
On the Interaction of

Tiling and Automatic Parallelization ⋆

Zhelong Pan Brian Armstrong Hansang Bae Rudolf Eigenmann

Purdue University, School of ECE, West Lafayette, IN, 47907
{ zpan, barmstro, baeh, eigenman }@purdue.edu

Abstract. Iteration space tiling is a well-explored programming and
compiler technique to enhance program locality. Its performance benefit
appears obvious, as the ratio of processor versus memory speed increases
continuously. In an effort to include a tiling pass into an advanced par-
allelizing compiler, we have found that the interaction of tiling and par-
allelization raises unexplored issues. Applying existing, sequential tiling
techniques, followed by parallelization, leads to performance degradation
in many programs. Applying tiling after parallelization without consid-
ering parallel execution semantics may lead to incorrect programs. Doing
so conservatively, also introduces overhead in some of the measured pro-
grams. In this paper, we present an algorithm that applies tiling in con-
cert with parallelization. The algorithm avoids the above negative effects.
Our paper also presents the first comprehensive evaluation of tiling tech-
niques on compiler-parallelized programs. Our tiling algorithm improves
the SPEC CPU95 floating-point programs by up to 21% over non-tiled
versions (4.9% on average) and the SPEC CPU2000 Fortran 77 programs
up to 49% (11% on average). Notably, in about half of the benchmarks,
tiling does not have a significant effect.

1 Introduction and Motivation

With processor speeds increasing faster than memory speeds, many compiler
techniques have been developed to improve cache performance. Among them,
iteration space tiling is a well known technique, used to reduce capacity
misses [18, 20]. Tiling combines stripmining and loop-permutation to partition
a loop’s iteration space into smaller chunks, so as to help the data stay in the
cache until it is reused. Several contributions have improved the initial tiling
algorithms, by tiling imperfectly-nested loops [1, 16], carefully selecting the tile
size, and avoiding conflict misses by copying and/or padding [7, 8, 11, 15, 17].

Enhancing locality is an important optimization technique to gain better
performance, not only on a single processor, but also on a parallel machine.
Tiling has been applied in parallelizing compilers, based on the sequential tiling
algorithms [3, 9]. It has also been used in distributed memory machines [14].
The present paper was motivated by an effort to include a tiling technique into

⋆ This work was supported in part by the National Science Foundation under Grants
0103582-EIA, and 0429535-CCF.

our Polaris parallelizing compiler [5, 13] for shared memory machines. (Polaris
translates sequential Fortran 77 programs into parallel OpenMP form. The trans-
formed parallel program will be compiled by the OpenMP backend compiler.) We
have found existing tiling techniques to be insufficient for this purpose, as they
are defined on a sequential program. Although a performance memory model has
been presented that trades off parallelism against locality [9], it has not been dis-
cussed in the context of tiling. Also, a tiling technique for parallel programs was
introduced in [3], however the interaction of the technique with other compiler
passes has not been considered.

Without considering the interaction of tiling and parallelization, two ap-
proaches are open: pre-parallelization tiling and post-parallelization tiling. The
pre-parallelization tiling algorithm performs tiling on the sequential program, fol-
lowed by the parallelization pass. We have measured that this approach causes
substantial performance degradation, primarily due to load imbalance of small
loops. The post-parallelization tiling algorithm performs tiling after paralleliza-
tion. To avoid incorrect results, this transformation needs to be conservative, also
causing overheads. In Section 5, we will use these two tiling options as reference
points and discuss their overheads in more detail.

The goal of this paper is to present an algorithm for tiling in concert with
parallelization. First, the algorithm selects the candidate loop nests for tiling,
based on data dependence and reuse information. Next, it trades off parallelism
versus locality and performs the actual tiling transformation through loop strip-
mining and permutation. It factors parallelism information into tile sizes and
the load balancing scheme. It also interacts with other parallelization passes by
properly updating the list of private and reduction variable attributes.

Our algorithm outperforms both pre-parallelization and post-parallelization
tiling. It improves the SPEC CPU95 floating point benchmarks by up to 21%
(4.9% on average) over the parallel codes without tiling. The SPEC CPU 2000
Fortran 77 benchmarks are improved by up to 49% (11% on average). Our mea-
surements confirm that tiling can have a significant performance impact on indi-
vidual programs. However, they also show that, on today’s architectures, about
half of the programs benefit insignificantly.

