OpenMP 3.0 Feature:
Error Detection Capability

Kang Su Gatlin
Visual C++
Program Manager




Why?

* OpenMP as it stands today is great for HPC

* OpenMP as it stands today is less appropriate for
server side or enterprise applications

* There is simply no mechanism for error recovery — or
even detection




Ideas

* We say “ideas” and not “proposals”
* Not even half-baked

* Exception based
« Call-back function based
* Error-code based




The Problem

fpragma
// Code

fpragma
// Code

fpragma
// Code

omp parallel
here

omp barrier
here

OMPeCibast - Calal:
here




Idea 1: An Exception Based Approach

* Define an OpenMP Exception Class:
class OMPException {..};

* Use try/catch around select constructs
int foo () {

try |

#pragma omp parallel

// Code here

}

catch (OMPException *e) {
// Code here

}




Idea 1: Exception Based Approach

* Pros
* Seems easy to implement
* Extensible
* The exception can have info about what happened

¢ Cons
* Only C++, not supported in C
* Can have large perf degredation




Idea 2: Error Code Based Approach

* Add a new clause to directives

* This one sets an error code in a passed address of
type OMPError when error occurs

OMPError *ompErr = new OMPError;

fpragma omp parallel for error (ompErr)




Idea 2: Error Code Based Approach

* Pros
* Also seems easy to implement
* Supports all languages
* Very general

¢ Cons
* Maybe violates the “even works as expected compiled serially”

* Code to handle error is added directly to computational portion of
code




Idea 3: Callback-Based Approach

* Add a new clause to directives:

#fpragma omp parallel error callback(error, flag)

vold error(int *flag) {
// User code here

J




Idea 3: Callback-Based Approach

* Pros
* Little performance impact if no error
* Code is kept away from site of the computation

¢ Cons
* | ess extensible
* Not really clear if it really does anything useful, but | like callbacks







