
An Evaluation of OpenMP on
Current and Emerging

Multithreaded/Multicore
Processors

Matthew Curtis-Maury, Xiaoning Ding,
Christos D. Antonopoulos, and
Dimitrios S. Nikolopoulos

The College of William & Mary

Content

Motivation of this Evaluation

Overview of Multithreaded/Multicore Processors

Experimental Methodology

OpenMP Evaluation

Adaptive Multithreading Degree Selection

Implications for OpenMP

Conclusions

Motivation

CMPs and SMTs are gaining popularity
SMTs in high-end and mainstream computers

Intel Xeon HT

CMPs beginning to see same trend
Intel Pentium-D

Combined approach showing promise
IBM Power5 and Intel Pentium-D Extreme Edition

Given this popularity, evaluation of codes
parallelized with OpenMP timely and necessary

Three Goals

Compare Multiprocessors of CMPs and SMTs
Low-level comparison (hardware counters)

High-level comparison (execution time)

Locate architectural bottlenecks on each

Find ways to improve OpenMP for these
architectures without modifying interface

Awareness of underlying architecture

Content

Motivation of this Evaluation

Overview of Multithreaded/Multicore
Processors
Experimental Methodology

OpenMP Evaluation

Adaptive Multithreading Degree Selection

Implications for OpenMP

Conclusions

Multithreaded and Multicore Processors

Execute multiple threads on single chip

Resource replication within processor

Improved cost/performance ratio
Minimal increases in architectural complexity provide
significant increases in performance

Simultaneous Multithreading

Minimal resource replication

Provides instructions to overlap memory latency

Separate threads exploit idle resources

Context1

Context2

Functional Units

L1 Cache

L2 Cache … Main Memory

Chip Multiprocessing

Much larger degree of resource replication
Two complete processing cores on each chip

Outer levels of cache and external interface are shared

Greatly reduced resource contention compared to SMT

L2 Cache … Main Memory

Context1 Context2 Functional UnitsFunctional Units

L1 Cache L1 Cache

Content

Motivation of this Evaluation

Overview of Multithreaded/Multicore Processors

Experimental Methodology
OpenMP Evaluation

Adaptive Multithreading Degree Selection

Implications for OpenMP

Conclusions

Experimental Methodology

Real 4-way server based on Intel’s HT processors
Representative of SMT class of architectures
2 execution contexts per chip
Shared execution units, cache hierarchy, and DTLB

Simulated 4-way CMP-based multiprocessor
Used the Simics simulation environment (full system)
2 execution cores per chip
Configured to be similar to SMT machine (cache configuration)

8K data L1, 256K L2, 512K L2, 64 entry TLB, 1GB main memory
Private L1 and DTLB per core doubles effective space
Shared L2 and L3 caches

Benchmarks

We used the NAS Parallel Benchmark Suite
OpenMP version

Class A

Ran 1, 2, 4, and 8 threads
Bound to 1, 2, and 4 processors

1 and 2 contexts per processor

Benchmarks

We used the NAS Parallel Benchmark Suite
OpenMP version

Class A

Ran 1, 2, 4, and 8 threads
Bound to 1, 2, and 4 processors

1 and 2 contexts per processor

T0

Benchmarks

We used the NAS Parallel Benchmark Suite
OpenMP version

Class A

Ran 1, 2, 4, and 8 threads
Bound to 1, 2, and 4 processors

1 and 2 contexts per processor

T0 T1

Benchmarks

We used the NAS Parallel Benchmark Suite
OpenMP version

Class A

Ran 1, 2, 4, and 8 threads
Bound to 1, 2, and 4 processors

1 and 2 contexts per processor

T0 T1

Benchmarks

We used the NAS Parallel Benchmark Suite
OpenMP version

Class A

Ran 1, 2, 4, and 8 threads
Bound to 1, 2, and 4 processors

1 and 2 contexts per processor

T0 T1 T2 T3

Benchmarks

We used the NAS Parallel Benchmark Suite
OpenMP version

Class A

Ran 1, 2, 4, and 8 threads
Bound to 1, 2, and 4 processors

1 and 2 contexts per processor

T0 T1 T2 T3

Benchmarks

We used the NAS Parallel Benchmark Suite
OpenMP version

Class A

Ran 1, 2, 4, and 8 threads
Bound to 1, 2, and 4 processors

1 and 2 contexts per processor

T0 T1 T2 T3 T4 T5 T6 T7

Benchmarks, cont.