The specific contributions of this paper are as follows:

1. We show how tiling affects the parallelism attributes of a loop nest. We prove
these properties from data dependence information.

2. We introduce a new parallelism-aware tiling algorithm and show that it
performs significantly better than existing techniques.

3. We discuss tiling-related issues in a parallelizing compiler: load balancing,
tile size, and the trade-off between parallelism and locality.

4. We compare the performance of our algorithm with best alternatives. We
discuss the measurements relative to an upper limit that tiling may achieve.

In the next section, we review some basic concepts of tiling, data reuse anal-
ysis, and data dependence directions. Section 3 analyzes the parallelism of tiled
loops. Section 4 presents the algorithm for tiling in concert with parallelism and

discusses related issues arising in a parallelizing compiler. Section 5 shows ex-
perimental results using the SPEC benchmarks and compares our new tiling
algorithm to the pre-parallelization and post-parallelization tiling algorithms.

2 Background

2.1 Tiling Algorithm

Tiling techniques combine stripmining and loop permutation in order to reduce
the volume of data accessed between two references to the same array element.
Thus, it increases the chances that cached data can be reused. It has often been
shown that tiling can significantly improve the performance of matrix multipli-
cation and related linear algebra algorithms [8, 9, 10].

(a) Matrix Multiply (b) Tiled Matrix Multiply
DO K2 = 1, M, B

DO J2 = 1, M, B
DO I = 1, M DO I = 1, M

DO K = 1, M DO K1 = K2, MIN(K2+B-1,M)
DO J = 1, M DO J1 = J2, MIN(J2+B-1,M)

Z(J,I) = Z(J,I) + X(K,I) * Y(J,K) Z(J1,I) = Z(J1,I) + X(K1,I) * Y(J1,K1)

Fig. 1. Tiling of a matrix multiplication code

Figure 1 shows a simple example of the original and the tiled versions of a
matrix multiplication code. Loop K in the original version is stripmined into two
loops, K1 and K2. Loop K1 in the tiled version iterates through a strip of B;
we call it the in-strip loop. Loop K2 in the tiled version iterates across different
strips; we call this the cross-strip loop. B is called the tile size.

2.2 Data Reuse Analysis

Data reuse analysis [10] identifies program data that is accessed repeatedly, and
it quantifies the amount of data touched between consecutive accesses. To im-
prove data locality, one attempts to permute loop nests so as to place the loop
that carries the most reuse in the innermost position. If there are multiple ac-
cesses to the same memory location, we say that there is temporal reuse. If there
are multiple accesses to a nearby memory location that share the same cache
line, we say that there is spatial reuse. Both types of reuse may result from a
single array reference, which we call self reuse, or from multiple references, which
we call group reuse [12, 18].

2.3 Direction Vectors

In this paper, we use data dependence direction vectors to determine parallelism
and the legality of a loop permutation. The direction “<” denotes a forward
cross-iteration dependence. The direction “>” denotes a backward cross-iteration
dependence. We refer to [2, 4, 22, 21] for a thorough description of direction
vectors. We make use of the following lemmas, given in these papers.

Lemma 1 Reordering: Permuting the loops of a nest reorders the elements of
the direction vector in the same way.

Lemma 2 Permutability: A loop permutation is legal as long as it does not
produce an illegal direction vector. In a legal direction vector, the leftmost non-
equal direction must be “<” (i.e., it cannot be “>”).

Lemma 3 Parallelism: Given a direction vector, its leftmost “<” direction
makes the corresponding loop serial. Furthermore, serializing this loop covers the
given dependence on all inner loops. That is, w.r.t. this dependence, all inner
loops are parallel.

Lemma 4 After stripmining the loop L into (L′, L′′), its direction vector
changes from [d] to [d′, d′′], as follows: [=] → [=,=]; [<] → [=, <] or [<, ∗];
[>] → [=, >] or [>, ∗]. That is, either the cross-strip direction is “=” and the
in-strip loop takes on the direction of the original loop, or the cross-strip loop
takes on the original direction (“<” or “>”) and the in-strip direction becomes
unknown (“*”).

Direction vectors of the original (pre-tiling) loops can be used to determine
the direction vectors of the tiled loops [23]. Lemma 1 and 4 aid in deriving those
new direction vectors. Lemma 2 aids in finding all legally tiled versions of a loop
nest. Lemma 3 decides parallelism of the tiled loops.

