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ABSTRACT

Following the Compressed Sensing (CS) paradigm, this pa-
per studies the problem of recovering sparse or compressible
signals from (scalar) non-uniformly quantized measurements.
We show that a simple adaptation of the Basis Pursuit De-
Quantizer introduced earlier, that is, a sign sensitive weight-
ing of their `p-norm fidelity constraint, yields good SNR im-
provements in the signal reconstruction. As a good indication
of this improvement origin, we prove theoretically that a sim-
ilar decoder, using a particular side-position-to-level oracle,
displays a reduction of the reconstruction error when both the
number of measurements and the moment p of the constraint
increase. This follows the oversampling principle underlined
in our previous study for uniformly quantized CS, with an ad-
ditional gain provided by the non-uniform quantization. We
conclude this paper by showing the efficiency of the approach
on 1-D and 2-D signal examples.

1. INTRODUCTION

The recent theory of Compressed Sensing (CS) [1, 2] shows
how sparse or compressible signals can be reconstructed from
few linear measurements compared to the dimensionN of the
signal space. The gist of this approach relies in the use of a
sensing basis sufficiently incoherent with the sparsity basis
of the signal. This happens with high probability for a large
class of random matrix constructions as soon as the number
of measurements M is higher than “few multiples” of the sig-
nal sparsity K. For instance, for Random Gaussian matrices,
M = O(K logN/K).

Similarly to recent studies [3–5] in the CS literature, this
work is interested in controlling the signal reconstruction sta-
bility when the compressive measurements undergo a scalar
quantization, possibly non-uniform, of given rate R.

More precisely, given a signal x ∈ RN , we first assume
it to be sparse, or sparsely approximable (compressible), in
a certain orthogonal basis Ψ =

(
Ψ1, · · · ,ΨN ) ∈ RN×N

(e.g., in the wavelet basis or in the pixel domain). In other
words, this signal is decomposed as x = Ψc =

∑
j Ψjcj

with an approximation error ‖c− cK‖ (cK being the best K
term approximation of c) quickly decreasing when the integer
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K increases. For the sake of simplicity, the sparsity basis is
assumed to be canonical (Ψ = 1) and c is identified with x.
All the results can be easily extended to the situation Ψ 6= 1.

Second, we are interested in the Compressed Sensing of
x ∈ RN with a certain sensing matrix Φ ∈ RM×N [1, 2].
Each compressed sensing measurement, i.e., each component
of the measurement vector Φx, undergoes a general scalar
(uniform or non-uniform) quantization Q described in Sec-
tion 2, i.e., our sensing model is

y = Q[Φx]. (1)

Conventions: All space dimensions are denoted by capital
letters (e.g., K,M,N,D ∈ N), vectors and matrices are writ-
ten in bold symbols. For any vector u = (u1, · · · , uD)T ∈
RD (with (·)T the transposition), the `p-norm (p > 1) of
u is ‖u‖pp =

∑
i |ui|p, with ‖u‖ = ‖u‖2 and ‖u‖0 =

#{i : ui 6= 0} the `0 (“not-a”) norm of u. We denote
also 1 = (1, · · · , 1)T ∈ RD, and 1 for the identity matrix.
Given a vector u, U = diagu is the diagonal matrix such
that Uii = ui.

2. QUANTIZATION FRAMEWORK

Our operator Q of interest here is a scalar quantizer of vec-
tor components. We do not impose this quantization to be
uniform, that is, the quantization bin width is not necessarily
constant with respect to the bin level (as in Fig. 1-left).

More precisely, Q relies on the definition of a set of B =
2R levels ωk (coded onR = log2B bits) and of a set ofB+1
thresholds tk ∈ R ∪ {±∞}, with ωk < ωk+1 and tk 6 ωk <
tk+1 for all 1 6 k 6 B and given a rate R ∈ N. The kth

quantizer bin (or region) is Rk = [tk, tk+1). As illustrated
on Fig. 1-left, the quantizer is a mapping between R and the
set of levels Ω = {ωk : 1 6 k 6 B}, i.e., Q[λ] = ωk ⇔
λ ∈ Rk = Q−1[ωk]. For vectors u ∈ RM , Q[u] ∈ ΩM with
(Q[u])k = Q[uk] ∈ Ω, for 1 6 k 6 M .

Generally, whatever the definition of the quantization lev-
els and thresholds, many scalar quantization schemes relies
on a High Resolution/Rate Assumption (HRA) [6]. They
assume that the distortion noise, that is, the difference be-
tween the initial and the quantized values, is uniform within
each quantization bins, possibly with different widths. There-
fore, the creation of the non-uniform quantizer, which can rely
on a non-uniformity assumption (like with Lloyd-Max itera-



tive method [6]) is distinguished from the uniform distortion
model induced by this quantizer.

