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Abstract

We present a nonlinear image representation based on multiscale local
orientation measurements. Specifically, an image is first decomposed using
a two-orientation steerable pyramid, a tight-frame representation in which
the basis functions are directional derivatives of a radially symmetric blur-
ring operator. The pair of subbands at each scale are thus gradients of
progressively blurred copies of the original image. We then discard the
magnitude information and retain only the orientation of each gradient
vector. We develop a method for reconstructing the original image from
this orientation information using an algorithm based on projection onto
convex sets, and demonstrate its robustness to quantization.

1 Introduction

Traditional linear multiscale representations describe an image using a sum of
translated and scaled copies of a fixed set of basis functions. These decom-
positions, commonly known as “wavelets”, are in widespread use throughout
the field of image processing. But despite their scale invariance and other use-
ful properties, they do not provide an explicit representation of the geometric
structures (e.g., edges) found in images, because these geometric features are
nonlinearly related to the pixel intensities.

The representation of local image geometry is currently a topic of active
research. Some authors have proposed sparse overcomplete expansions that
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approximate the local geometry well [e.g., 1]. The approach of Taubman and
Zakhor [2], and the more recent bandlet approach of Pennec and Mallat con-
struct a new local basis by resampling the image adaptively according to the
local orientation [3]. Mallat and Zhong [4] showed that an image could be recon-
structed with reasonable accuracy from knowledge of the locations of multi-scale
zero-crossings. The wedgelet scheme [5, 6] represents image as using step edges
parameterized by intensity value and orientation. Li has developed explicit
representations of the local phase structure around edges [7]. A direct repre-
sentation of images in terms of edges was proposed by Elder, who extracted the
orientation, slope and position of edges and showed that this information was
sufficient to reconstruct the original image [8].

In this paper, we develop a representation based on direct representation
of the underlying image orientation. First, we decompose the image using a
steerable pyramid, which is an overcomplete tight frame based on multi-scale
derivative operators. This provides a direct representation of the local gradient
of the image at different scales. We then discard the gradient magnitudes,
and retain only their orientations. Surprisingly, this orientation information
alone is sufficient to reconstruct the original image, and we develop an iterative
algorithm for reconstruction using alternating projections onto convex sets. We
also develop several modifications for increasing the rate of convergence.

2 Steerable Pyramid Decomposition

The steerable pyramid (SP) is linear multiscale filter bank whose filters are
derivative operators [9]. The SP filter bank of order K with S scales consists
of a highpass filter, K+1 oriented filters at each of the S scales and a lowpass
residual filter. The SP is overcomplete by a factor of 1+4K/3. In practice these
bands are computed through a cascade of filtering and subsampling operations
but the filter design may be seen more clearly by disregarding this at first. The
SP filters are designed to be polar separable in the Fourier domain, to prevent
spatial aliasing in the subsampling of the subbands, and to form a tight frame.

The effects of these design constraints can be seen most clearly in the fre-
quency domain. Each bandpass filter operation is equivalent to convolution with
a radially symmetric bandpass operator followed by convolution with a K’th-
order differentiator in one of K+1 equally spaced directions. As the signals live
on a discrete lattice, we must specify precisely what we mean by differentiation.
For a continuous function, differentiation in the x direction follows the following
rule in the Fourier domain:

̂dKf(x, y)

dxK
= (iwx)K f̂ (wx, wy) .

The oriented SP filters are designed by using this property to define dis-
crete differentiation. In the Fourier domain, the filters can be written in polar
coordinates as

B̂s,k(r, θ) =
gs(r)

rK
(ir cos(θ −

kπ

K + 1
))K ,
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with 1 ≤ s ≤ S and 0 ≤ k ≤ K. The radial functions are given by

gs(r) = g(2s−1r)

for a “mother” function g(r), which may be chosen so that the filters form a tight
frame. The tight frame property implies that the sum of the filters composed
with their conjugate transposes yields a multiple of the identity operator. In
the Fourier domain this constraint yields the tiling condition

S
∑

s=1

g(2s−1r)2 + glow(r)2 + ghigh(r)2 = 1,

where glow(r) and ghigh(r) are the radial components of the Fourier transforms
of the lowpass and highpass filters. In this work all filtering is done in the
frequency domain, which implicitly implies circular boundary handling.

3 Separation of Orientation and Magnitude

For an image of dimension MxN, the output of the first order (K=1) SP consists
of the highpass, oriented bandpass and lowpass subbands

H(m,n) : 1 ≤ n ≤ N, 1 ≤ m ≤ M

Bs,x(m,n) : 1 ≤ n ≤ N/2s−1, 1 ≤ m ≤ M/2s−1, 1 ≤ s ≤ S

Bs,y(m,n) : 1 ≤ n ≤ N/2s−1, 1 ≤ m ≤ M/2s−1, 1 ≤ s ≤ S

L(m,n) : 1 ≤ n ≤ N/2S , 1 ≤ m ≤ M/2S .