On SMT machine, ran benchmarks to completion
Collected HW statistics with VTune

Simulator introduces average of 7000-fold
slowdown on execution for CMP

Ran same data set as on SMT

Ran only 3 iterations of outermost loop, discarding first
for cache warm-up

Simics simulator directly provides HW statistics

Content

Motivation of this Evaluation

Overview of Multithreaded/Multicore Processors

Experimental Methodology

OpenMP Evaluation
Adaptive Multithreading Degree Selection

Implications for OpenMP

Conclusions

Hardware Statistics Collected

Monitored direct metrics…
Wall clock time, number of instructions, number of L2 and
L3 references and misses, number of stall cycles, number
of data TLB misses, and number of bus transactions

…and derived metrics
Cycles per instruction and L2 and L3 miss rates

Due to time and space limitations, we present:
L2 references, L2 miss rates, DTLB misses, stall cycles,
and execution time

Most impact on performance
Provide insight into performance

L2 References

On SMT, two threads executing causes L2 references
to go up by 42%

On CMP, running two threads causes L2 references to
go down by 37%

L2 Miss Rate SMT

L2 miss rate highly dependent upon application characteristics

L2 Miss Rate SMT

If working sets of both threads do not fit into shared cache, L2 miss
rate increases

L2 Miss Rate SMT

On the other hand, applications can benefit from data sharing in the shared
cache

L2 Miss Rate SMT

CG has a high degree of data sharing which is good with one processor but
has negative consequences with more processors

- Inter-processor data sharing results in cache line invalidations

L2 Miss Rate SMT

Tradeoffs between sharing in the L2 of one processor and increased
cumulative L2 space from multiple processors

L2 Miss Rate CMP

L2 miss rate much more stable on the CMP processors

L2 Miss Rate CMP

L2 miss rate generally uncorrelated to number of threads per
processor

L2 Miss Rate CMP

The large working set of FT is still a problem for 1 and 2
processors

L2 Miss Rate CMP

CG retains the property observed on SMT as well

L2 Miss Rate Comparison

More potential for L2 data sharing on SMT, with
shared L1

Private L1s can reduce L2 sharing, less L2 accesses

On CMP, L2 not as affected by executing two
threads per processor

Data TLB Misses SMT

The number of DTLB misses increases dramatically with use of
second execution context

Data TLB Misses SMT

DTLB misses suffer up to a 32-fold increase

Data TLB Misses SMT

6 executions suffer a 20 or more fold increase

Data TLB Misses SMT

Intel’s HT processor has surprisingly small DTLB -> poor coverage of the
virtual address space

Data TLB Misses CMP

CMP provides private DTLB to each core, which results in much more
stable DTLB performance

Data TLB Misses CMP

The majority of the executions experience normalized DTLB misses quite
close to 1

Data TLB Misses CMP

DTLB misses may decrease with 2 threads due to the cumulatively
larger DTLB size from the DTLB duplication

Data TLB Misses CMP

But if entries are duplicated between threads, then benefits of
replicated DTLBs are reduced

Data TLB Misses Comparison

Privatizing the DTLB significantly reduces misses

SMT average 10.8-fold increase

CMP average 0% increase
Not very affected by multiple threads on a processor

Stall Cycles SMT

On SMT, stall cycles represent cumulative effects of waiting for memory
accesses and resource contention between co-executing threads

Stall Cycles SMT

Stall cycles for all executions increase with use of second execution context

Stall Cycles SMT

In the best case, MG, stall cycles still increase by about a factor of 2

Stall Cycles CMP

CMP only shares outer levels of cache and interface to external
devices, which greatly reduces possible sources of stall cycles

Stall Cycles CMP

Once again, CMP’s resource replication results in a stabilized number of stall
cycles, close to 1

Stall Cycles CMP

FT has a relatively large increase in stall cycles
As we have already seen, it suffers from contention in the L2 and
DTLB, even on the CMP architecture

Stall Cycles Comparison

Increase of 310% for SMT vs. only 3% for CMP
Signifies that vast majority of stalls on SMT result from
contention for internal processor resources

Execution Time SMT

Two ways to evaluate the data:
Fixed number of CPUs, different number of threads
Fixed number of threads, different number of CPUs

Execution Time SMT

Running two threads on single CPU is not always beneficial for execution time
compared to using a single thread

Execution Time SMT

Running two threads on single CPU is not always beneficial for execution time
Good in some cases…

Execution Time SMT

Running two threads on single CPU is not always beneficial for execution time
…Bad in others

Execution Time SMT

Even for a given application, neither one thread nor two threads per processor
is always optimal

Execution Time SMT

For a fixed number of threads, it is always better to execute them on as many
different physical processors as possible

Execution Time CMP

CMP, on the other hand, utilizes two threads per CPU very well

Execution Time CMP

The activation of the second execution context was always beneficial

Execution Time CMP

For a given number of threads, it was often better to run them on as few
processors as possible

