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Abstract. Cluster systems interconnected via fast interconnection net-
works have been successfully applied to various research fields for parallel
execution of large applications. Next to MPI, the conventional program-
ming model, OpenMP is increasingly used for parallelizing sequential
codes. Due to its easy programming interface and similar semantics with
traditional programming languages, OpenMP is especially appropriate
for non-professional users.

For exploiting scalable parallel computation, we have established a PC
cluster using InfiniBand, a high-performance, de facto standard intercon-
nection technology. In order to support the users with a simple parallel
programming model, we have implemented an OpenMP execution envi-
ronment on top of this cluster. As a global memory abstraction is needed
for shared data, we first built a software distributed shared memory im-
plementing a kind of Home-based Lazy Release Consistency protocol.
We then modified an existing OpenMP source-to-source compiler for
mapping shared data on this DSM and for handling issues with respect
to process/thread activities and task distribution. Experimental results
based on a set of different OpenMP applications show a speedup of up
to 5.22 on systems with 6 processor nodes.

1 Motivation

Clusters are regarded as adequate platforms for exploring high performance com-
puting. In contrast to tightly-coupled multiprocessor systems, like SMPs, clusters
have the advantage of scalability and cost-effectiveness. Therefore, they are gen-
erally deployed in a variety of both research and commercial areas for performing
parallel computation.

As a consequence, we have also established a cluster system using mod-
ern processors. More specifically, this cluster is connected via InfiniBand [7],
a high-performance interconnect technology. Besides its low latency and high



bandwidth, InfiniBand supports Remote Data Memory Access (RDMA), allow-
ing access to remote memory locations via the network without any involvement
of the receiver. This feature allows InfiniBand to achieve higher bandwidth for
inter-node communication, in comparison with other interconnect technologies
such as Giga-Ethernet and Myrinet.

As the first step towards cluster computing, we have built an MPI environ-
ment on top of this cluster. However, we note that increasingly, users have no
special knowledge about parallel computing and they usually bring OpenMP
codes. Since it offers an easier programming interface with semantics similar
to that of sequential codes, OpenMP is preferred by non-professional users to
develop parallel programs. In order to support these users, we established the
OpenMP execution environment on top of our InfiniBand clusters.

As a global memory abstraction is the basis for any shared memory program-
ming model, we first developed ViSMI (Virtual Shared Memory for InfiniBand
clusters), a software-based distributed shared memory. ViSMI implements a kind
of home-based lazy release consistency model and provides annotations for deal-
ing with issues with respect to parallel execution, such as process creation, data
allocation, and synchronization. We then developed Omni/Infini, a source-to-
source OpenMP compiler using ViSMI as the supporting interface. Omni/Infini
is actually an extended version of the Omni compiler. We have modified Omni
in order to replace the thread interface with ViSMI interface, to map shared
data on the distributed shared memory, and to coordinate the work of different
processes.

The established OpenMP execution environment has been verified using both
applications from standard benchmark suites, like NAS and SPLASH-II, and
several small kernels. Experimental results show different behavior with appli-
cations. However, for most applications, scalable speedup has been achieved.

The remainder of this paper is organized as follows. Section 2 gives an in-
troduction to the InfiniBand cluster and the established software DSM. This is
followed by a brief description of Omni/Infini in Section 3. In Section 4 first
experimental results are illustrated. The paper concludes with a short summary
and some future directions in Section 5.

2 The InfiniBand Cluster and the Software DSM

InfiniBand [7] is a point-to-point, switched I/O interconnect architecture with
low latency and high bandwidth. For communications, InfiniBand provides both
channel and memory semantics. While the former refers to traditional send/receive
operations, the latter allows the user to directly read or write data elements from
or to the virtual memory space of a remote node without involving the remote
host processor. This scenario is referred to as Remote Direct Memory Access
(RDMA).