In this work, we define a stronger variant of the HRA
that we dub Asymmetric HRA (AHRA). We will assume that,
within each bin, the quantization distortion follows two dis-
tinct uniform distributions on the left and on the right of the
corresponding level.

3. ASYMMETRIC QUANTIZATION CONSISTENCY

Beyond any stochastic modeling of the quantization distor-
tion, we know that Q[t] = ωi is equivalent to the condition
t ∈ Ri = Q−1[ωi] = [ti, ti+1). In other words,

Q[t] = ωi ⇔
{
t− ωi < ti+1 − ωi if t > ωi

t− ωi > ti − ωi if t < ωi
. (2)

This condition can be simplified thanks to the following asym-
metric norm [7]. Let S = diag(s) ∈ R2D×2D

+ be a diagonal
matrix of positive diagonal entries s = (s+, s−)T ∈ R2D

+ ,
with s± ∈ RD. The sign-dependent weighted `p norm is
given by

dduccp,s ,

∥∥∥∥S( (u)+
(−u)+

)∥∥∥∥
p

, p ∈ [1,∞], (3)

(u)+ being the non-negative vector such that ((u)+)i =
(ui)+ = max(ui, 0). It is easy to check that dd·ccp,s is an
asymmetric norm but not a norm1. Moreover, for p > 1,
ddλ · ccp,s is convex.

Let us define ∆+
i = ti+1 − ωi, ∆−i = ωi − ti, and k(yi),

the quantization bin index of the ith component of y, that
is, such that yi ∈ Rk(yi). Our asymmetric weighting ma-
trix is S(y) = diag(s(y)) ∈ R2M×2M , with s = s(y) =
(s+(y), s−(y))T and s±i (y) = 1/∆±k(yi)

. Therefore, from
(2),

Q[Φx] = y ⇔ ddΦx− ycc∞,s 6 1. (QC)

This is the Quantization Consistency (QC) constraint that any
reconstructed vector x∗ should respect in order to be consis-
tent with the quantized measurement y. Notice that keeping
the same S, limp→∞ ddΦx− yccp,s = ddΦx− ycc∞,s 6 1.

4. RECONSTRUCTION AND WEIGHTED FIDELITY

There is a straightforward way for estimating a signal x
sensed through the model (1). We can indeed alter the Ba-
sis Pursuit DeQuantizer introduced in [5] by replacing their
`p-norm fidelity constraint by the weighted asymmetric norm
introduced in (3), that is,

arg min
u∈RN

‖u‖1 s.t. ddΦu− yccp,s 6 ε, (WBPDQ)

1There is no positive homogeneity: ddλuccp,s 6= |λ|dduccp,s for λ < 0.

with s defined as in Sec. 3. Notice that for p = 2 and s± =
1, WBPDQ reduces to the Basis Pursuit DeNoiser (BPDN)
[1, 2]. As for the BPDQ decoders, we are going to discover
which moment p minimizes the reconstruction error; and the
answer is not necessarily p =∞ despite the QC relation!

Unfortunately, in spite of good numerical results (see
Sec. 7), we did not find a convincing way for bounding theo-
retically the WBPDQ approximation error. We were instead
able to characterize the behavior of the following auxiliary
program helped with the side-position-to-level (SPTL) oracle
σ = sign (Φx− y) ∈ {±1}M :

x∗ = arg min
u∈RN

‖u‖1 s.t.

{
‖Φu− y‖p,w 6 ε,

sign (Φu− y) = σ,
(4)

with ‖·‖p,w , ‖diag(w) ·‖p, w = w(s,σ) ∈ RM being the
weighting vector such that wi = s+i (σi)+ + s−i (−σi)+.

Similarly to what we discovered in [5], the stability of (4)
depends on the good behavior of Φ in the normed space
`Mp,w = (RM , ‖ · ‖p,w). In particular, we say that, given
a weight vector w′ ∈ RM+ , a matrix Φ ∈ RM×N satis-
fies the Restricted Isometry Property from `Mp,w′ to `N2 at
order K ∈ N, radius 0 6 δ < 1 and for a normalization
µ = µ(p,M,N) > 0, if for all x ∈ ΣK = {u ∈ RN :
‖u‖0 6 K},

(1− δ)1/2 ‖x‖ 6 1
µ‖Φx‖p,w′ 6 (1 + δ)1/2 ‖x‖, (5)

We will write shortly that Φ is RIP`M
p,w′ , `

N
2

(K, δ, µ). Of
course, the common RIP and the RIPp,2 [5] are obtained with
w′ = 1 and p > 2. We found that a small modification
of the proof of Proposition 1 in [5] allows us to check that,
with very high (controllable) probability, a Standard Gaussian
Random (SGR) matrix Φ ∈ RM×N with Φij ∼ N (0, 1) is
RIP`Mp,w, `

N
2

(K, δ, µ) as soon as

M2/p = O(K logN/K) and µ = E‖ξ‖p,w,
for ξ ∈ RM a SGR vector

Obviously, if Φ is RIP`Mp,w,`
N
2

, then Φ′ = diag(w) Φ is
RIP`Mp ,`N2

, while ‖Φu − y‖p,w = ‖Φ′u − diag(w)y‖p.
Therefore, despite the complementary constraint on the sign
σ, the stability proved in [5] holds for (4).