Execution Time Comparison

CMP handles using two threads per processor
much better than SMT

Due to greater resource replication in CMP, which
reduces contention

CMP is a cost-effective means of improving performance

Content

Motivation of this Evaluation

Overview of Multithreaded/Multicore Processors

Experimental Methodology

OpenMP Evaluation

Adaptive Multithreading Degree Selection
Implications for OpenMP

Conclusions

Adaptive Approach Description

Neither 1 or 2 threads per CPU is always better

Based on work by Zhang, et al from U. Toronto (PDCS’04)
we try both and use whichever performs better

Selection is performed at the granularity of a parallel
region

Function calls before and after each region, could be
inserted by preprocessor

We only consider number of threads, rather than
scheduling policy

However, no manual changes to source code

And no modifications to compiler or OpenMP runtime

Description, cont.

Since NPB are iterative, we record execution
time of 2nd and 3rd iterations with 1 and 2 threads

Ignore 1st iteration as cache warm-up

Whichever number of threads performs better is used
when the region is encountered in the future

Outermost Loop {

!$OMP PARALLEL{ … } // Parallel Region 1

!$OMP PARALLEL{ … } // Parallel Region 2

!$OMP PARALLEL { … } // Parallel Region N
…

}

Adaptive Experiments

Used the same 7 NPB benchmarks along with
two other OpenMP codes

MM5: a mesoscale weather prediction model

Cobra: a matrix pseudospectrum code

Ran on 1, 2, 3, and 4 processors
Compared adaptive execution times to both 1 and 2
threads per processor

Results from Adaptation

Graph shows relative performance of each
approach for 1, 2, 3, and 4 processors

1 thread per processor

2 threads per processor

Adaptive approach

Results from Adaptation

Graph shows relative performance of each
approach for 1, 2, 3, and 4 processors

1 thread per processor

2 threads per processor

Adaptive approach

Results from Adaptation

Graph shows relative performance of each
approach for 1, 2, 3, and 4 processors

1 thread per processor

2 threads per processor

Adaptive approach

Results from Adaptation

Results from Adaptation

Adaptation does not perform well for MG
MG has only 4 iterations and our approach takes 3

Results from Adaptation

Adaptation does not perform well for MG
MG has only 4 iterations and our approach takes 3

CG, however, performs well with only 15 iterations
So it does not require many iterations to be profitable

Results from Adaptation

In 17 of the 36 experiments, adaptation did better
than either static number of threads

Results from Adaptation

In 17 of the 36 experiments, adaptation did better
than either static number of threads

In Cobra, adaptation was the best for all numbers
of processors

Results from Adaptation

Compared to optimal static number of threads,
adaptation was only 3.0% slower
It was, however, 10.7% faster than the worse
static number of threads
The average overall speedup was 3.9%
This shows that adaptation provides a good
approximation of the optimal number of threads

Requires no a priori knowledge

However, does not overcome inherent
architectural bottlenecks

Content

Motivation of this Evaluation

Overview of Multithreaded/Multicore Processors

Experimental Methodology

OpenMP Evaluation

Adaptive Multithreading Degree Selection

Implications for OpenMP
Conclusions

Implications for OpenMP

Our study indicates that OpenMP scales
effortlessly on CMPs

It is important to consider optimizations of
OpenMP for SMT processors

Viable technology for improving performance on a
single core

These optimizations could come from:
Additional runtime environment support

Extensions to the programming interface

OpenMP Optimizations for SMT

Co-executing thread identification is most
important optimization

New SCHEDULE clause may be used
Can assign iterations to SMTs

These iterations can then be split between co-executing
threads using SMT-aware policy

OpenMP thread groups extensions may be used
Co-executing threads go to same group

Use SMT-aware scheduling and local synchronization

Not necessarily nested parallelism

OpenMP Optimizations for SMT

Necessity of thread binding
SMT-aware optimizations require threads to remain on
the same processor

Some applications may benefit from running 2 threads
on the same processor

Use of proposed mechanisms, like ONTO clause

However, exposing architecture internals in the
programming interface is undesirable in OpenMP

New mechanisms for improving execution on
SMT processors in an autonomic manner

Content

Motivation of this Evaluation

Overview of Multithreaded/Multicore Processors

Experimental Methodology

OpenMP Evaluation

Adaptive Multithreading Degree Selection

Implications for OpenMP

Conclusions

Conclusions

Evaluated the performance of OpenMP
applications on SMT/CMP-based multiprocessors

SMTs suffer from contention on shared resources
CMPs more efficient due to greater resource replication
CMPs appear to be more cost effective

Adaptively selecting the optimal number of
threads helps SMT performance

However, inherent architectural bottlenecks hinder the
efficient exploitation of these architectures

Identified OpenMP functionality that could be
used to boost performance on SMTs