3 Parallelism of Tiled Loops

Theorem 1 After tiling, the in-strip loops have the same parallelism as the
original ones. The cross-strip loop L′

i
is serial, if the corresponding original loop

Li is serial. But the cross-strip loop may become serial, even if the corresponding
original is parallel.

(a) Original loop (b) Tiled loop
DO J1 = 1, M, B (serial)

DO I = 1, N (serial) DO I = 1, N (serial)
DO J = 1, M (parallel) DO J = J1, MIN(J1+B-1,M) (parallel)

A(J,I) = A(J+1,I+1) A(J,I) = A(J+1,I+1)

Fig. 2. Reduced parallelism as a result of tiling.

This theorem can be strictly proved based on the previous lemmas. In this
paper, limited by space, we only explain the rationales. The dependence inside
one tile is essentially the same as the dependence in the pre-tiling loops. So,
parallelism of the in-strip loops is not changed. According to Lemma 4, tiling
introduces new dependence across the tiles. So, a cross-strip loop may become
serial. Figure 2 shows an example. In the original loop, loop I is serial and loop
J is parallel. After tiling, the cross-strip loop J1 is serial, loop I is serial, and
loop J is parallel.

Theorem 1 shows that a parallelizing compiler cannot simply apply tiling
after parallelization. The compiler needs to analyze the parallelism of the cross-
strip loops, unless it only chooses to parallelize the in-strip loops, whose par-
allelism does not change. The following section develops the tiling algorithm
considering the interaction of tiling and parallelization.

4 Parallelism-aware Tiling

4.1 Algorithm

Our tiling in concert with parallelization algorithm uses the direction vectors
of the original loop nest to determine the parallelism of the tiled loop nest, as
discussed in Section 2 and Section 3. It then trades off parallelism and locality
and determines a balanced tile size. Figure 3 shows the pseudo code.

Subroutine ParallelTiling(LoopNest L)
1 P = the number of processors;
2 DV s = the set of all direction vectors;
3 Perform data reuse analysis;
4 For each possible tiled version V of L

5 Decide parallelism of V based on the DV s;
6 C = the cost of V based on its parallelism and reuse information;
7 X = the tiled version with the least cost;
8 T = raw tile size computed by LRW [10], considering

loop parallelism and cache configuration;
9 S = BalancedTileSize(X,T ,P);
10 Substitute the tile size S into the tiled version X;
11 Update reduction/private variable attributes;
12 Generate two versions if iteration number unknown;

//L is called when not enough iterations; Otherwise, X is called.

Fig. 3. Parallelism-aware tiling algorithm

Our algorithm considers all legally tiled loop nest versions and selects the
one with the least cost. It is worth noting that the order of the cross-strip
loops may be different from the order of the in-strip loops. Enumerating all
possible tiled versions is feasible, because most loops are nested with two or
three levels. Step 5 follows Section 2 and Section 3. Step 6 uses a simple model
that assumes that placing a parallel loop in an outer position is preferable over
increased reuse, which will be discussed in Section 4.2. (This model suffices for
our machine environment; more advanced schemes can be used without change of
the algorithm). Steps 8 and 9 follow Sections 4.3 and 4.4, respectively. Step 12 is
important for reducing potential tiling overheads. If the number of loop iterations
is unknown at compile time, a two-version loop is created that selects between
the tiled and non-tiled variants at runtime.

Our compiler pass also deals with imperfectly nested loops. It transforms
such loops into perfect nests through loop fusion, loop distribution and code

sinking [19]. Inner loops with fixed small number of iterations are unrolled. Then,
tiling is applied to the perfectly nested loops. We have verified that this approach
generates comparable results to the methods proposed in [1, 16] for the SPEC
CPU benchmarks, except in TOMCATV and SWIM. (In SWIM, the higher
performance was achieved through manual source modifications; TOMCATV is
an obsolete benchmark.)

4.2 Trading off Parallelism and Locality

Locality enhancement and parallelization may have conflicting performance
goals. Per Theorem 1, although the parallelism of the in-strip loops is the same
as that of the original loops, the parallelism of the cross-strip loops can be dif-
ferent. For example, in Figure 2, loop I is serial in both versions, while loop J is
parallel in both versions. However, after tiling, the cross-strip loop, J1, becomes
serial. Thus, the tiled nest invokes the parallel loop more times than the original
loop nest, causing higher fork-join overhead.

