
Performance Analysis of Large-scale OpenMP

and Hybrid MPI/OpenMP Applications with
VampirNG

Holger Brunst1 and Bernd Mohr2

1 Center for High Performance Computing
Dresden University of Technology

Dresden, Germany
brunst@zhr.tu-dresden.de

2 Forschungszentrum Jülich, ZAM
Jülich, Germany

b.mohr@fz-juelich.de

Abstract. This paper presents a tool setup for comprehensive event-
based performance analysis of large-scale openmp and hybrid openmp/
mpi applications. The kojak framework is used for portable code instru-
mentation and automatic analysis while the new VampirNG infrastruc-
ture serves as generic visualization engine for both openmp and mpi per-
formance properties. The tools share the same data base which enables
a smooth transition from bottleneck auto-detection to manual in-depth
visualization and analysis. With VampirNG being a distributed data-
parallel architecture, large problems on very large scale systems can be
addressed.

Keywords: Parallel Computing, openmp, Program Analysis, Instru-
mentation

1 Introduction

openmp is probably the most commonly used communication standard for shared-
memory based parallel computing. The same applies to mpi when talking about
parallel computing on distributed-memory architectures. Both approaches have
widely accepted characteristics and qualities. openmp stands for an incremental
approach to parallel computing which can be easily adapted to existing sequen-
tial software. mpi has a very good reputation with respect to performance and
scalability on large problem and system sizes. Yet, it typically requires a thorough
(re-) design of a parallel application. So far, most parallel applications are either
native openmp or native mpi applications. With the emergence of large clusters
of SMPs, this situation is changing. Clearly, hybrid applications that make use
of both programming paradigms are one way to go. openmp has proven to work
effectively on shared memory systems. mpi on the other hand can be used to
bridge the gap between multiple SMP nodes. In a sense, this strategy follows
the original idea of openmp which is to incrementally parallelize a given code.



In a hybrid scenario only minor changes (i. e. adding openmp directives) are re-
quired to achieve a moderate performance improvement while going beyond the
memory boundaries of an SMP node requires more sophisticated techniques like
message passing. Quite natural, a program that combines multiple programming
paradigms is not easy to develop, maintain, and optimize. Portable tools for pro-
gram analysis and debugging are almost essential in this respect. Yet, existing
tools [1–3] typically concentrate on either mpi or openmp or exist for dedicated
platforms only [4, 5]. It is therefore difficult to get on overall picture of a hy-
brid large-scale application. This paper presents a portable, distributed analysis
infrastructure which enables a comprehensive support of hybrid openmp appli-
cations. The paper is organized as follows. The next section deals with collecting,
mapping, and automatic classification of openmp/mpi performance data. Based
hereon, Section 3 goes a step further and presents an architecture for in-depth
analysis of large hybrid openmp applications. In Section 4 mixed mode analysis
examples are given. Finally, Section 5 concludes the joint tool initiative.

2 The kojak Measurement System

The kojak performance-analysis tool environment provides a complete tracing-
based solution for automatic performance analysis of mpi, openmp, or hybrid
applications running on parallel computers. kojak describes performance prob-
lems using a high level of abstraction in terms of execution patterns that result
from an inefficient use of the underlying programming model(s). kojak’s overall
architecture is depicted in Figure 1. The different components are represented as
rectangles and their inputs and outputs are represented as boxes with rounded
corners. The arrows illustrate the whole performance-analysis process from in-
strumentation to result presentation.

The kojak analysis process is composed of two parts: a semi-automatic
multi-level instrumentation of the user application followed by an automatic
analysis of the generated performance data. The first part is considered semi-
automatic because it requires the user to slightly modify the makefile.

To begin the process, the user supplies the application’s source code, writ-
ten in either c, c++, or Fortran, to opari, which is a source-to-source trans-
lation tool. Opari performs automatic instrumentation of openmp constructs
and redirection of openmp-library calls to instrumented wrapper functions on
the source-code level based on the pomp openmp monitoring api [6, 7]. This
is done to capture openmp events relevant to performance, such as entering a
parallel region. Since openmp defines only the semantics of directives, not their
implementation, there is no equally portable way of capturing those events on a
different level.

Instrumentation of user functions is done either during compilation by a
compiler-supplied instrumentation interface or on the source-code level using
tau [8]. Tau is able to automatically instrument the source code of c, c++,
and Fortran programs using a preprocessor based on the pdt toolkit [9].

2



executable

user program instrumented
user program

EPILOG
library

PAPI
library

EPILOG
event trace analysis result

VTF3
event trace

compiler / linker

OPARI / TAU
instrumentation

run

EXPERT
pattern search

CUBE
visualizer

VAMPIR
trace visualizer

trace conversion

manual analysis

automatic analysis

 semi-automatic instrumentation

POMP / PMPI
libraries

Fig. 1. kojak overall architecture.

