
Generic issues in contour tracking:
1. Contour tracking becomes non-deterministic at the point of contour
intersection.
2. Contour tracking is difficult when the region is bounded by more than one
curve (Region with holes)
3. Contour tracking is highly sensitive to noise around the edges.

With the ever increasing size of images, image processing and representation
using the yCHG algorithm becomes costly in terms of memory and
computational time.

In the yCHG model, union of all the hyperedges, referred to as yConvex
hyperedges (yCHE) gives the original region of interest. A yCHE is one in
which no vertical line intersects the boundary curve more than twice.
Intersection of any two hyperedges is empty and all hyperedges are simply-
connected bounded by either Jordon or non Jordon curve.

1. ABSTRACT1. ABSTRACT

2. INTRODUCTION AND MOTIVATION2. INTRODUCTION AND MOTIVATION

7. CONCLUSIONS7. CONCLUSIONS

REFERENCESREFERENCES

Exploiting Data Parallelism in the yConvex Hypergraph Algorithm Exploiting Data Parallelism in the yConvex Hypergraph Algorithm
for Connected Region Decomposition using GPGPUsfor Connected Region Decomposition using GPGPUs

To define and identify a region-of-interest (ROI) in a digital image, the shape
descriptor of the ROI has to be described in terms of its boundary
characteristics. To address the generic issues of contour tracking, the
yConvex Hypergraph (yCHG) model was proposed by Kanna et al [1]. This
yCHG model represents any connected region as a finite set of disjoint
yConvex hyperedges (yCHE), which helps to perform the contour tracking
precisely without retracing the same contour. We observe that the serial
implementation of the yCHG is quite costly in terms of memory and
computatio n for high resolution images. These issues motivated us to
exploit the high level data parallelism available on Graphic Processing Units
(GPUs). In this work, we propose a parallel approach to implement yCHG
model by exploiting massively parallel cores of NVIDIA Compute Unified
Device Architecture (CUDA). We perform our experiments on the MODIS
satellite image database by NASA, and based on our analysis we observe that
the performance of the serial implementation is better on smaller images, but
once the threshold is achieved in terms of image resolution, the parallel
implementation outperforms its sequential counterpart by 2 to 10 times (2x-
10x). We also conclude that an increase in the number of hyperedges in ROI
of given size does not impact the performance of the overall algorithm

4.1 Finding Cut Vertices

4. PROPOSED ALGORITHM4. PROPOSED ALGORITHM

5. RESULTS5. RESULTS

[1] B. Rajesh Kanna, C. Aravindan, and K. Kannan, Development of yConvex
hypergraph model for contour-based image analysis, in
Proceedings of the 2nd IEEE International Conference Computer
Communication and Informatics (ICCCI-2012), 2, 1-5, 2012
[2] B. Rajesh Kanna, C. Aravindan, and K. Kannan, A contour-based scheme
for representing arbitrary shapes in digital images, in Proceedings of ACM
International Conference and Workshop on Emerging Trends in Computer
applications, 1, 535-540, 2011
[3] B. Rajesh Kanna, C. Aravindan, and K. Kannan, Image-based area
estimation of any connected region using y-convex region
decomposition, AEU -International Journal of Electronics and
communications, 66 (2):172- 183, 2012
[4] Hall, Dorothy K., George A. Riggs, and Vincent V. Salomonson. 2006,
updated daily. MODIS/Terra Snow Cover Daily L3 Global 500m Grid V005
[November 2000-October 2001]

In this paper, we exploit data parallelism in an existing yCHG algorithm by
enhancing the algorithm to remove the data dependencies. Our implementation
results with NVIDIA CUDA show that with an increase in the image
resolution the parallel implementation improves the performance of an already
fast (relatively) algorithm by 2X-10X, opening up a host of potential new
applications that require real time image processing

6. MODIS DATASET6. MODIS DATASET

Result 2

Varying the number of hyperedges in an
image with constant resolution, does not
impact the performance of the overall

algorithm. This is due to the fact that our
proposed algorithm is directly dependent

on the resolution of the input image
irrespective of other factors.

Result 1

Once the threshold of resolution2000 X
2000 is reached, the parallel yCHG

algorithm proposed by us outperforms
the serial counterpart by 2 times to 10

times (2x-10x).

4.2 Finding yConvex Regions

3. OUR CONTRIBUTION3. OUR CONTRIBUTION

Our results with the sequential implementation of the yCHG show that:

a. The runtime of the yCHG algorithm increases linearly for images up to a
resolution of 2000x2000 but a significant change in runtime is observed for
images with a higher resolution.

b. The runtime remains constant for images with varying number of
hyperedges.

In our contribution, we exploit the inherent data parallelism in the yCHG
algorithm on the GPU, which is well suited for parallel processing. Based on
the existing yCHG algorithm, we divide an input image to a number of
individual column vectors depending on the image resolution, and process
each vector on a separate thread on the GPU concurrently.

Some of the sample images from MODIS dataset are shown above. The
MODIS satellite image database, which is a lower spatial resolution to the
ASTER, covers the entire earth everyday frequently repeating its coverage to
provide real-time images.

Saurabh Jha is a junior year undergraduate
student majoring in Computer Science and
Engineering. His research interests are
Parallel Computing, Heterogeneous Systems
and Distributed Computing.

Tejaswi Agarwal is a junior year
undergraduate student majoring in Computer
Science and Engineering. His research
interests are Parallel Computing, Computer
Architecture, and Multi-core Systems.

Rajesh Kanna B is a professor at VIT
University, India. His research interests are
Image Processing and its applications.

ABOUT THE AUTHORSABOUT THE AUTHORS

 Saurabh Jha, Tejaswi Agarwal and Rajesh Kanna BSaurabh Jha, Tejaswi Agarwal and Rajesh Kanna B
 School of Computing Sciences and Engineering, VIT University, Chennai, IndiaSchool of Computing Sciences and Engineering, VIT University, Chennai, India

 saurabh.jha2010@vit.ac.in, tejaswi.agarwal2010@vit.ac.in, rajeshkanna.b@vit.ac.insaurabh.jha2010@vit.ac.in, tejaswi.agarwal2010@vit.ac.in, rajeshkanna.b@vit.ac.in

 In order to keep constant hyper edges, we take an image of a resolution of
21000x21000 and vary the resolution.

We used the following system specification for our analysis.

On basis of our experiments, we find out the following:
1.For an image with resolution greater than the threshold of 2000x2000, the
GPU implementation outperforms the CPU by a factor of 2x -10x.
2. Varying the number of hyperedges in an image with constant resolution
does not impact the performance of the overall algorithm. This is due to the
fact that our proposed algorithm is directly dependent on the resolution of the
input image irrespective of other factors

	Slide 1

