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Abstract. The memory model of OpenMP has been widely misunder-
stood since the first OpenMP specification was published in 1997 (For-
tran 1.0).  The proposed OpenMP specification (version 2.5) includes a 
memory model section to address this issue.  This section unifies and 
clarifies the text about the use of memory in all previous specifications, 
and relates the model to well-known memory consistency semantics.  In 
this paper, we discuss the memory model and show its implications for 
future distributed shared memory implementations of OpenMP. 

1   Introduction 

Prior to the OpenMP version 2.5 specification, no separate OpenMP Memory Model 
section existed in any OpenMP specification.  Previous specifications had scattered 
information about how memory behaves and how it is structured in an OpenMP pro-
gram in several sections: the parallel directive section, the flush directive section, and 
the data sharing attributes section, to name a few.  This has led to misunderstandings 
about how memory works in an OpenMP program, and how to use it. 

The most problematic directive for users is probably the flush directive.  New 
OpenMP users may wonder why it is needed, under what circumstances it must be 
used, and how to use it correctly.  Perhaps worse, the use of explicit flushes often 
confuses even experienced OpenMP programmers. 

Indeed, the SPEC OpenMP benchmark program ammp was recently found to be 
written with assumptions that violate the OpenMP version 2.0 (Fortran) [1] specifica-
tion.  The programmer apparently assumed that a full-memory flush was implied by 
acquiring and releasing an OpenMP lock.  The OpenMP Fortran 2.0 specification is 
largely silent on the issue of whether a flush is implied by a lock acquire, probably 
creating the confusion that led to the error.  One must go to the OpenMP C/C++ 2.0 
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[2] specification to find language that addresses the flush operation in relation to 
OpenMP locks, and even that language is ambiguous. 

The proposed OpenMP 2.5 specification unifies the OpenMP Fortran and C speci-
fications into a single document with a single set of rules, as much as possible.  The 
OpenMP language committee has tried to provide a coherent framework for the way 
OpenMP relates to the base languages.  One of the basic parts of this framework is 
the OpenMP memory model. 

Up to now, the lack of a clear memory model has not made much difference.  In 
general, compilers have not been very aggressive with code re-ordering optimizations 
and multiprocessors have been fairly simple in structure.  Programs that did not fol-
low the memory model would still usually work.  But optimizing compilers are get-
ting more sophisticated and aggressive.  OpenMP implementations and machine ar-
chitectures are getting more complicated all the time.  Multi-core processors, NUMA 
machines and clusters of both are becoming more prevalent, making it all the more 
important that the nature of the memory behavior of OpenMP programs be clearly 
established. 

In this paper, we describe the OpenMP memory model, how it relates to well-
known memory consistency models, and the implications the model has for writing 
parallel programs with OpenMP.  In section 2, we describe the OpenMP memory 
model, as it exists in the proposed OpenMP 2.5 specification.  In section 3, we briefly 
discuss how the memory usage was addressed in previous OpenMP specifications, 
and how this has led to programmer confusion.  In section 4, we show how the 
OpenMP memory model relates to existing memory consistency models.  Finally, 
section 5 discusses the implications of using the OpenMP memory model to address 
distributed shared memory systems for OpenMP. 

2   The OpenMP Memory Model 

OpenMP assumes that there is a place for storing and retrieving data that is available 
to all threads, called the memory.  Each thread may have a temporary view of memory 
that it can use instead of memory to store data temporarily when it need not be seen 
by other threads.  Data can move between memory and a thread's temporary view, but 
can never move between temporary views directly, without going through memory. 

Each variable used within a parallel region is either shared or private.  The variable 
names used within a parallel construct relate to the program variables visible at the 
point of the parallel directive, referred to as their "original variables".  Each shared 
variable reference inside the construct refers to the original variable of the same 
name.  For each private variable, a reference to the variable name inside the construct 
refers to a variable of the same type and size as the original variable, but private to 
the thread. That is, it is not accessible by other threads. 

There are two aspects of memory system behavior relating to shared memory par-
allel programs: coherence and consistency [3].  Coherence refers to the behavior of 
the memory system when a single memory location is accessed by multiple threads.  
Consistency refers to the ordering of accesses to different memory locations, observ-
able from various threads in the system. 



OpenMP doesn't specify any coherence behavior of the memory system.  That is 
left to the underlying base language and computer system.  OpenMP does not guaran-
tee anything about the result of memory operations that constitute data races within a 
program.  A data race in this context is defined to be accesses to a single variable by 
at least two threads, at least one of which is a write, not separated by a synchroniza-
tion operation.  OpenMP does guarantee certain consistency behavior, however.  That 
behavior is based on the OpenMP flush operation. 

The OpenMP flush operation is applied to a set of variables called the flush set.  
Memory operations for variables in the flush set that precede the flush in program 
execution order must be firmly lodged in memory and available to all threads before 
the flush completes, and memory operations for variables in the flush set, that follow 
a flush in program order cannot start until the flush completes.  A flush also causes 
any values of the flush set variables that were captured in the temporary view, to be 
discarded, so that later reads for those variables will come directly from memory. 