Instrumentation for mpi events is accomplished with a wrapper library based
on the pmpi profiling interface, which generates mpi-specific events by intercept-
ing calls to mpi functions. All mpi, openmp, and user-function instrumentation
calls the epilog run-time library, which provides mechanisms for buffering and
trace-file creation. The application can also be linked to the papi library [10] for
collection of hardware counter metrics as part of the trace file. At the end of the
instrumentation process, the user has a fully instrumented executable.

Running this executable generates a trace file in the epilog format. After
program termination, the trace file is fed into the expert analyzer. (See [11] for
details of the automatic analysis, which is outside of the scope of this paper.)
In addition, the automatic analysis can be combined with a manual analysis
using Vampir [12] or Vampir NG [13], which allows the user to investigate the
patterns identified by expert in a time-line display via a utility that converts
the epilog trace file into the Vampir format.

3 The Distributed VampirNG Program Analysis System

The distributed architecture of the parallel performance analysis tool Vam-

pir NG [13] outlined in this section has been newly designed based on the expe-
rience gained from the development of the performance analysis tool Vampir.
The new architecture uses a distributed approach consisting of a parallel anal-
ysis server running on a segment of a parallel production environment and a
visualization client running on a potentially remote graphics workstation. Both
components interact with each other over the Internet through a socket based
network connection.

3



The major goals of the distributed parallel approach are:

1. Keep event trace data close to the location where they were created.
2. Analyze event data in parallel to achieve increased scalability

(# of events ∼ 1, 000, 000, 000 and # of streams (processes) ∼ 10, 000).
3. Provide fast and easy to use remote performance analysis on end-user plat-

forms.

VampirNG consists of two major components: an analysis server (vngd)
and a visualization client (vng). Each is supposed to run on a different machine.
Figure 2 shows a high-level view of the overall software architecture. Boxes repre-
sent modules of the components whereas arrows indicate the interfaces between
the different modules. The thickness of the arrows gives a rough measure of the
data volume to be transferred over an interface, whereas the length of an arrow
represents the expected latency for that particular link.

MasterWorker 1

Trace 1
Worker 2

Worker m

Trace 2
Trace 3

Trace N

File SystemLarge Parallel Application VNG Analysis Server

Parallel I/O MPI Com.

VNG Visualization Client InternetInternet

One Process

Performance 
Run-time System

Event Streams

Closeup 
Indicator

768 Tasks
in Thumbnail

16 Tasks in
Timeline

Fig. 2. VampirNG Architecture Overview

In the top right corner of Figure 2 we can see the analysis server, which runs
on a small interactive segment of a parallel machine. The reason for this is two-
fold. Firstly, it allows the analysis server to have closer access to the trace data
generated by an application being traced. Secondly, it allows the server to execute
in parallel. Indeed, the server is a heterogeneous parallel program, implemented
using mpi and pthreads, which uses a master/worker approach. The workers are
responsible for storage and analysis of trace data. Each of them holds a part of

4



the overall data to be analyzed. The master is responsible for the communication
to the remote clients. He decides how to distribute analysis requests among the
workers. Once the analysis requests are completed, the master merges the results
into a single response package that is subsequently sent to the client.

The bottom half of Figure 2 depicts a snapshot of the VampirNG visu-
alization client which illustrates the timeline of an application run with 768
independent tasks. The idea is that the client is not supposed to do any time
consuming calculations. It is a straightforward sequential GUI implementation
with a look-and-feel very similar to performance analysis tools like Jumpshot [1],
Paraver [4], Vampir [12], Paje [3], etc. For visualization purposes, it communi-
cates with the analysis server according to the user’s preferences and inputs.
Multiple clients can connect to the analysis server at the same time, allowing
simultaneous viewing of trace results.

As mentioned above, the shape of the arrows indicates the quality of the
communication links with respect to throughput and latency. Knowing this, we
can deduce that the client-to-server communication was designed to not require
high bandwidths. In addition, the system should operate efficiently with only
moderate latencies in both directions. This is basically due to the fact that only
control information and condensed analysis results are to be transmitted over
this link. Following this approach we comply with the goal of keeping the analysis
on a centralized platform and doing the visualization remotely.

The big arrows connecting the program traces with the worker processes in-
dicate high bandwidth. The major goal is to get fast access to whatever segment
of the trace data the user is interested in. High bandwidth is basically achieved
by reading data in parallel by the worker processes. To support multiple client
sessions, the server makes use of multi-threading on the boss and worker pro-
cesses.