Table 1. Effect of tiling on fork-join overhead

Original parallelism Parallelism after tiling Fork-join overhead

[S, P] [S, S, P] increased
[S, P] [P, S, P] decreased
[P, S] [S, P, S] increased
[S, S] [S, S, S] not changed
[P, P] [P, P, P] not changed

Five different scenarios may occur after tiling a doubly nested loop, depend-
ing on the parallelism. We list these cases in Table 1. S indicates that the corre-
sponding loop is serial; P indicates the loop is parallel. (If there are more than
two loops, the change in fork-join overhead can be determined by similar anal-
ysis.) For example, in the first and second rows of Table 1, the original outer
loop is serial and the original inner loop is parallel. Per Section 4, after tiling,
the cross-strip loop is serial (in Row 1) or parallel (in Row 2), which results in
an increase or decrease of fork-join overhead.

In summary, the parallelism of the cross-strip loops determines if tiling will
increase or reduce fork-join overhead. Thus, tiling a parallel program can result in
either higher or reduced parallel loop execution cost. In an advanced performance
model, both the fork-join overhead and the benefit of increased locality need to
be considered.

4.3 Tile Size Selection

The tile size is a critical parameter for tiling. We use the LRW algorithm [10]
to compute the raw tile size, which fits in cache. In addition, for distributed
caches, if the parallel loop is an in-strip loop, a tile needs to fit in multiple
caches; for a shared cache, if the parallel loop is a cross-strip loop, the cache
needs to hold multiple tiles. So, the computation of the raw tile size depends

on the cache configurations and parallelism of the loops. This computed raw
tile size is tuned further to balance the loads among processors, which will be
described in Section 4.4.

4.4 Load Balancing

If the cross-strip loop is executed in parallel, load balancing can become an
important issue. Tiling splits the number of iterations of the parallel loop into
chunks. If the split is uneven, load imbalance results. This effect is more pro-
nounced for programs or program sections that operate on small data sets rela-
tive to the available cache size. Hence, for a given data size, this issue tends to
increase with newer generations of processors.

For example, in Figure 4, all loops are parallel and the tile size is 80. Suppose
we run the program on a four processor machine. Before tiling, loop I has 512
iterations and each processor executes 128 iterations. But after tiling, the cross-
strip loop J1 has 512/80 + 1 = 7 iterations, which cannot be evenly divided
among the processors, causing load imbalance.

(a) Before tiling (balanced) (b) After tiling (not balanced)
DO J1 = 1, 512, 80

DO I = 1, 512 DO I = 1, 512
DO J = 1, 512 DO J = 1, MIN(J1+79,512)

... ...

Fig. 4. Load imbalance after tiling

Tiling sequential loops does not require balanced strip-mining. The tile size
is obtained by computing the number of memory references that fit in the cache.
However, the parallelizing compiler needs to tune the tile size, so that each
processor will execute nearly the same number of iterations. For the previous
example, the compiler can set the tile size to be 64. Then, after tiling the cross-
strip loop J1 has 512/64 = 8 iterations. Each processor will get 2 iterations with
the same load. A more general rule is to find the largest size that is less than
the original tile size and that creates a balanced load:

Suppose that the un-tuned, raw tile size is T , the number of iterations is I,
and the number of processors is P . We choose a tile size S such that S ∗ P is
divisible by I and S is as close to T as possible, based on the following formula.

S = I
⌈I/(P∗T)⌉∗P

This formula applies to parallel cross-strip loops (cases 2, 3, and 5 in Table 1).
If the in-strip loop is parallel (case 1), it suffices to make the tile size a multiple
of the number of processors.

5 Experiments

5.1 Reference Points: Tiling Independent of Parallelization

In order to verify the effectiveness of our tiling algorithm, we compare it with two
algorithms that apply tiling independent of parallelization: pre-parallelization

tiling and post-parallelization tiling. To our knowledge, they represent the best
that can be realized with tiling techniques for sequential programs, as proposed
in related work.

Pre-parallelization tiling determines the tiled loop shape and tile size before
the parallelization passes. In most cases, the chosen parallel loop is a cross-strip
loop. Load balancing, as discussed in Section 4.4 is not applied. Sequential tiling
semantics is fully valid in this case, as parallelization has not yet been applied.

