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Overview

• Motivation
• Analysis of large hybrid parallel applications 

– Integration of existing monitoring systems
– Scalable overall concept
– Parallelization of analysis
– Separation of visualization and analysis

• Performance results und experiences
• Conclusion

Overview



Motivation

• OpenMP most commonly used standard for shared-
memory based parallel computing

• MPI well established in distributed computing with respect 
to large problem and system sizes

• Most applications are either MPI or OpenMP
• Large clusters of SMPs

– hybrid applications are one way to go
– no automatic parallelization

• Most tools support either MPI or OpenMP
• Available for dedicated platforms of certain vendors only
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OpenMP Performance-Analysis Framework

• Instrumentation
– insert/append monitoring infrastructure
– manual-, source-, compiler-, binary- and dynamic 

binary-instrumentation
– OPARI source translation (see KOJAK project)  

• Trace generation 
– KOJAK measurement system 
– EPILOG to VAMPIR mapping

• Visualization
– Vampir NG (parallel) / Vampir (sequential)
– scalable parallel analysis and visualization 

Introduction • OpenMP Performance-Analysis Framework



Goal

• Hybrid Performance-Analysis off large applications and 
systems
– MPI, OpenMP, also pthreads

• Support 
– many thousand threads of execution 
– at least 109 performance events

• Distributed/shared memory 
• Interactive analysis with short response times
• Seamless integration in production environments

– high requirements regarding portability
• Extensible with analysis plugins 

Framework • Goal



OpenMP Monitoring: KOJAK

• Tracing based
• OpenMP, MPI or both
• Source translation 

(POMP)  
• Wrapper (PMPI)
• User functions (TAU)
• Hardware Counter 

(PAPI)
• Automatic analysis with 

EXPERT
• Manual visualization 

and analysis with 
Vampir NG

Framework • Monitoring



Merged
Traces

Analysis Server

Classic Analysis:

� monolithic

� sequential

Worker 1

Worker 2

Worker m

Master

Trace 1
Trace 2

Trace 3
Trace N

File System

InternetInternet

Parallel Program

Monitor System 
(KOJAK)

Event Streams

Visualization Client

Segment 
Indicator

768 Processes 
Thumbnail

Timeline with 16 
visible Traces

Process
Parallel

I/O
Message 
Passing

Framework • Scalable OpenMP Analysis



Worker 1

Worker 2

Worker m

Master

Worker

Session Thread

Analysis Module

Event Databases

Message Passing

Trace Format Driver

Master

Session Thread

Analysis Merger

Endian Conversion

Message Passing

Socket Communication

Visualization
Client

M Worker

N Session Threads N Session Threads

Traces

Organization of Parallel Analysis 

Framework • Parallel Analysis



Framework • Parallel Analysis • Example • Self Analysis



Parallel Analysis – Suppor ted Request Types

• Approx. 35 Requests:
– Stack-Tree
– Timeline
– Accumulative Timeline
– Profiles
– Thumbnails

• Process Global/Local
• Event Types: Functions, Messages, MPI/OpenMP 

Collectives, I/O, Hardware Counter

Framework • Parallel Analysis • Supported Request Types



Scalable Visualization

• Performance-Analysis becomes more complex
– Different/multiple communication layers
– Combination of shared- und distributed memory
– New information sources

• Grouping of data streams depending on the problem to be 
analyzed

• Hierarchical grouping
– Static: Physical structure e.g. nodes, processes, and 

OpenMP threads
– Dynamic: During analysis, to look at results from 

different angles 

Framework • Scalable Visualization



Configurable OpenMP and MPI Profiles

Framework • Scalable Visualization • Configurable Profiles 



Timeline with OpenMP Activities

Framework • Scalable Visualization • OpenMP Activities



OpenMP Barrier Synchronization

Framework • Scalable Visualization • OpenMP Synchronization



Single OpenMP Thread Timelines

Framework • Scalable Visualization • Thread Timelines



Results • Scalability

Scalability – sPPM Analyzed on Or igin 2000

• sPPM ASCI Benchmark
– 3D Gas Dynamic

• Data to be analyzed
– 16 Processes
– 200 MByte Volume
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A Fairly Large Test Case
• IRS ASCI Benchmark

– Implicit Radiation Solver
• Data to be analyzed:

– 64 Processes in 8 Streams
– Approx. 800.000.000 Events
– 40 GByte Data Volume

• Analysis Platform:
– Jump.fz-juelich.de
– 41 IBM p690 nodes
– 32 processors per node
– 128 GByte per node

• Visualization Platform:
– Remote Laptop

Results • Performance for Large Test Case
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Application and Experiences

• Implementation and evaluation of a prototype in the scope 
of an ongoing support contract with ASC Labs (LLNL, 
LANL, SANL)

• Machines with up to 5,000 Processors (soon: BlueGene/L 
with up to 130,000 Processors)

• Valuable feedback from users and developers
• Comparison to sequential approach:

– Factor 100 regarding data volume 
(50 GByte vs. 500 MByte)

– Analysis required at most 32 interactive processors
– Interactive usage from remote desktop 

(even from Germany)

Results • Applications and Experiences 



Summary

• Visualization and analysis of highly parallel OpenMP and 
hybrid OpenMP/MPI applications
– Portable source code instrumentation with OPARI
– Scalable monitoring with KOJAK monitoring system
– Conception of scalable/distributed data structures, 

algorithms and visualization modes
– Parallelization of analysis
– Separation of visualization and analysis
– Simple integration in common production environments 

due to portability of KOJAK and VAMPIR

Summary



Thank You!

www.vampir-ng.orgwww.fz-juelich.de/zam/kojak
icl.cs.utk.edu/kojak