4 In-Depth Analysis of Large-Scale openmp Programs

The kojak analysis infrastructure primarily addresses automatic problem de-
tection. Previously collected trace data is searched for pre-defined problems [14].
The results are displayed in a hierarchical navigator tool which provides links to
the respective source code locations. This approach is very effective as it does
not require complicated user interactions or expert knowledge. Yet, it is lim-
ited to known problems and sometimes the real cause of a phenomenon remains
obscure.

With the help of the collected trace data it is even possible to go into
further detail. The measurement system in kojak supports the generation of
Vampir NG compatible traces which can be examined according to the hints
made by the expert tool.

Having access to the same central data base, Vampir NG offers a rich set of
scalable remote visualization options for arbitrary program phases. In the fol-
lowing, the sPPM benchmark code [15] will serve as example application demon-
strating combined openmp and mpi capabilities of VampirNG. The code has

5



been equipped with openmp directives and was executed on 128 mpi tasks with
eight openmp threads each. The test platform was a Power4-based, 30-way SMP
cluster system. Altogether, 1024 independent event data streams had to be han-
dled.

4.1 Custom Profiles

Vampir NG supports a grouping concept for flat profile charts à la gprof. The
summarized information reflects either the entire program run or a time interval
specified by the user. The information provided is not limited to functions. De-
pending on the application, openmp and mpi related information like message
sizes, counter values etc. can be summarized additionally.

Fig. 3. Summary profile of a sPPM run on 1024 processes/threads.

Figure 3 depicts a summary profile of the full program run which lasted 1:15
minutes. Exclusive timing information is shown as percentages relative to the
overall accumulated run-time. The kojak openmp instrumentation creates the
following six default sub-groups of program states:

1. USR: Code regions which are not parallelized with openmp

2. OMP: openmp parallel execution
3. OMP-SYNC: openmp implicit and explicit barrier synchronization
4. PREG: openmp thread startup and termination
5. MPI: mpi communication and synchronization
6. IDLE: Idle openmp threads

Quite obviously, the application spends too much time (20%) doing nothing
(IDLE ). Its cause is unknown. We will come to this phenomenon in the next
section. 75% percent of the runtime is spent in openmp parallel code. The re-
maining five percent are spent in mpi and openmp synchronization code.

The same display can be used to further analyze the six sub-groups of pro-
gram states. Figures 4(a) to 4(d) depict summary profiles for the states in OMP,
OMP-SYNC, and MPI respectively. From Figure 4(a) we can read that our

6



(a) openmp Loop Profile (b) openmp Synchronization
Profile

(c) mpi Profile (d) mpi Invocation Profile

Fig. 4. Adaptive VampirNG Profiles

application has twelve major openmp do-loops from which six contribute with
more than 8.5 seconds each (per process). Only these loops should be consid-
ered for further optimization. In Figure 4(b), openmp synchronization overhead
is depicted. The first two barrier constructs are interesting candidates to be
analyzed in further detail. Their active phases during run-time can be located
with a navigator display similar to traditional timelines. Depending on user de-
fined queries, the “navigator” (not depicted) highlights selected states only. Fig-
ure 4(c) provides information on how mpi is used in this code. Synchronization is
the dominant part. Last not least, the number of mpi function calls as depicted
in Figure 4(d) tells us that approximately 100,000 messages are exchanged al-
together. Considering the 128 mpi processes involved and the short amount of
time spent in mpi, this information is more interesting for code debugging than
for optimization.

4.2 Hierarchical Timelines

Sometimes, adaptive profiles are not sufficient for understanding an application’s
inner working. An event timeline as depicted in Figure 5 is very useful to obtain
a better understanding. The event timeline visualizes the behavior of individual

7



processes over time. Here, the horizontal axis reflects time, while the vertical
axis identifies the process. Colors are used to represent the already mentioned
sub-groups of program states. Apparently, navigating on the data of 1024 in-
dependent processing entities is a rather complex task. Therefore, an overview

Fig. 5. Event timeline of a sPPM run on 128x8 processes/threads.

of the full set of processes and threads is depicted on the right hand side. The
rectangular marking identifies the selection of the trace that is depicted in full
detail on the left hand side (process 48 to process 64).

Having access to this kind of application overview, it quickly becomes evident
where the 20% idle-time in the profile comes from. Due to the large number of
processes and openmp threads, the execution platform needs a substantial time
(approximately 17 seconds) to spawn the full application. Having a closer look
at the startup phase (light/beige section) reveals that the spawning of the mpi

processes (MPI Init) is varying a lot in time. Apparently, MPI Init has to wait
until all processes are up and running before it lets the processes start their
individual tasks.