Post-parallelization tiling would generate incorrect code, if the tiling algo-
rithm simply propagated parallel loop attributes from an original loop to its
stripmined pair. So, conservatively, the cross-strip loop is always serialized. To
further increase the fairness of our comparison, we have added an optimization
to reduce fork-join overheads, when the scheduled parallel loop does not carry
cross-processor dependences. In that case, this optimization moves the parallel
region to the outer loops and reduces the number of barrier synchronizations by
using the OpenMP “nowait” clause on the parallel loop.

5.2 Experimental Environment

We implemented the tiling algorithm presented in Section 4 in the Polaris [6, 13]
parallelizing compiler. The experiments were done on an Ultra SPARC II ma-
chine with four 250 MHZ processors. Each processor is equipped with a 16K
direct-mapped L1 cache and a 1M direct-mapped L2 cache. Both caches are
distributed. We measured the performance of all compiler-parallelized SPEC
CPU95 floating point benchmarks with and without tiling. In addition, in or-
der to evaluate how increasing data sets impacts the performance of tiling, we
measured all of the six SPEC CPU2000 Fortran 77 benchmarks.

5.3 Experimental Results

The baseline of our experimentation is parallelization without tiling. In Figure 5
and Figure 6, the first two bars for every benchmark show the performance of
the reference points. The third bar shows the performance of our new algorithm
for tiling in concert with parallelization.

In most benchmarks of the SPEC CPU95 suite, pre-parallelization tiling does
not improve performance over parallelization without tiling. Two main effects
degrade the performance of APSI, HYDRO2D, MGRID, SWIM and TOMCATV
significantly. First, the data size is small relative to the available cache size, so
that the important loops contain very few tiles, causing load imbalance. Second,
since no information about parallel loops is known, the tiling algorithm does
not permute the most beneficial loops to outermost positions. In the SPEC
CPU2000 codes, the data size is much larger, reducing the load imbalance effect.
For the measured SPEC CPU2000 benchmarks, APSI, APPLU and SWIM show
improvements over parallelization alone. SWIM is improved by 49%, most of
which is due to the fact that tiling yields many stride-one access patterns.

In the SPEC CPU95 suite, post-parallelization tiling also degrades the per-
formance over parallelization without tiling for APSI, HYDRO2D, MGRID and

0

0.2

0.4

0.6

0.8

1

1.2

1.4

applu apsi fpppp hydro2d mgrid su2cor swim tomcatv turb3d wave5 GeoMean

P
e
rf
o
rm
a
n
c
e
 r
e
la
ti
v
e
 t
o
 n
o
n
-t
il
e
d
 p
a
ra
ll
e
l
v
e
rs
io
n

pre-parallelization tiling post-parallelization tiling tiling in concert with parallelization

Fig. 5. Performance of tiling relative to non-tiled parallel codes for SPEC95

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

applu apsi mgrid swim sixtrack wupwise GeoMeanP
e
rf
o
rm
a
n
c
e
 r
e
la
ti
v
e
 t
o
 n
o
n
-t
il
e
d
 p
a
ra
ll
e
l
v
e
rs
io
n

pre-parallelization tiling post-parallelization tiling tiling in concert with parallelization

Fig. 6. Performance of tiling relative to non-tiled parallel codes for selected SPEC2000
benchmarks

SWIM. First, post-parallelization tiling may cause load imbalance, if it paral-
lelizes the in-strip loop and the tile size is small. Second, in post-parallelization
tiling, the chosen parallel loop tends to have finer granularity than in tiling
in concert with parallelization. Although the synchronization optimization re-
duces the fork-join overhead, some of this overhead remains. Another obser-
vation is that, in general, post-parallelization tiling performs better than pre-
parallelization tiling for SPEC CPU95 benchmarks, but not for SPEC CPU2000.
The reason is that a large data size reduces load imbalance for pre-parallelization
tiling, but not for post-parallelization tiling.