The original configuration of our InfiniBand cluster included 6 Xeon nodes
and 4 Itanium 2 (Madison) nodes. Recently we have added 36 Opteron nodes into
the cluster. The Xeon nodes are used partly for interactive tasks and partly for
computation, while the others are purely used for computation. These processor



nodes are connected through switches with a theoretical peak bandwidth of 10
Gbps.

As the first step towards an infrastructure for shared memory programming,
we implemented ViSMI [16], a software-based distributed shared memory system.

The basic idea behind software distributed shared memory is to provide the
programmers with a virtually global address space on cluster architectures. This
idea is first proposed by Kai Li [13] and implemented in IVY [14]. As the memo-
ries are actually distributed across the cluster, the required data could be located
on a remote node and also multiple copies of shared data could exist. The latter
leads to consistency issues, where a write operation on shared data has to be seen
by other processors. For tackling this problem, software DSMs usually rely on
the page fault handler of the operating system to implement invalidation-based
consistency models.

The concept of memory consistency models is to precisely characterize the
behavior of the respective memory system by clearly defining the order in which
memory operations are performed. Depending on the concrete requirement, this
order can be strict or less strict, hence leading to various consistency models.

The most strict one is sequential consistency [12], which forces a multipro-
cessor system to achieve the same result of any execution as if the operations
of all the processors were executed in some sequential order and the operations
of each individual processor appear in the order specified by its programmers.
This provides an intuitive and easy-to-follow memory behavior, however, the
strict ordering requires the memory system to propagate updates early and pro-
hibits optimizations in both hardware and compilers. Hence, other models have
been proposed to relax the constraints of sequential consistency with the goal of
improving the overall performance.

Relaxed consistency models [3, 6, 9, 10] define a memory model for program-
mers to use explicit synchronization. Synchronizing memory accesses are divided
into Acquires and Releases, where an Aquire allows the access to shared data
and ensures that the data is up-to-date, while Release relinquishes this access
right and ensures that all memory updates have been properly propagated. By
separating the synchronization in this way invalidations are only performed by
a synchronization operation, therefore reducing the unnecessary invalidations
caused by an early coherence operation.

A well-known relaxed consistency model is Lazy Release Consistency (LRC)
[10]. Within this model, invalidations are propagated at the acquire time. This
allows the system to delay communication of write updates until the data is
actually needed. To reduce the communications caused by false sharing, where
multiple unrelated shared data locate on the same page, LRC protocols usually
support a multiple-writer scheme. Within this scheme, multiple writable copies
of the same page are allowed and a clean copy is generated after an invalidation.
Home-based Lazy Release Consistency (HLRC) [17], for example, implements
such a multiple-writer scheme by specifying a home for each page. All updates
to a page are propagated to the home node at synchronization points, such as
lock release and barrier. Hence the page copy on home is up-to-date.



ViSMI implements such a Home-based Lazy Release Consistency protocol.
For each shared page a default home is specified during the initialization phase
and then the node first accessing the page becomes its home. Each processor
can maintain a copy of the shared page, but by a synchronization operation all
copies are invalidated. Also at this point, an up-to-date version of the page is
created on the home node. For this, the updates of all processors holding a copy
must be aggregated. ViSMI uses a diff-based mechanism, where the difference
(diffs) between each dirty copy and the clean copy is computed. This is similar
to that used by the Myrias parallel do mechanism [2]. To propagate the updates,
ViSMI takes advantage of the hardware-based multicast provided by InfiniBand
to minimize the overheads for interconnection traffic. The diffs are then applied
to the clean copy and the up-to-date version of the page is generated. For further
computation page fault signals are issued on other processors and the missing
page is fetched from the home node. To handle the incoming communication,
each node maintains an additional thread, besides the application thread. This
communication thread is only active when a communication request occurs. We
use the event notification scheme of InfiniBand to achieve this.

For parallel execution, ViSMI establishes a programming interface for de-
veloping shared memory applications. This interface is primarily composed of
a set of annotations that handle issues with respect to parallelism. The most
important annotations and a short description about them are listed in Table 1.

