
June 2, 2005 IWOMP 2005 1

The OpenMP Memory Model

Jay Hoeflinger

Bronis de Supinski

June 2, 2005 IWOMP 2005 2

Memory Model in Prior Specs

• No separate section

• Scattered in Execution Model, Flush
description, data sharing attribute section

• Unclear, implied

June 2, 2005 IWOMP 2005 3

OpenMP Memory Model in 2.5

• Model Structure
– Parts of the model

– Shared & private access

– Memory coherence

– X-thread access: private

• Flush in OpenMP
– Relaxed consistency

– Flush operation

– Flush guarantees consist.

– Volatile relates to flush

• Memory consistency
– Formal memory consist.

– Memory consist. of flush

– Flush operation specified
with flush directive

June 2, 2005 IWOMP 2005 4

compiler

thread thread

memory

Source code

Executable code

threadprivatethreadprivate

a b
Commit order

OpenMP
Memory Model

Structure

Program order

Wa Wb Ra Rb . . .

temp view temp view

a ab b

Code order

Wb Wa Ra Rb . . .

June 2, 2005 IWOMP 2005 5

Shared and Private Access

• All shared and private variables have
original variables

• Shared access to a variable:
– Within the structured block, references to the

variable all refer to the original variable

• Private access to a variable:
– A variable of the same type and size as the

original variable is provided for each thread

June 2, 2005 IWOMP 2005 6

Rules about cross-thread private
access

Thread 0
x = …;
p0=&x;

 …x …
…*p0 …

Thread 1
x = …;
p1=&x;

 … x …
 … *p1 …

…x …
…*p1 …

…x …
…*p0 …

#pragma omp parallel private(x) shared(p0,p1)

#pragma omp parallel shared(x)

Not allowed

Not allowed

…*p1… …*p0…

… *p1 …
… *p1 … … *p0 … … *p0 …

Legal accesses

June 2, 2005 IWOMP 2005 7

Flush Is the Key OpenMP
Operation

• Prevents re-ordering of accesses

• Provides a guarantee that memory
references are complete

• Provides the mechanism for moving data
between threads

• Allows for overlapping computation with
communication

Flush operation: flush flush-set

June 2, 2005 IWOMP 2005 8

Implicit flushes

• In barriers
• At entry to and exit from

– Parallel, parallel worksharing, critical, ordered regions

• At exit from worksharing regions (unless nowait is
specified)

• In omp_set_lock, omp_set_nest_lock,
omp_set_nest_lock, omp_unset_nest_lock

• In omp_test_lock, omp_test_nest_lock, if lock is
acquired

• At entry to and exit from atomic - flush-set is the
address of the variable atomically updated

June 2, 2005 IWOMP 2005 9

Temporary View Allows Hiding
Memory Latency

a = . . .;

<other computation>

#pragma omp flush(a)

“a” can be committed to
memory as soon as here

or as late as here

June 2, 2005 IWOMP 2005 10

Re-ordering Example

a = ...; //(1)
b = ...; //(2)
c = ...; //(3)

#pragma omp flush(c) //(4)
#pragma omp flush(a,b) //(5)

. . . a . . . b . . .; //(6)

. . . c . . .; //(7)

(1) and (2) may not be moved
after (5).

(6) may not be moved before
(5).

(4) and (5) may be
interchanged at will.

June 2, 2005 IWOMP 2005 11

Moving data between threads

• To move the value of a shared var from
thread a to thread b, do the following in
exactly this order:
– Write var on thread a

– Flush var on thread a

– Flush var on thread b

– Read var on thread b

June 2, 2005 IWOMP 2005 12

But Explicit Flush is HARD to Use
Correctly

Producer:

data = produce_new
!$omp flush(data)
flag = 1
!$omp flush(flag)

Consumer:

flag = 0
do
 !$omp flush(flag)
while (flag .eq. 0)
!$omp flush(data)
consume_data = data

Producer:

data = produce_new
!$omp flush(data, flag)
flag = 1
!$omp flush(flag)

Consumer:

flag = 0
do
 !$omp flush(flag)
while (flag .eg. 0)
!$omp flush(flag, data)
consume_data = data

Acknowledgement: Yuan Lin, Sun Microsystems

June 2, 2005 IWOMP 2005 13

Sequential Consistency

• In a multi-processor, ops are sequentially
consistent if
– Commit order == program order in each

thread

– Same overall order seen on all threads

program order == code order == commit order

June 2, 2005 IWOMP 2005 14

Weak Ordering

• Memory ops must be divided into “data”
ops and “synch” ops

• Data ops (reads & writes) are not ordered
w.r.t. each other

• Data ops are ordered w.r.t. synch ops and
synch ops are ordered w.r.t. each other

June 2, 2005 IWOMP 2005 15

OpenMP ordering ~= weak ordering

• OpenMP re-ordering restrictions amount to
weak ordering with “flush” identified as a
“synch” op.

• But, it’s weaker than weak ordering.

Relaxed memory model enables use of NUMA machines
 – especially cluster implementations of OpenMP

June 2, 2005 IWOMP 2005 16

OpenMP Locks and Flush

• Is a flush implied for OpenMP lock routines?

• Fortran 2.0 is silent, but lock routines are not
included on list of places where flush is implied

• C/C++ 2.0 also silent, but
– “There may be a need for flush directives to make the

values of other variables consistent.”

• Various people on previous committees say the
answer is “no”.

• But, people have not gotten the message

June 2, 2005 IWOMP 2005 17

Typical OpenMP lock code

!$omp parallel

 . . .

call omp_set_lock(lock)
count = count + 1
call omp_unset_lock(lock)

 . . .

!$ omp end parallel

!$omp parallel

 . . .

call omp_set_lock(lock)
!$omp flush(count)

count = count + 1
!$omp flush(count)

call omp_unset_lock(lock)

 . . .

!$ omp end parallel

Required if lock routines do not imply flush

June 2, 2005 IWOMP 2005 18

Example of incorrect code:
SPEC OpenMP Code ammp

#ifdef _OPENMP
omp_set_lock(&(a1->lock));
#endif
a1fx = a1->fx;
a1fy = a1->fy;
a1fz = a1->fz;
a1->fx = 0;
a1->fy = 0;
a1->fz = 0;
xt = a1->dx*lambda +a1->x - a1->px;
yt = a1->dy*lambda +a1->y - a1->py;
zt = a1->dz*lambda +a1->z - a1->pz;
#ifdef _OPENMP
omp_unset_lock(&(a1->lock));
#endif

June 2, 2005 IWOMP 2005 19

Summary

• In 2.5, memory model is explicit

• Cross-thread private access rules

• Description of flush and how to use

• Relates OpenMP consistency to formal
consistency models

• Locks imply no-list flush