Our experiments show that tiling in concert with parallelization performs sig-
nificantly better than tiling independent of parallelization. Our new algorithm

never degrades performance. Five out of the ten benchmarks in the SPEC CPU95
suite show improvements over parallelization alone. The largest improvement is
21% in TOMCATV (TOMCATV is a small kernel benchmark, which is now
considered obsolete). Tiling can add some control overhead, offsetting parallel
performance. We have found this to be the reason for very minor performance
degradation to APSI and HYDRO2D. In FPPPP, post-parallelization tiling per-
forms slightly better than our algorithm. It is a rare case where the cost of
computing a balanced tile size at runtime is noticeable. Most SPEC CPU2000
benchmarks show improvements. SWIM is improved by 49%. It is important
to note, that although matrix multiply (a code frequently used to demonstrate
tiling) is very important in WUPWISE, all matrices are small and do not benefit
from tiling.

As expected, our measurements show only small improvements on the SPEC
CPU95 codes, whose data sets mostly fit in cache. Tiling improves more signifi-
cantly the SPEC CPU2000 codes, which have larger data sets and, consequently,
increased cache misses in the original programs.

5.4 On Performance Bounds for Tiling

The fact that half of our program suite does not benefit from tiling raises the
question of how much better a further improved algorithm could perform. In
order to find an upper bound on the performance achievable by tiling, we mea-
sured the percentage of tilable loops in the SPEC CPU95 benchmarks based on
reuse analysis. A tilable loop nest must satisfy two conditions. First, at least
two loops in the nest carry reuses, otherwise loop interchanging would suffice.
Second, it does not contain subroutine calls or I/O operations. The last column
in Table 2 shows the execution time percentage of the loop nests satisfying both
conditions. This percentage gives us an upper bound on tilable loops.

For all benchmarks other than HYDRO2D, the result in Table 2 is consistent
with that in Figure 5. The benchmarks gaining significant performance from our
tiling algorithm spend a large percentage of execution time in tilable loop nests,
and vice versa. In HYDRO2D, although 53.7% of the execution time is spent in

Table 2. Percentage of tilable loops based on reuse analysis. Each column shows,
respectively, the numbers of loops, loops carrying reuses, loop nests with at least two
loops carrying reuses, and those loop nests without subroutine calls or I/O operations.
The data in the parentheses are the execution time percentage of the loop nests with
more than two loops carrying reuses and without subroutine calls.

Benchmark Total Reuse Nested w/o Call

APPLU 149 125 55 54 (97.60%)
APSI 388 310 111 59 (19.50%)
FPPPP 49 37 15 8 (5.80%)
HYDRO2D 170 117 21 21 (53.70%)
MGRID 38 24 8 8 (86.40%)
SU2COR 208 177 37 22 (14.90%)
SWIM 24 15 3 3 (60.10%)
TOMCATV 16 14 5 5 (95.90%)
TURB3D 64 43 12 11 (22.20%)
WAVE5 362 274 59 57 (19.70%)

tilable loops, each loop nest only refers to a small amount of memory, which can
fit into cache. Therefore, tiling does not reduce cache misses.

Our results also show that, while tiling can be an important locality en-
hancement technique for individual programs, especially for stencil operations,
its performance benefit is not as broad as commonly assumed. Tiling does not
gain significant performance in half of the benchmarks. The major reason is
limited data reuse that is amenable to tiling.

6 Conclusions

We have presented a new tiling algorithm that works in concert with other
parallelization passes. We have shown that applying existing tiling techniques,
designed for sequential programs before or after parallelization, would lead to
significant performance degradation or incorrect programs. Our algorithm avoids
these negative effects, hence it represents new technology, relevant to any paral-
lelizing compiler.

Furthermore, in evaluating tiling techniques comprehensively, we have found
that the benefit is less than commonly assumed. Tiling – along with other locality
enhancement techniques – is believed to be very important, as the memory-to-
processor speed ratio in new computer architectures keeps decreasing. However,
this technique has often been demonstrated on simple linear algebra kernels. Al-
though our measurements confirm improvements on stencil computations, tiling
has only limited effect on other programs, which is due to limited data reuse,
amenable to tiling. Increasing cache sizes and increasing data sets are two op-
posite trends that will impact the performance of tiling techniques on future
computer systems.

References

1. Nawaaz Ahmed, Nikolay Mateev, and Keshav Pingali. Tiling imperfectly-nested
loop nests. In Proceedings of the 2000 ACM/IEEE conference on Supercomputing
(CDROM), page 31, 2000.

2. Randy Allen and Ken Kennedy. Optimizing compilers for modern architectures,
chapter Dependence: Theory and Practice, pages 45–55. Morgan Kaufman Pub-
lishers, 2002.