Annotation Description

HLRC Malloc allocating memory in shared space
HLRC Myself querying the ID of the calling process
HLRC InitParallel initialization of the parallel phase
HLRC Barrier establishing synchronization over processes
HLRC Acquire acquiring the specified lock
HLRC Release releasing the specified lock
HLRC End releasing all resources and terminating

Table 1. ViSMI annotations for shared memory execution.

3 Omni/Infini: Towards OpenMP Execution on Clusters

OpenMP is actually initially introduced for parallel multiprocessor systems with
physically global shared memory. Recently, compiler developers have been ex-
tending the existing compilers to enable the OpenMP execution on cluster sys-
tems, often using a software distributed shared memory as the basis. Well-known
examples are the Nanos Compiler [5, 15], the Polaris parallelizing compiler [1],
and the Omni/SCASH compiler [18].

Based on ViSMI and its programming interface, we similarly implemented an
OpenMP compiler for the InfiniBand cluster. This compiler, called Omni/Infini,



is actually a modification and extension of the original Omni compiler for SMPs
[11]. The major work has been done with coordination of processes, allocation
of shared data, and a new runtime library for parallelization, synchronization,
and task scheduling.

Process structure vs. thread structure. The Omni compiler, like most
others, uses a thread structure for parallel execution. It maintains a master
thread and a number of slave threads. Slave threads are created at the initializa-
tion phase, but they are idle until a parallel region is encountered. This indicates
that sequential regions are implicitly executed by the master thread, without any
special task assignment. The ViSMI interface, on the other hand, uses a kind of
process structure, where processes are forked at the initialization phase. These
processes execute the same code, including both sequential regions and parallel
parts. Clearly, this structure burdens processors with unnecessary work. In order
to maintain the conventional OpenMP semantics with parallelism and also to
save the CPU resources, we have designed special mechanisms to clearly specify
which process does what job. For code regions needed to be executed on a single
processor, for example, only the process on the host node is assigned with tasks.

Shared data allocation and initialization. ViSMI maintains a shared
virtual space visible to all processor nodes. This space is reserved at the ini-
tialization phase and consists of memory spaces from each processor’s physical
main memory. Hence, all shared data in an OpenMP code must be allocated
into this virtual space in order to be globally accessible and consistent. This
is an additional work for a cluster-OpenMP compiler. We extended Omni for
detecting shared variables and further changing them to data objects which will
be allocated to the shared virtual space at runtime.

Another issue concerns the initialization of shared variables. Within a tradi-
tional OpenMP implementation, this is usually done by a single thread. Hence,
an OpenMP directive SINGLE is often applied in case that such initialization
occurs in a parallel region. This causes problems when running the applications
on top of ViSMI. ViSMI allocates memory spaces for shared data structures on
all processor nodes 1. These data structures must be initialized before further
use for parallel computation. Hence, the initialization has to be performed on all
nodes. Currently, we rely on an implicit barrier operation inserted to SINGLE
to tackle this problem. With this barrier, updates to shared data are forced to
aggregate on the host node and a clean copy is created. This causes performance
lost because a barrier operation is not essential for all SINGLE operations. For
the next version of Omni/Infini, we intend to enable compiler-level automatic
distinction between different SINGLE directives.

Runtime library. Omni contains a set of functions to deal with runtime
issues like task scheduling, lock and barrier, reduction operations, environment
variables, and specific code regions such as MASTER, CRITICAL, and SIN-
GLE. These functions require information, like thread ID number and number
of threads, to perform correct actions for different threads. This information

1 ViSMI allocates on each processor a memory space for shared variables. Each pro-
cessor uses the local copy of shared data for computation.



is stored within data structures for threads, which are not available in ViSMI.
Hence, we modified all related functions in order to remove the interface to
thread structure of Omni and to build the connection to the ViSMI program-
ming interface. In this way, we created a new OpenMP runtime library that is
linked to the applications for handling OpenMP runtime issues.