Theorem 1. Let x ∈ RN be a signal with a K-term `1-
approximation error e0(K) = K−

1
2 ‖x − xK‖1, for 0 6

K 6 N . Let Φ be a RIP`Mp,w,`
N
2

(s, δs, µ) matrix for s ∈
{K, 2K, 3K} and 2 6 p < ∞. If x is a feasible point of the
constraints in (4), then

‖x∗ − x‖2 6 Ap e0(K) + Bp µ
−1ε, (6)

for valuesAp(Φ,K) = 2(1+Cp−δ2K)
1−δ2K−Cp

,Bp(Φ,K) = 4
√

1+δ2K

1−δ2K−Cp
,

Cp = O
(√

(δ2K + δ3K)(p− 2)
)

as2 p � 2 and Cp =
δ3K +O(p− 2) as p→ 2.

2The precise definition of Cp is given in [5].
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Fig. 1: Left: Quantizing a Gaussian distribution with Lloyd-Max quantizer
with R = 3. Right: Estimation of ρmin

p for M = 320, R = 4, and p ∈
[2, 20]. Lloyd-Max quantizer (plain); optimal uniform quantizer (dashed).

5. OVERSAMPLING EFFECT

An interesting effect occurs in (6) when the sensing is over-
sampled, that is, when M/K is large enough to allow us to
select high moment p in (4) and still have the RIP`Mp,w,`

N
2

of
the SGR sensing matrix Φ. Indeed, we are going to show that
the error term µ−1ε in (6) decreases as 1/

√
p+ 1 when p in-

creases, and it is further reduced when the weightsw are well
adjusted.

We first need to find an estimator for ε in the sensing
model (1). This is done by observing when, with high proba-
bility, x is a feasible point of the constraints in (4). We notice
that ‖Φx − y‖pp,w =

∑
i w

p
i (σi) |(Φx)i − yi|p. From the

AHRA, each |wi(σi)
(
(Φx)i − yi

)
| can be modeled as a uni-

form random variable on [0, 1]. We can then take α = 2 in
Lemma 3 of [5] and determine that

‖Φx− y‖p,w 6 ε , εp(M) = ((p+ 1)−1M + κ
√
M)1/p

holds with probability higher than 1− e−2κ2
.

Second, we must lower bound the RIP`Mp,w, `
N
2

normal-
ization µ. For this purpose, let us assume that the weights
w = G(M) ∈ RM+ have been generated by a particu-
lar weight generator G(M) (for instance as an output of a
Lloyd-Max quantizer) respecting the following property.

Definition 1. The generator G (and by extension w =
G(M)) has the Converging Moments (CM) property if, for
any p > 1, there is a M0 such that

ρmin
p 6 M−1/p ‖G(M)‖p 6 ρmax

p , ∀M > M0, (7)
where ρmin

p > 0 and ρmax
p > 0 are, respectively, the biggest

and the smallest values such that (7) holds.

The CM property makes sense for instance if all the
weights {wi}16i6M are taken (with repetition) inside a finite
set of values (of size independent of M ).

A simple modification of Lemma 1 in [5] shows that, if
M > 2β−1 (2/ρmin

p )p and if w is CM, then

µ > c ρmin
p

√
p+ 1 (1 + β)

1
p−1

M1/p, (8)

with c = (8
√

2)/(9
√
e). Therefore, using this relation,

simple calculations show that, with a probability higher

than 1− e−2κ2
,

µ−1εp(M) 6 C
(
ρmin
p

√
p+ 1

)−1
. (9)

with C < 2.17 as soon as M > (p+1
p κ)2. Interestingly, this

last inequality reduces to the bound of ε/µ for the uniform
quantization of bin width α > 0 obtained in [5]. Indeed, this
case is equivalent tow = 2

α1, so that ρunif
p = ρmin

p = ρmax
p =

2
α . For non-uniform quantization, in addition to the division
of the error by

√
p+ 1 due to the oversampled sensing, a new

effect occurs: an error reduction due to ρmin
p . As estimated

in Fig. 1-right with ρmin
p ' M−1/p‖w‖p, this value can be

higher for non-uniform quantization than for uniform one.