3. Jennifer M. Anderson and Monica S. Lam. Global optimizations for parallelism
and locality on scalable parallel machines. In Proceedings of the conference on
Programming language design and implementation, pages 112–125, 1993.

4. Utpal Banerjee, Rudolf Eigenmann, Alexandru Nicolau, and David A. Padua. Au-
tomatic program parallelization. Proceedings of the IEEE, 81(2):211–243, 1993.

5. W. Blume, R. Doallo, R. Eigenmann, J. Grout, J. Hoeflinger, T. Lawrence, J. Lee,
D. Padua, Y. Paek, B. Pottenger, L. Rauchwerger, and P. Tu. Advanced program
restructuring for high-performance computers with polaris, 1996.

6. W. Blume, R. Doallo, R. Eigenmann, J. Grout, J. Hoeflinger, T. Lawrence, J. Lee,
D. Padua, Y. Paek, B. Pottenger, L. Rauchwerger, and P. Tu. Parallel program-
ming with Polaris. IEEE Computer, 29(12):78–82, December 1996.

7. Jacqueline Chame and Sungdo Moon. A tile selection algorithm for data locality
and cache interference. In Proceedings of the 13th international conference on
Supercomputing, pages 492–499, 1999.

8. Stephanie Coleman and Kathryn S. McKinley. Tile size selection using cache or-
ganization and data layout. In Proceedings of the conference on Programming
language design and implementation, pages 279–290, 1995.

9. Ken Kennedy and Kathryn S. McKinley. Optimizing for parallelism and data
locality. In Proceedings of the 6th international conference on Supercomputing,
pages 323–334, 1992.

10. Monica D. Lam, Edward E. Rothberg, and Michael E. Wolf. The cache perfor-
mance and optimizations of blocked algorithms. In Proceedings of the fourth in-
ternational conference on Architectural support for programming languages and
operating systems, pages 63–74, 1991.

11. Zhiyuan Li. Optimal skewed tiling for cache locality enhancement. In 17th Inter-
national Parallel and Distributed Processing Symposium, 2003.

12. Kathryn S. McKinley, Steve Carr, and Chau-Wen Tseng. Improving data locality
with loop transformations. ACM Transactions on Programming Languages and
Systems, 18(4):424–453, July 1996.

13. Seung Jai Min, Seon Wook Kim, Michael Voss, Sang Ik Lee, and Rudolf Eigen-
mann. Portable compilers for OpenMP. In Lecture Notes in Computer Science,
2104, pages 11–19, Jul 2001.

14. J. Ramanujam and P. Sadayappan. Tiling multidimensional iteration spaces for
multicomputers. Journal of Parallel and Distributed Computing, 16(2):108–230,
1992.

15. Gabriel Rivera and Chau-Wen Tseng. A comparison of compiler tiling algorithms.
In Proceedings of the Eighth International Conference on Compiler Construction,
1999.

16. Yonghong Song and Zhiyuan Li. A compiler framework for tiling imperfectly-
nested loops. In Languages and Compilers for Parallel Computing, pages 185–200,
1999.

17. Yonghong Song and Zhiyuan Li. New tiling techniques to improve cache temporal
locality. In Proceedings of the ACM SIGPLAN ’99 conference on Programming
language design and implementation, pages 215–228, 1999.

18. Michael E. Wolf and Monica S. Lam. A data locality optimizing algorithm. In Pro-
ceedings of the conference on Programming language design and implementation,
pages 30–44, 1991.

19. Michael E. Wolf, Dror E. Maydan, and Ding-Kai Chen. Combining loop trans-
formations considering caches and scheduling. In Proceedings of the 29th annual
ACM/IEEE international symposium on Microarchitecture, pages 274–286, 1996.

20. M. Wolfe. More iteration space tiling. In Proceedings of the 1989 ACM/IEEE
conference on Supercomputing, pages 655–664, 1989.

21. M. J. Wolfe. Optimizing supercompilers for supercomputers. PhD thesis, 1982.
22. Michael Wolfe and Utpal Banerjee. Data dependence and its application to parallel

processing. Int. J. Parallel Program., 16(2):137–178, 1987.
23. Jingling Xue. On tiling as a loop transformation. Parallel Processing Letters,

7(4):409–424, 1997.