4 Initial Experimental Results

Based on the extension and modification with both sides, the Omni compiler and
ViSMI, we have developed this OpenMP execution environment for InfiniBand
clusters. In order to verify the established environment, various measurements
have been done using our InfiniBand cluster. Since ViSMI is currently based
on a 32-bit address space and the Opteron nodes are still in the test phase, the
experiments could only be carried out on the six Xeon nodes. We use a variety of
applications for examining different behavior. Four of them are chosen from the
NAS parallel benchmark suite [4, 8] and the OpenMP version of the SPLASH-2
Benchmark suite [20]. Two Fortran programs are selected from the benchmark
suite developed for an SMP programming course [19]. In addition, two self-coded
small kernels are also examined. A short description, the working set size, and
the required shared memory size of these applications are shown in Table 2.

Application Description Working set size Shared memory size Benchmark

LU LU-decomposition for dense matrices 2048×2048 matrix 34MB SPLASH-2
Radix Integer radix sort 18.7M keys 67MB SPLASH-2

FT Fast Fourier Transformations 64×64×64 51MB NAS
CG Grid computation and communication 1400 3MB NAS

Matmul Dense matrix multiplication 2048×2048 34MB SMP course
Sparse Sparse matrix multiplication 1024×1024 8MB SMP course
SOR Successive Over Relaxation 2671×2671 34MB self-coded

Gauss Gaussian Elimination 200×200 1MB self-coded

Table 2. Description of benchmark applications.

First, we measured the speedup of the parallel execution using different num-
ber of processors. Figure 2 shows the experimental results. It can be seen that
applications behave quite differently. LU achieves the best performance with a
scalable speedup of as high as 5.52 on a 6-node cluster system. Similarly, Matmul
and SOR also show a scalable speedup with close parallel efficiency on differ-
ent systems (efficiency is calculated with the speedup divided by the number
of processors and reflects the scalability of a system). Sparse and Gauss behave
poorly, with either no speedup or running even slower on multiprocessor sys-
tems. This is caused by the smaller working set size of both codes. Actually,
we selected this size in order to examine how system overhead influences the
parallel performance; and we see that due to the large percentage of overhead
in the overall execution time, applications with smaller data size can not gain
speedup on systems with software-based distributed shared memory.



Fig. 1. Speedup on systems with different number of processors.

CG behaves surprisingly with a decreasing speedup as the number of pro-
cessors increases. For detecting the reasons, we measured the time needed for
different activities when running the applications on 6-node systems. Figure 3
shows the experimental results.

In Figure 3, exec. denotes the overall execution time, while comput. specifies
the time for actually executing the application, page is the time for fetching
pages, barrier denotes the time for barrier operations 2, lock is the time for
performing locks, handler is the time needed by the communication thread, and
overhead is the time for other protocol activities. The sum of all partial times
equals to the total exec. time.

It can be seen that LU, Matmul, and SOR show a rather high proportion
in computation time, and hence achieve better speedup than other applications.
Radix and FT behaves worse than them, but most of the time is used for calcu-
lation. For Sparse and Gauss roughly only the half time is spent for computation
and hence nearly no speedup can be observed. The worst case is with CG, where
only 33% of the overall time is used for running the program and more time
is spent on other activities like inter-node communication and synchronization.
As it is a fact that each processor introduces such overhead, slowdown can be
caused with more processors running the code. CG has shown this behavior.

In order to further verify this, we measured the time for different activities
with CG also on 2-node and 4-node systems. Figure 4 shows the experimental
results. It can be seen that while the time with handler and overhead is close on
different systems, page and barrier show a drastic increase with more processors
on the system. As a result, a decreasing speedup has been observed.

In addition, Figure 3 also shows a general case where page fetching and
barrier operations introduce the most overhead. In order to further examine
these critical issues, we measured the concrete number of page faults, barriers,
and locks. Table 3 depicts the experimental results.