Orientation and magnitude bands can be computed from the oriented bandpass
bands by transforming to polar coordinates at each location and scale

Ms(m,n) =
√

Bs,x(m,n)2 + Bs,y(m,n)2

Θs(m,n) = arctan(Bs,y(m,n)/Bs,x(m,n)).

These transformations divide the information contained in the gradient bands
into two parts. One may then ask whether the magnitude or orientation bands
are more important for representing the image. This is similar in spirit to the
classic work of Oppenheim & Lim who demonstrated that Fourier phases are
much more important than Fourier magnitudes for representing image struc-
ture [10].

Wundrich et. al. have shown that images may be represented by the local
magnitudes (i.e. discarding the phase) of a doubly-overcomplete Gabor repre-
sentation [11]. However, in the case of multi-scale gradient measurements, and
analogous to Oppenheim and Lim’s result, we find that the visible image struc-
ture is essentially determined by the orientation. As one illustration of this, one
may take two images and build the first order SP and extract the orientation
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and magnitude bands from both images, swap them, and then resynthesize two
new images. As is shown in Fig. 1, the synthesized images are more similar to
the image from which the orientation information was obtained. The magnitude
information of the other image is seen to have a local contrast modulation effect,
but the orientation information is clearly critical for forming features like edges.

Another interesting demonstration of the relative importance of magnitude
and orientation information is provided by combining valid orientation or mag-
nitude bands with a randomly generated counterpart. This is illustrated in
Fig. 2. The random orientation bands were sampled from a uniform distribu-
tion over [0, 2π], while the random magnitude bands were formed by resampling
from the histogram of the original magnitude band. The lack of features in the
random orientation image demonstrates the importance of coherent orientations
for representing image structure.

4 Reconstruction Algorithm

The image in Fig. 2(b) was synthesized by combining the original orientation
bands and random magnitude bands into a pyramid and then inverting the
pyramid decomposition. If this new image is re-analyzed using the SP filters,
its orientation band will generally not be the same as the original orientation,
because of the overcompleteness of the SP. But one may then reimpose the
original orientation information and again reconstruct the image. Surprisingly,
iterative application of this simple algorithm converges to the original image!

In order to explain this, it is helpful to first introduce some additional no-
tation. Let Im = RMxN be the space of image pixels, and W be the space
of SP coefficients. W is a linear space and can be thought of the direct prod-
uct of the separate linear spaces L, Bx,s, By,s and H for 1 ≤ s ≤ S. Let
A : Im → W denote the analysis operator, ie, the linear transformation corre-
sponding to building the steerable pyramid representation. As the SP is a tight
frame, A† : W → Im satisfies A† ◦ A = IIm where IIm is the identity operator
on the space Im. Applying A† is equivalent to inverting the steerable pyramid
representation.

As the SP is overcomplete, i.e. dim(W ) > dim(Im), the composition A◦A† :
W → W is not equal to the identity. The tight frame property implies that A◦A†

is an orthogonal projection onto the set WIm = A(Im), the “image under A
of the image space”. As WIm is a linear space, it is convex. This fact, that
the process of reconstructing an image followed by rebuilding the pyramid is an
orthogonal projection onto a convex subset of W , is crucial to understanding
the reconstruction algorithm.

The orientation representation consists of orientation bands at 5 scales, the
highpass band and the lowpass band. The reconstruction algorithm consists
of iteratively building the steerable pyramid, imposing the specified orientation
bands, highpass and lowpass bands, and transforming back into the image do-
main. A single iteration takes about 6 seconds for a 512x512 size image, running
in Matlab on a 2.4 GHz Pentium III machine. In the coefficient domain, denote
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(a) (b)

(c) (d)

Figure 1: Swapping orientation and magnitude. Image (c), formed from orienta-
tion of (a) and magnitude of (b). Image (d), formed from orientation of (b) and
magnitude of (a). Highpass and lowpass bands were set to zero for synthesized
images.
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(a) (b) (c)

Figure 2: (a) Original image. (b) Image synthesized with orientations from (a)
and random magnitudes. (c) Image synthesized with magnitudes from (a) and
random orientations.
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Figure 3: Schematic of reconstruction algorithm.

by WΘ the set of all pyramid coefficients that have the correct orientation bands,
highpass band and lowpass band. This set is convex. It consists of a cartesian
product of rays at each location in scale and space.

Viewed from the pyramid coefficient domain, the reconstruction algorithm
is performing alternating projection onto the convex sets WΘ and WIm. If we
denote the operator OΘ : W → W the operation of imposing the orientation,
highpass and lowpass bands, a single iteration of the reconstruction algorithm
(starting and ending in W ) is equivalent to applying A ◦ A† ◦ Oθ. One natural
implementation of OΘ would be to simply replace the current orientations by
the desired orientations, this is equivalent to ’rotating’ each pair of x and y
pyramid coefficients at each location and scale to lie along the ray of specified
orientation. An alternative form for OΘ would be as an orthogonal projection
to WΘ. These are illustrated in Fig. 4(a)

If the orthogonal projection form of OΘ is used, then the reconstruction algo-
rithm is performing alternating projection onto convex sets. Such an algorithm
will always converge to an intersection point of the two sets, provided such a
point exists. As the orientation bands being imposed are taken from an actual
image, WΘ ∩ WIm must contain at least one point, namely the steerable pyra-
mid representation of the original image! The reconstruction algorithm is thus
guaranteed to converge to something. In practice, convergence to the original
image has always been observed.
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Figure 4: (a) Orientation imposition. The axes represent the x and y coordi-
nates of a gradient vector at a particular position and scale. The dotted line
represents a slice of WΘ, the set of coefficients having the correct orientation.
This orientation may be imposed by rotating or orthogonally projecting onto
this line. (b) Acceleration by extrapolation. The first four points indicate suc-
cessive states of the algorithm, extrapolation along the dotted lines gives the
last point. See text.