A flush without a list of variable names flushes all variables visible at that point 
in the program.  A flush with a list flushes only the variables in the list.   

The OpenMP flush operation is the only way in an OpenMP program, to guarantee 
that a value will move between two threads.  In order to move a value from one 
thread to a second thread, OpenMP requires these four actions in exactly the follow-
ing order: 

1. the first thread writes the value to the shared variable,  
2. the first thread flushes the variable.   
3. the second thread flushes the variable and  
4. the second thread reads the variable. 

                                   
Figure 1. A write to shared variable A may complete as soon as point 1, and as late as 

point 2. 

The flush operation and the temporary view allow OpenMP implementations to 
optimize reads and writes of shared variables.  For example, consider the program 
fragment in Figure 1.  The write to variable A may complete as soon as point 1 in the 
figure.  However, the OpenMP implementation is allowed to execute the computation 
denoted as “…” in the figure, before the write to A completes.  The write need not 
complete until point 2, when it must be firmly lodged in memory and available to all 
other threads.  If an OpenMP implementation uses a temporary view, then a read of A 
during the “…” computation in Figure 1 can be satisfied from the temporary view, 
instead of going all the way to memory for the value.  So, flush and the temporary 
view together allow an implementation to hide both write and read latency.   

A flush of all visible variables is implied 1) in a barrier region, 2) at entry and exit 
from parallel, critical and ordered regions, 3) at entry and exit from combined parallel 

1:   A = 1 
 
. . .  
 
2:   Flush(A) 



work-sharing regions, and 4) during lock API routines.  The flushes associated with 
the lock routines were specifically added in the OpenMP 2.5 specification, a distinct 
change to both 2.0 specifications, as discussed in the following section. A flush with 
a list is implied at entry to and exit from atomic regions, where the list contains the 
object being updated.   

The C and C++ languages include the volatile qualifier, which provides a con-
sistency mechanism for C and C++ that is related to the OpenMP consistency mecha-
nism.  When a variable is qualified with volatile, an OpenMP program must 
behave as if a flush operation with that variable as the flush set were inserted in the 
program.  When a read is done for the variable, the program must behave as if a flush 
were inserted in the program at the sequence point prior to the read.  When a write is 
done for the variable, the program must behave as if a flush were inserted in the pro-
gram at the sequence point after the write.   

Another aspect of the memory model is the accessibility of various memory loca-
tions.  OpenMP has three types of accessibility: shared, private and threadprivate.  
Shared variables are accessible by all threads of a thread team and any of their de-
scendant threads in nested parallel regions.   

Access to private variables is restricted.  If a private variable X is created for one 
thread upon entry to a parallel region, the sibling threads in the same team, and their 
descendant threads, must not access it.  However, if the thread for which X was cre-
ated encounters a new parallel directive (becoming the master thread for the inner 
team), it is permissible for the descendant threads in the inner team to access X, either 
directly as a shared variable, or through a pointer.  The difference between access by 
sibling threads and access by the descendant threads is that the variable X is guaran-
teed to be still available to descendant threads, while it might be popped off the stack 
before siblings can access it.  For a threadprivate variable, only the thread to which it 
is private may access it, regardless of nested parallelism. 

#pragma omp parallel private(x) shared(p0,p1) 
Thread 0                                                               Thread 1 

x = …;                                                                   x = …; 
p0 = &x;                                                                p1 = &x; 
/* references in the following line are not allowed: */ 
…*p1 …                                                               … *p0 … 

#pragma omp parallel shared(x) 
Thread 0                    Thread 1                        Thread 0                          Thread 1 
… x …                       … x …                             … x …                             … x … 
…*p0 …                    … *p0 …                         … *p1 …                         … *p1 

… 

/* the following are not allowed:  */ 
… *p1 …                   … *p1 …                         … *p0 …                         … *p0 

… 

Figure 2. Access to a private variable by name or through a pointer is allowed only on 
the thread to which the variable is private, and its descendant threads.   



3   Memory Usage Descriptions in Previous Specifications 

OpenMP specifications prior to OpenMP 2.5 barely addressed the OpenMP memory 
model.  In the 2.0 C/C++ spec, the memory model was discussed in a paragraph in the 
execution model section, and in some text in the description of the flush directive.  
The 2.0 Fortran spec includes similar text in the description of the flush directive.  It 
has no equivalent paragraph in the execution model section, although a paragraph in 
the section on the shared clause serves this purpose.  The "data sharing attribute 
clauses" section in the C/C++ 2.0 spec and the "data scope attribute clauses" section 
of Fortran 2.0 describe the affects of the shared and private clauses. 

The scattered text of the 2.0 specifications collectively gives an impression of 
memory behavior without being comprehensive.  Nowhere in the 2.0 or earlier specs 
was there a mention of a temporary view of memory, but processor registers were 
mentioned.  The proposed 2.5 specification has made this temporary view more gen-
eral, which allows other forms of temporary memory. 

Another issue related to the memory model is whether flushes are implied by the 
OpenMP lock API routines.  The Fortran 2.0 spec is silent on the issue.  However, 
those routines are not mentioned in the list of places where a flush is implied, so it is 
clear that the intention was that the lock routines do not imply flushes.  The C/C++ 
2.0 spec is likewise silent, but says "There may be a need for flush directives to make 
the values of other variables consistent." 