2 This includes the time for synchronization and that for transferring diffs.
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This table shows the number of page fault, barrier operation, and locks. It
also gives the information about data and barrier traffic over processors. All
applications, except Gauss with smaller working set, show high number of page
fault, and hence the large amount of resulted data transfer. In contrast, only
fewer barriers have been measured, except the CG code. However, a barrier
operation could introduce significant overhead, since all processors have to send
updates to the home node, which introduces transfer overhead, and to wait for a
reply, which causes synchronization overhead. In addition, the computation can
continue only after a clean copy has been created. Therefore, even though only
a few of barriers are performed, still large proportion of the overall time is spent
on barrier operations, as having been illustrated in Figure 3. However, LU is an
exception, where few time is needed for barriers. This can be explained by the
fact that with LU rather small amount of diffs are created and hence overhead
for data transfer at barriers is small.

page fault barriers lock acquired data traffic barrier traffic

LU 5512 257 0 14.4MB 0.015M

Radix 6084 10 18 13.9MB 0.12M

FT 3581 16 49 21MB 0.03M

CG 8385 2496 0 8.3MB 0.03M

Matmul 4106 0 0 17.4MB 0

Sparse 1033 0 0 1.4MB 0

SOR 2739 12 0 4.7MB 0.006M

Gauss 437 201 0 0.17MB 0.02M

Table 3. Value of several performance metrics.



In order to reduce the overhead with page fault and barrier, we propose
adaptive approaches. Actually, page fault occurs when a page copy has to be
invalidated, while a clean copy of this shared page is created. The current HLRC
implementation uses an approach, where all processors send the diffs to the home
node. The home node then applies the diffs to the page and generates a clean
copy. After that, other processors can fetch this copy for further computation. A
possible improvement to this approach is to multicast the diffs to all processors
and apply them directly on all dirty copies. In this way, the number of page fault
and the resulted data transport could be significantly reduced, while at the same
time the overhead for multicasting is much smaller due to the special hardware-
level support of InfiniBand. This optimization can also reduce the overhead for
barriers, because in this case synchronization is not necessary; rather a processor
can go on with the computation, as soon as the page copy on it is updated. We
will implement such optimizations in the next step of this research work.

The last experiment was done with the laplace code provided by the Omni
compiler. The goal is to compare the performance of OpenMP execution on
InfiniBand clusters with that of software DSM based OpenMP implementation
on clusters using other interconnection technologies. For the latter, we apply the
data measured by the Omni/SCASH researchers on both Ethernet and Myrinet
clusters. Figure 5 gives the speedup on 2, 4, and 6 node systems.
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Fig. 4. Speedup comparison with other SDSM-based OpenMP implementation.

It can be seen that our system provides the best performance, with an average
improvement of 62% to Ethernet and 10% to Myrinet. This improvement shall
be contributed by the specific properties of InfiniBand.

5 Conclusions

OpenMP is traditionally designed for shared memory multiprocessors with phys-
ically global shared memory. Due to the architectural restriction, however, such



machines suffer from scalability. On the other hand, cluster systems are widely
used for parallel computing, raising the need for establishing OpenMP environ-
ments on top of them.

In this paper, we introduce an approach for building such an environment
on InfiniBand clusters. First, a software DSM is developed, which creates a
shared virtual memory space visible to all processor nodes on the cluster. We
then modified and extended the Omni OpenMP compiler in order to deal with
issues like data mapping, task scheduling, and the runtime. Experimental results
based on a variety of applications show that the parallel performance depends
on applications and their working set size. Overall, a speedup of up to 5.22 on 6
nodes has been achieved.

Besides the optimization with page fault and barrier, we also intend to apply
more features of InfiniBand to further reduce the system overhead. In addition,
the software DSM will be extended to 64-bit address space, allowing a full use
of the whole cluster for OpenMP execution.
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5. Marc Gonzàlez, Eduard Ayguadé, Xavier Martorell, Jesús Labarta, Nacho Navarro,
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