B-1,N)
 DO J1 = J2, MIN(J2+B-1,N)
 Z(J1,I) = Z(J1,I) + X(K1,I) * Y(J1,K1)

7

Possible Approaches

 Tiling before parallelization
• Possible performance degradation

 Tiling after parallelization
• Possible wrong result

 Our approach
• Tiling in concert with parallelization

8

Direction Vector after Strip-mining

 Lemma.
 Strip-mining may create more direction vectors,

 i.e. =  ==, <  =< or <*, >  => or >*

1 2 3 4

1

2

3

4

Cross-strip loop

In-strip loop

“<“

in-strip dependence, “=<”

cross-strip dependence, “<>”

cross-strip dependence, “<=”
cross-strip dependence, “<<”

9

Parallelism after Tiling
Theorem.
 After tiling, the in-strip loops have the same parallelism as the

original ones, but some cross-strip loops may change to serial.
“<” makes the corresponding cross-strip loop serial.

DO L1 = 1, 4
 DO L2 = 1, 4
 A(L1,L2) = A(L1+1,L2+1)

S
P

DO LC1 = 1, 4, 2
 DO LC2 = 1, 4, 2
 DO LI1 = LC1, LC1+1, 1
 DO LI2 = LC2, LC2+1, 1
 A(LI1,LI2) = A(LI1+1,LI2+1)

S
S

S
P

L1

L2

A Tile

Tiling after parallelization is unsafe

10

Outline

 Motivation

 Tiling and Parallelism

 Tiling in concert with parallelization

 Experimental results

 Conclusion

11

Trading off Parallelism and Locality

 Enhancing locality may reduce parallelism

 Tiling may change fork-join overhead
• [SP]  [SSP], increase fork-join overhead.
• [SP]  [PSP], decrease fork-join overhead.
• [PS]  [SPS], increase fork-join overhead.
• [SS]  [SSS], no change of fork-join overhead.
• [PP]  [PPP], no change of fork-join overhead.

DO J=1,N
DO I=1,N
 A(I,J) = A(I,J+1)

12

Tile Size Selection

 Data references in a tile should be close to the cache size.

(d) Cross-strip loop is parallel.
Machine has a shared cache.

RefT = CS / P

(b) Cross-strip loop is parallel.
Machine has distributed caches.

RefT = CS

…

(a) Loop is sequential.

RefT = CS

.

.

.

(e) In-strip loop is parallel.
Machine has a shared cache.

RefT = CS

…

(c) In-strip loop is parallel.
Machine has distributed caches.

RefT = CS * P

Cache

Tile

RefT : Mem ref.
 in a tile

CS : Cache size

P: # of Proc.

13

Load Balancing

 Balance the parallel cross-strip loop
 (a) Before tiling (balanced)

 DO I = 1, 512

 DO J = 1, 512

 (b) After tiling (not balanced)

 DO J1 = 1, 512, 80

 DO I = 1, 512

 DO J = 1, MIN(J1+79,512)

 Balanced tile size

  PTPI

I
S

)/(
=

S: Balanced tile size
T: Tile size by LRW
P: Number of processors
I: Number of iterations

T = 80
P = 4
I = 512

 S = 64

14

Impact on parallelization passes

 Tiling does not change the loop body

 Limited effect on parallelization passes
• Induction variable substitution

• Privatization

• Reduction variable recognition

15

Tiling in Concert with Parallelization

 Find the best tiled version in favor of
• parallelism first and then locality

 Compute tile size based on
• parallelism and cache configuration

 Tune the tile size to balance load

 Update reduction/private variable attribute

 Generate two versions if iteration number I unknown:
• Original parallel version is used when I is small

• Otherwise, tiled version is used

16

Outline

 Motivation

 Tiling and Parallelism

 Tiling in concert with parallelization

 Experimental results

 Conclusion

17

Result on SPEC CPU 95

0

0.2

0.4

0.6

0.8

1

1.2

1.4

applu apsi fpppp hydro2d mgrid su2cor swim tomcatv turb3d wave5 GeoMean

P
er

fo
rm

an
ce

 r
el

at
iv

e
to

 n
o

n
-t

ile
d

 p
ar

al
le

l
ve

rs
io

n

pre-parallelization tiling post-parallelization tiling tiling in concert with parallelization

18

Result on SPEC CPU 2000

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

applu apsi mgrid swim sixtrack wupwise GeoMeanP
e
rf

o
rm

a
n

c
e
 r

e
la

ti
v
e
 t

o
 n

o
n

-t
il
e
d

 p
a
ra

ll
e
l
v
e
rs

io
n

pre-parallelization tiling post-parallelization tiling tiling in concert with parallelization

19

On the performance bound

(19.70%)5759274362WAVE5

(22.20%)11124364TURB3D

(95.90%)551416TOMCATV

(60.10%)331524SWIM

(14.90%)2237177208SU2COR

(86.40%)882438MGRID

(53.70%)2121117170HYDRO2D

(5.80%)8153749FPPPP

(19.50%)59111310388APSI

(97.60%)5455125149APPLU

w/o CallNestedReuseTotalBenchmark

Percentage of tilable loops based on reuse

20

Conclusion

 Tiling and parallelism

 Tiling in concert with parallelization

 Comprehensive evaluation

