
June 1st, 2005

Performance Analysis of Large-Scale OpenMP
and Hybrid MPI/OpenMP Applications with

Vampir NG

Holger Brunst
Center for High Performance Computing

Dresden University, Germany

Overview

• Motivation
• Analysis of large hybrid parallel applications

– Integration of existing monitoring systems
– Scalable overall concept
– Parallelization of analysis
– Separation of visualization and analysis

• Performance results und experiences
• Conclusion

Overview

Motivation

• OpenMP most commonly used standard for shared-
memory based parallel computing

• MPI well established in distributed computing with respect
to large problem and system sizes

• Most applications are either MPI or OpenMP
• Large clusters of SMPs

– hybrid applications are one way to go
– no automatic parallelization

• Most tools support either MPI or OpenMP
• Available for dedicated platforms of certain vendors only

Introduction • Motivation

OpenMP Performance-Analysis Framework

• Instrumentation
– insert/append monitoring infrastructure
– manual-, source-, compiler-, binary- and dynamic

binary-instrumentation
– OPARI source translation (see KOJAK project)

• Trace generation
– KOJAK measurement system
– EPILOG to VAMPIR mapping

• Visualization
– Vampir NG (parallel) / Vampir (sequential)
– scalable parallel analysis and visualization

Introduction • OpenMP Performance-Analysis Framework

Goal

• Hybrid Performance-Analysis off large applications and
systems
– MPI, OpenMP, also pthreads

• Support
– many thousand threads of execution
– at least 109 performance events

• Distributed/shared memory
• Interactive analysis with short response times
• Seamless integration in production environments

– high requirements regarding portability
• Extensible with analysis plugins

Framework • Goal

OpenMP Monitoring: KOJAK

• Tracing based
• OpenMP, MPI or both
• Source translation

(POMP)
• Wrapper (PMPI)
• User functions (TAU)
• Hardware Counter

(PAPI)
• Automatic analysis with

EXPERT
• Manual visualization

and analysis with
Vampir NG

Framework • Monitoring

Merged
Traces

Analysis Server

Classic Analysis:

� monolithic

� sequential

Worker 1

Worker 2

Worker m

Master

Trace 1
Trace 2

Trace 3
Trace N

File System

InternetInternet

Parallel Program

Monitor System
(KOJAK)

Event Streams

Visualization Client

Segment
Indicator

768 Processes
Thumbnail

Timeline with 16
visible Traces

Process
Parallel

I/O
Message
Passing

Framework • Scalable OpenMP Analysis

Worker 1

Worker 2

Worker m

Master

Worker

Session Thread

Analysis Module

Event Databases

Message Passing

Trace Format Driver

Master

Session Thread

Analysis Merger

Endian Conversion

Message Passing

Socket Communication

Visualization
Client

M Worker

N Session Threads N Session Threads

Traces

Organization of Parallel Analysis

Framework • Parallel Analysis

Framework • Parallel Analysis • Example • Self Analysis

Parallel Analysis – Suppor ted Request Types

• Approx. 35 Requests:
– Stack-Tree
– Timeline
– Accumulative Timeline
– Profiles
– Thumbnails

• Process Global/Local
• Event Types: Functions, Messages, MPI/OpenMP

Collectives, I/O, Hardware Counter

Framework • Parallel Analysis • Supported Request Types

Scalable Visualization

• Performance-Analysis becomes more complex
– Different/multiple communication layers
– Combination of shared- und distributed memory
– New information sources

• Grouping of data streams depending on the problem to be
analyzed

• Hierarchical grouping
– Static: Physical structure e.g. nodes, processes, and

OpenMP threads
– Dynamic: During analysis, to look at results from

different angles

Framework • Scalable Visualization

Configurable OpenMP and MPI Profiles

Framework • Scalable Visualization • Configurable Profiles

Timeline with OpenMP Activities

Framework • Scalable Visualization • OpenMP Activities

OpenMP Barrier Synchronization

Framework • Scalable Visualization • OpenMP Synchronization

Single OpenMP Thread Timelines

Framework • Scalable Visualization • Thread Timelines

Results • Scalability

Scalability – sPPM Analyzed on Or igin 2000

• sPPM ASCI Benchmark
– 3D Gas Dynamic

• Data to be analyzed
– 16 Processes
– 200 MByte Volume

0,00

2,00

4,00

6,00

8,00

10,00

12,00

14,00

16,00

18,00

0 10 20 30 40

Num be r of W orke rs
S

p
e

e
d

u
p

Com . M atrix

Tim eline

S um m ary P rofile

P roc es s P rofile

S tac k Tree

LoadTim e

Num ber of W ork ers 1 2 4 8 16 32
Load Tim e 47,33 22,48 10,80 5,43 3,01 3,16
Tim eline 0,10 0,09 0,06 0,08 0,09 0,09
S um m ary P rofile 1,59 0,87 0,47 0,30 0,28 0,25
P roc es s P rofile 1,32 0,70 0,38 0,26 0,17 0,17
Com . M atrix 0,06 0,07 0,08 0,09 0,09 0,09
S tac k Tree 2,57 1,39 0,70 0,44 0,25 0,25

A Fairly Large Test Case
• IRS ASCI Benchmark

– Implicit Radiation Solver
• Data to be analyzed:

– 64 Processes in 8 Streams
– Approx. 800.000.000 Events
– 40 GByte Data Volume

• Analysis Platform:
– Jump.fz-juelich.de
– 41 IBM p690 nodes
– 32 processors per node
– 128 GByte per node

• Visualization Platform:
– Remote Laptop

Results • Performance for Large Test Case

251,45 201,72

0,02 0,02

4,65 3,62
9,11

4,67

0,16
0,09

5,59 3,84

0,01

0,10

1,00

10,00

100,00

1000,00

Load
Time

Timeline Summary
Prof.

Process
Prof.

Com.
Matrix

Stack
Tree

Processing Times in Seconds

16 Worker 32 Worker

Application and Experiences

• Implementation and evaluation of a prototype in the scope
of an ongoing support contract with ASC Labs (LLNL,
LANL, SANL)

• Machines with up to 5,000 Processors (soon: BlueGene/L
with up to 130,000 Processors)

• Valuable feedback from users and developers
• Comparison to sequential approach:

– Factor 100 regarding data volume
(50 GByte vs. 500 MByte)

– Analysis required at most 32 interactive processors
– Interactive usage from remote desktop

(even from Germany)

Results • Applications and Experiences

Summary

• Visualization and analysis of highly parallel OpenMP and
hybrid OpenMP/MPI applications
– Portable source code instrumentation with OPARI
– Scalable monitoring with KOJAK monitoring system
– Conception of scalable/distributed data structures,

algorithms and visualization modes
– Parallelization of analysis
– Separation of visualization and analysis
– Simple integration in common production environments

due to portability of KOJAK and VAMPIR

Summary

Thank You!

www.vampir-ng.orgwww.fz-juelich.de/zam/kojak
icl.cs.utk.edu/kojak