We will now take a closer look at the locations where openmp and mpi syn-
chronization takes place. Figure 6 illustrates a section which includes the barrier
that has been mentioned earlier in Section 4.1. The program highlights the se-
lected openmp barrier with bold dotted lines. From this kind of display we can
learn many things, one of which is that mpi and openmp synchronization have
to work in close cooperation in mixed codes. This particular example shows how
mpi collective communication is carried out on the master threads only (which
is a common mpi constraint) while openmp barriers guarantee that the thread
parallelism is not continuing to process inconsistent data. Figure 7 illustrates
the differences between an mpi communication process and a respective openmp

thread by means of a single-task-timeline showing the detailed function call-path.

8



Fig. 6. Synchronization of sPPM run on 128x8 processes/threads.

(a) Single Timeline – mpi Process (b) Single Timeline – openmp

Thread

Fig. 7. Hybrid mpi/openmp Synchronization

5 Conclusion

Data distribution and synchronization in large-scale openmp and hybrid mpi/
openmp applications can lead to critical performance bottlenecks. Profiling alone
can hardly help to identify the real cause of problems that fall into this category.
Event-based approaches on the other hand are known to generate large volumes
of data. In this difficult situation, automatic event-based performance analysis
has the potential to quickly detect most known synchronization problems. When
dealing with uncommon features or for detailed examination of already detected
problems, manual analysis has certain advantages due to human intuition and
pattern recognition capabilities. Therefore, an incremental approach with pro-
filing and automatic techniques forming a solid starting point and event-based
analysis being used for more detailed questions is advisable. PAPI [10] counter
support in both tools completes the detailed performance examination. Finally,
our work has shown that both approaches can be effectively combined in a
portable way.

9



References

1. Zaki, O., Lusk, E., Gropp, W., Swider, D.: Toward scalable performance visu-
alization with Jumpshot. High Performance Computing Applications 13 (1999)
277–288

2. Rose, L.D., Zhang, Y., Reed, D.A.: Svpablo: A multi-language performance anal-
ysis system. In: 10th International Conference on Computer Performance Evalua-
tion - Modelling Techniques and Tools - Performance Tools ’98, Palma de Mallorca,
Spain (1998) 352–355

3. de Kergommeaux, J.C., de Oliveira Stein, B., Bernard, P.: Pajè, an interactive visu-
alization tool for tuning multi-threaded parallel applications. Parallel Computing
26 (2000) 1253–1274

4. European Center for Parallelism of Barcelona (CEPBA): Paraver - Par-
allel Program Visualization and Analysis Tool - Reference Manual. (2000)
http://www.cepba.upc.es/paraver.

5. Intel: Intel thread checker (2005)
http://www.intel.com/software/products/threading/tcwin.

6. Mohr, B., Mallony, A., Hoppe, H.C., Schlimbach, F., Haab, G., Shah, S.: A Perfor-
mance Monitoring Interface for OpenMP. In: Proceedings of the fourth European
Workshop on OpenMP - EWOMP’02. (September 2002)

7. Mohr, B., Malony, A., Shende, S., Wolf, F.: Design and Prototype of a Performance
Tool Interface for OpenMP. The Journal of Supercomputing 23 (2002) 105–128

8. Bell, R., Malony, A.D., Shende, S.: A Portable, Extensible, and Scalable Tool for
Parallel Performance Profile Analysis. In: Proceedings of Euro-Par 2003. (2003)
17–26

9. Lindlan, K.A., Cuny, J., Malony, A.D., Shende, S., Mohr, B., Rivenburgh, R., Ras-
mussen, C.: A Tool Framework for Static and Dynamic Analysis of Object-Oriented
Software with Templates. In: Proceedings of Supercomputing 2000. (November
2000)

10. Browne, S., Dongarra, J., Garner, N., Ho, G., Mucci, P.: A Portable Programming
Interface for Performance Evaluation on Modern Processors. The International
Journal of High Performance Computing Applications 14 (2000) 189–204

11. Wolf, F., Mohr, B.: Automatic Performance Analysis of Hybrid MPI/OpenMP
Applications. Journal of Systems Architecture, Special Issue ’Evolutions in parallel
distributed and network-based processing’ 49 (2003) 421–439

12. Nagel, W., Arnold, A., Weber, M., Hoppe, H.C., Solchenbach, K.: Vampir: Visu-
alization and Analysis of MPI Resources. Supercomputer 12 (1996) 69–80

13. Brunst, H., Nagel, W.E., Malony, A.D.: A distributed performance analysis ar-
chitecture for clusters. In: IEEE International Conference on Cluster Computing,
Cluster 2003, Hong Kong, China, IEEE Computer Society (2003) 73–81

14. Fahringer, T., Gerndt, M., Riley, G., Träff, J.L.: Formalizing OpenMP performance
properties with ASL. Lecture Notes in Computer Science 1940 (2000) 428

15. Lawrence Livermode National Laboratory: the sPPM Benchmark Code. (2002)
http://www.llnl.gov/asci/purple/benchmarks/limited/sppm/.

10


