
EEG DATA
EEG Acquisition:
• 256 scalp sites; vertex recording reference (Geodesic
Sensor Net).
• .01 Hz to 100 Hz analogue filter; 250 samples/sec.

EEG Preprocessing:
• All trials with artifacts detected & eliminated.
• Digital 30 Hz bandpass filter applied offline.
• Data subsampled to 34 channels & ~50,000 samples

(A)         (B)

Figure 1. (A) EGI system; (B) Layout for 256-channel array
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INTRODUCTION
 Electrical activity resulting from eye blinks is a
major source of contamination in EEG.
 There are multiple methods for coping with
ocular artifacts, including various ICA and BSS
algorithms (Infomax, FastICA, SOBI, etc.).
 APECS stands for Automated Protocol for
Electromagnetic Component Separation.
Together with a set of metrics for evaluation of
decomposition results, APECS provides a
framework for comparing the success of different
methods for removing ocular artifacts from EEG.

QUALITATIVE EVALUATION

Figure 7. Average EEG time-locked to synthetic blinks.

Figure 8. Topography of blink-averaged baseline and
filtered EEG at peak of simulated blinks (midpoint of Fig. 7).
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SYNTHESIZED DATA
Creation of Blink Template
• Blink events manually marked in the raw EEG.
• Data segmented into 1sec epochs, timelocked to peak of blink.
• Blink segments averaged to create a blink template.

Creation of Synthesized Data
• A: “clean” data (34ch, ~50k time samples)
• B: “blink” data (created from template)
• C: The derived “blink” data were added to the clean data to
created a synthesized dataset, consisting of 34 channels x
50,000 time samples

Figure 3. Input to ICA: Synthesized data, consisting of cleaned
EEG plus artificial “blinks” created from blink template (Fig. 2).

QUANTITATIVE EVALUATION

Figure 4. Correlation between “baseline” (blink-free) and ICA-
filtered data across datasets. Yellow, Infomax; blue, FastICA.

Figure 5. Correlation between “baseline” and ICA-filtered data
for Dataset #5 across EEG channels (electrodes).

Figure 6. ICA decompositions most succcessful when only one
spatial projector was strongly correlated with blink template.

FUTURE DIRECTIONS
  Refinement of baseline generation procedures:

 Frequency / statistical filtering to extract slow wave
activity related to amplifier recovery from original blinks

 Spatial sampling studies using high-density
(128+ channel) EEG data

 Higher spatial sampling captures scalp electrical
activity in greater detail, leads to more accurate and
stable source localization
Higher-dimensional space may affect how well ICA can
determine directions that maximize independence

 Use of alternative blink templates, starting seeds

 High-performance C/C++ implementation
Multiple processor versions of FastICA and Infomax
Fast (Allows for virtually real-time ICA decomposition)
Handles large datasets (128+ channels)

ANATOMY OF A BLINK

(A) (B)
Figure 2. (A) Timecourse of a blink (1sec); (B) Topography of

an average blink (red = positive; blue = negative)

APECS FRAMEWORK
 Derivation of a blink-free EEG baseline from real EEG data
 Construction of test synthetic data (see below)
 ICA decomposition of data & extraction of simulated blinks
 Comparison of the cleaned EEG to baseline data (see below)
 Evaluation of decomposition & successful removal of blinks

 MATLAB implementations of FastICA and Infomax:
 FastICA
• Uses fixed-point iteration with 2nd order convergence to find directions
(weights) that maximize non-gaussianity
• Maximizing non-gaussianity, as measured by negentropy, points weights
in the directions of the independent components
• Implemented with tanh contrast function and random starting seed
 Infomax
• Trains the weights of a single layer forward feed network to maximize
information transfer from input to output
• Maximizes entropy of and mutual information between output channels to
generate independent components
• Implemented with default sigmoidal non-linearity and identity matrix seed

 Compute covariance between each ICA weight (spatial
projector) and the blink template
 Flag each spatial projector whose covariance exceeds a
threshold as projecting blink activity
 Compute projected eye blink activity:

xEyeBlink = AEyeBlink * sEyeBlink

 Remove each projected blink activity by a matrix subtraction:

xBlinkFree = xOriginal - xEyeBlink
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EVALUATION METRICS
 Quantitative Metrics

 Covariance between ICA-filtered EEG and the baseline
EEG at each channel for each of the 7 blink datasets

 Qualitative Metrics
 Segment EEG & average over segments, time-locked to
the peaks of the simulated blinks. Visualize waveforms
and topographic plots (Figs. 7-8).