5 Speeding up Convergence

Our iterative reconstruction algorithm converges, but quite slowly. For a typi-
cal 512x512 image, beginning with random noise as a starting point, the basic
algorithm takes about 100 iterations before the result is perceptually indistin-
guishable from the original image. This is dues to the fact that the amplitudes
are encoded only implicitly in the representation, and their recovery results from
the interactions between orientations at different positions and scales as well as
the lowpass band. We found the process can be accelerated by including and
imposing the total power (sum of squared magnitudes) at each scale by rescaling
each band by a single scalar.

Another technique for accelerating the convergence is illustrated in Fig. 4(b).
Two successive iterations of the algorithm correspond to projecting onto four
points in W , alternatively projecting onto WΘ and WIm. We extrapolate along
the two lines formed by these four points (which may not intersect in the high
dimensional space W !) and find the points where the two lines are closest. We
take the average of these two points as the new extrapolated point, and continue
the algorithm. The combination of imposing power at each scale and extrapo-
lating yields a much faster reconstruction algorithm that requires approximately
25 iterations for a 512x512 image, starting from a random noise image, before
the resulting image is perceptually indistinguishable from the original.

6 Quantization of Orientations

The success of the alternating projection algorithm as described above relies
on the existence of a point of intersection of WIm and WΘ. While this is
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Figure 5: Convergence. The SNR of the n’th iterate relative to the original
image is plotted against iteration number for the basic algorithm (◦), algorithm
with energy imposed at each scale (x), and algorithm with both energy imposi-
tion and extrapolation (▽).

ensured for sets of orientations that arise from actual images, it may not be
true for sets of orientations that have been altered in some way. This could be
troubling for using this representation for image processing tasks in which one
would manipulate the orientations and then recover the processed image. If the
representation were not stable to perturbations in the orientations, this would
undermine its potential utility. As a method of exploring this, we have studied
the effects of quantization of the orientations, and found the representation to
be well behaved.

For quantization to Q values, the unit circle was divided into Q equal bins
of width 2π

Q
with bin centers at 2πq

Q
for q = 0...Q−1. The quantized orientation

bands ΘQ
s (m,n) were formed by replacing the value of Θs(m,n) by the angle

of the center of its corresponding bin. When reconstructing from quantized
orientations, the orientation imposition step was modified to impose the quan-
tization bin, rather than the bin center value. At each step, orientations that
lie within 2π

Q
of the quantized value are left unchanged, those that are outside

are pushed to the closest edge of the bin, either ΘQ
s (m,n)+ π

Q
or ΘQ

s (m,n)− π
Q

.
This may still be interpreted as projection onto a convex subset WΘQ ⊂ W , but
where WΘQ is a cartesian product of “wedges” rather than rays in W . With
this modification to the reconstruction algorithm, as the orientations are quan-
tized more and more coarsely image quality degrades gracefully, as illustrated
in Fig. 6(a). Even at extremely course quantization visually pleasing results are
produced (Fig. 6(b)). Direct imposition of the quantization bin centers was also
attempted, but gave poor results at coarse quantization.
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Figure 6: Effects of quantization. (a) Image reconstructed from orientations
quantized to 4 values. (b) SNR relative to the original image vs. number of
quantization bins.

7 Conclusions

We have developed a novel image representation based on the orientation of
gradients measured at multiple scales. We have proved that the reconstruction
algorithm converges and have developed several techniques for improving its
convergence rate.

Much recent work in image processing has focused on explicitly modelling or
otherwise exploiting the statistical properties of wavelet coefficient magnitudes,
often by modelling local variance [12, 13, 14, 15]. This current paper raises
the intriguing possibility of building image probability models using the local
orientation, a purely geometric quantity, and provides a concrete framework for
processing in the orientation domain.

By eliminating the magnitude information, we have reduced the redundancy
of the steerable pyramid by nearly a factor of two. Even so, it is clear that the
remaining orientation information is redundant. In particular, the prevalence of
extended edges and contours in images means that the local orientation measures
are likely to be aligned, both within a scale and across scales. As such, we
are currently working to develop probability models of this redundancy, as a
natural step toward using this representation for traditional image processing
applications such as compression or denoising. The representation also seems
promising for graphics applications, such as image editing and manipulation
[e.g. 16], resolution enhancement, and texture synthesis.
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