6. NUMERICAL IMPLEMENTATION

We have implemented the convex WBPDQ decoder thanks
to the BPDQ toolbox3. Briefly, this toolbox solves the un-
weighted problem (s± = 1) where the optimization con-
straint reduces to a simple `p norm. It proceeds by using
the Douglas Rachford splitting [9]. This iterative methods
combines the proximal operator of the `1 norm (a soft-
thresholding) and the orthogonal projector onto a `p ball
of radius ε centered at the measurement vector y. We have
adapted this toolbox in order to solve WBPDQ by modifying
this last operation with a projection on the ball associated to
the asymmetric norm in (3). As described in [5], we used
for that a Newton’s method solving the related KKT system
which is reminiscent of the Sequential Quadratic Program-
ming (SQP) method.

7. EXPERIMENTS

Given the quantized sensing model (1), the purpose of
this section is to observe how the WBPDQ reconstruc-
tion quality evolves for different set of parameters N , K,
M , R and moments p. In all our experiments, a spread-
spectrum sensing matrix has been used [10]. More precisely,
Φ = RF diag(h), where R ∈ RM×N is a restriction ma-
trix picking M values uniformly at random in {1, · · · , N},
F ∈ RN×N is the DCT basis, and h ∈ RN is a random ±1
Bernoulli sequence. This sensing matrix is not proved to be
as optimal as the SGR matrix (or Random Gaussian Ensem-
ble). However, we observed that the measurement vector Φx
still follows a Gaussian distribution, and the multiplication
Φu or ΦTv is very fast (O(N log2N)). Moreover, it is a
tight frame with ΦΦT = 1 which makes the Douglas Rach-
ford (DR) faster [5]. For all experiments, 300 iterations were
sufficient to observe a convergence of the DR algorithm.
Sparse 1-D signals: For this experiment, we have randomly
generated K-sparse signals in RN by picking uniformly at
random their support in {1, · · · , N}, their K non-zero val-
ues following a Normal distribution. Each signal has been

3http://wiki.epfl.ch/bpdq



Fig. 2: Left: King’s House, Brussels; Middle: BPDN (25.65dB); Right: WBPDQ (p = 6, 26.44dB).
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Fig. 3: SNR Gain. N = 1024, K = 16, R = 4, averaged over 100 trials.

sensed with the sensing model (1) according to two quanti-
zation scenario. An optimal uniform quantizer and an non-
uniform Lloyd-Max quantizer both tuned to inputs with Gaus-
sian distributions. For the first quantizer, the Basis Pursuit
Denoiser (BPDN) has reconstructed the signals, while for the
second, the WBPDQ decoder has been selected with weights
computed as in Sec. 4. The parameter N , K and R have been
set to 1024, 16 and 4 bits respectively, while M/K ∈ [8, 64]
and p ∈ [2, 10]. Fig. 3-left shows the averaged reconstruc-
tion quality evolution (in SNR) over 100 trials with respect
to M/K for different p. For comparison, the BPDN quality
curve is shown with a dashed line. It can be clearly observed
that as soon as the oversampling factor M/K is sufficiently
high, taking a p higher than 2 yields significant improvement
with up to 4 dB at the highest oversampling for p = 10. How-
ever, Fig. 3-right, which displays the averaged SNR gain rel-
atively to WBPDQ with p = 2, confirms that the moment p
leading to the highest gain for a given ratio oversampling ratio
increases with M/K, while the performance decays if higher
moments are selected.
Compressible 2-D image: In this second experiment, we
have challenged the WBPDQ decoder on the reconstruc-
tion of a 512× 512 image (N = 262 144) compressible
in a Daubechies 7/9 wavelet basis and sensed with (1) for
M = 3

4N and 4 bits per measurements. The reconstruction
results are shown in Fig. 2. Despite a weak visual improve-
ment between the WBPDQ (p = 6, on Lloyd-Max quantized
measurements) and the BPDN reconstructions (on uniformly
quantized measurements), the PSNR gain for WBPDQ is
about 0.8 dB. This is not a large value which is mainly
due to the compressible nature of the image; the reduction

of the quantization error is masked by the importance of
the compressible error in (6). However, we measured that
the WBPDQ solution satisfies the quantization consistency,
while for the BPDN solution, ddΦx∗ − ycc∞,(2/α)1 = 1.963.

8. CONCLUSION

The objective of this work was to show how to improve the re-
construction of sparse or compressible signals sensed through
non-uniformly quantized compressive measurements. We
have shown that a weighted asymmetric `p norm allows us to
incorporate the quantization consistency of the measurements
in the signal decoding, that is, in the WBPDQ program.
Finally, theoretical indications and numerical experiments
confirm the possibility to reduce the quantization impact in
the reconstructed signals.
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