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INTRODUCTION

Q Electrical activity resulting from eye blinks is a
major source of contamination in EEG.

0 There are multiple methods for coping with
ocular artifacts, including various ICA and BSS
algorithms (Infomax, FastICA, SOBI, etc.).

QO APECS stands for Automated Protocol for
Electromagnetic Component Separation.
Together with a set of metrics for evaluation of
decomposition results, APECS provides a
framework for comparing the success of different
methods for removing ocular artifacts from EEG.

EEG DATA

EEG Acquisition:

* 256 scalp sites; vertex recording reference (Geodesic
Sensor Net).

¢ .01 Hz to 100 Hz analogue filter; 250 samples/sec.

EEG Preprocessing:

o All trials with artifacts detected & eliminated.

« Digital 30 Hz bandpass filter applied offline.

« Data subsampled to 34 channels & ~50,000 samples
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Figure 1. (A) EGI system; (B) Layout for 256-channel array

APECS FRAMEWORK

Q Derivation of a blink-free EEG baseline from real EEG data
0 Construction of test synthetic data (see below)

Q ICA decomposition of data & extraction of simulated blinks
0O Comparison of the cleaned EEG to baseline data (see below)
Q Evaluation of decomposition & successful removal of blinks

0 MATLAB implementations of FastICA and Infomax:
» FastlCA

« Uses fixed-point iteration with 2nd order convergence to find directions
(weights) that maximize non-gaussianity

« Maximizing non-gaussianity, as measured by negentropy, points weights
in the directions of the independent components

« Implemented with tanh contrast function and random starting seed
» Infomax

« Trains the weights of a single layer forward feed network to maximize
information transfer from input to output

« Maximizes entropy of and mutual information between output channels to
generate independent components

o Implemented with default sigmoidal non-linearity and identity matrix seed

0 Compute covariance between each ICA weight (spatial
projector) and the blink template

Q Flag each spatial projector whose covariance exceeds a
threshold as projecting blink activity
Q Compute projected eye blink activity:
xEyeBIink = AEyeBIink * SEyeBIink
0 Remove each projected blink activity by a matrix subtraction:

XglinkFree = xOriginaI - xEyeBIink

ANATOMY OF A BLINK
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Figure 2. (A) Timecourse of a blink (1sec); (B) Topography of
an average blink (red = positive; blue = negative)
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SYNTHESIZED DATA

Creation of Blink Template

« Blink events manually marked in the raw EEG.

« Data segmented into 1sec epochs, timelocked to peak of blink.
« Blink segments averaged to create a blink template.

Creation of Synthesized Data

e A: “clean” data (34ch, ~50k time samples)

« B: “blink” data (created from template)

e C: The derived “blink” data were added to the clean data to
created a synthesized dataset, consisting of 34 channels x
50,000 time samples
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Figure 3. Input to ICA: Synthesized data, consisting of cleaned
EEG plus artificial “blinks” created from blink template (Fig. 2).

EVALUATION METRICS

0 Quantitative Metrics
» Covariance between ICA-filtered EEG and the baseline
EEG at each channel for each of the 7 blink datasets

0 Qualitative Metrics

» Segment EEG & average over segments, time-locked to
the peaks of the simulated blinks. Visualize waveforms
and topographic plots (Figs. 7-8).

QUANTITATIVE EVALUATION
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Figure 4. Correlation between “baseline” (blink-free) and ICA-
filtered data across datasets. Yellow, Infomax; blue, FastICA.

Correlation Coefficient (Set # 5 | Template Tolerance: 0.9)
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Figure 5. Correlation between “baseline” and ICA-filtered data
for Dataset #5 across EEG channels (electrodes).
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Figure 6. ICA decompositions most succcessful when only one
spatial projector was strongly correlated with blink template.

QUALITATIVE EVALUATION
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Figure 7. Average EEG time-locked to synthetic blinks.
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Figure 8. Topography of blink-averaged baseline and
filtered EEG at peak of simulated blinks (midpoint of Fig. 7).

FUTURE DIRECTIONS

0O Refinement of baseline generation procedures:
> Frequency / statistical filtering to extract slow wave
activity related to amplifier recovery from original blinks

0 Spatial sampling studies using high-density
(128+ channel) EEG data
» Higher spatial sampling captures scalp electrical
activity in greater detail, leads to more accurate and
stable source localization
»>Higher-dimensional space may affect how well ICA can
determine directions that maximize independence

0 Use of alternative blink templates, starting seeds

Q High-performance C/C++ implementation
»>Multiple processor versions of FastICA and Infomax
»>Fast (Allows for virtually real-time ICA decomposition)
»Handles large datasets (128+ channels)
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