The lack of a clear statement in previous specs with respect to flushes for the lock 
API routines has caused significant confusion.  A very common mistake made by 
programmers is to forget to insert appropriate flushes when locks are being used. 

             Thread 0                                              Thread 1 
omp_set_lock(lockvar); 
count++; 
omp_unset_lock(lockvar); 

    omp_set_lock(lockvar); 
    count++; 
    omp_unset_lock(lockvar); 

Figure 3. Threads cooperating through locks to increment a shared variable count. 

Consider the example in Figure 3.  Most programs are written in this fashion, but 
without an implied flush in the omp_set_lock or omp_unset_lock routines, 
this program may not work as expected.  This is because OpenMP semantics do not 
require a read of count from memory before the increment operation, or a flush of 
count to memory after it.  Both threads are allowed to operate only on their tempo-
rary view of count.  Even worse, the compiler might very well in-line the calls and 
reorder the update of count such that it is no longer in the locked region since there 
is no dependence between the calls and the variable count. 

 

 



             Thread 0                                              Thread 1 
omp_set_lock(lockvar); 
#pragma omp flush(count) 
count++; 
#pragma omp flush(count) 
omp_unset_lock(lockvar) 

    omp_set_lock(lockvar); 
                       #pragma omp flush(count) 
    count++; 
                       #pragma omp flush(count) 
    omp_unset_lock(lockvar); 

Figure 4. A failed attempt to correctly use variables inside a locked region. 
 

             Thread 0                                              Thread 1 
omp_set_lock(lockvar); 
#pragma omp flush(count,lockvar) 
count++; 
#pragma omp flush(count,lockvar) 
omp_unset_lock(lockvar); 

 

    omp_set_lock(lockvar); 
                       #pragma omp flush(count,lockvar) 
    count++; 
                       #pragma omp flush(count,lockvar) 
    omp_unset_lock(lockvar); 

Figure 5. A correct way to write a locked update according to OpenMP 2.0. 

Including flushes of count inside the locked region, as in Figure 4, ensures that 
the most recent value for count is read, and that memory is updated with the write. 
However, it still does not address the compiler reordering problem.  Essentially, these 
flushes on count do not ensure any ordering with operations on lockvar. The 
compiler is still free to reorder the call to omp_set_lock with respect to the flushes 
and the increment of count because they don’t refer to the same variables. 

The programmer would need to write the code as in Figure 5 to both prevent reor-
dering with respect to the lock calls, and to keep the global value of count up to 
date. That is, the programmer must ensure ordering between the two variables by 
including both in the flush list. 

A no-list flush is implicit for the lock API routines in the proposed 2.5 spec. Thus, 
code written in the natural manner of Figure 3 will work as most programmers ex-
pect.  As mentioned above, the SPEC OpenMP code ammp was written in this man-
ner (see Figure 6). 

 

 



#ifdef _OPENMP 
      omp_set_lock(&(a1->lock)); 
#endif 
      a1fx = a1->fx; 
      a1fy = a1->fy; 
      a1fz = a1->fz; 
      a1->fx = 0; 
      a1->fy = 0; 
      a1->fz = 0; 
      xt = a1->dx*lambda +a1->x - a1->px; 
      yt = a1->dy*lambda +a1->y - a1->py; 
      zt = a1->dz*lambda +a1->z - a1->pz; 
#ifdef _OPENMP 
      omp_unset_lock(&(a1->lock)); 
#endif 

Figure 6. SPEC OpenMP benchmark ammp source code that demonstrates failure to 
use flush directives with OpenMP locks (incorrect prior to specification version 2.5). 

4   The OpenMP Memory Consistency Model 

OpenMP provides a relaxed consistency model that is similar to weak ordering [7][8].  
Strong consistency models enforce program order, an ordering constraint that re-
quires memory operations to appear to execute in the sequential order specified by the 
program. For example, a memory model is sequentially consistent if “the result of any 
execution is the same as if the operations of all the processors were executed in some 
sequential order, and the operations of each individual processor appear in this se-
quence in the order specified by its program” [3]. The OpenMP memory model spe-
cifically allows the reordering of accesses within a thread to different variables unless 
they are separated by a flush that includes the variables.  Intuitively, the temporary 
view is not always required to be consistent with memory.  In fact, the temporary 
views of the threads can diverge during the execution of a parallel region and flushes 
(both implicit and explicit) enforce consistency between temporary views. 

Memory consistency models for parallel machines are based on the ordering en-
forced for memory accesses to different locations by a single processor.  We denote 
memory access ordering constraints by using the “→” (ordering) notation applied to 
reads (R), writes (W), and synchronizations (S).  For instance, for reads preceding 
writes in program execution order, constraining them to maintain that order would be 
denoted R →W.  Sequential consistency requires all memory accesses to complete in 
the same order as they occur in program execution, meaning the orderings R→R, 
R→W, W→R, and W→W.  It also requires the effect of the accesses by all threads to 
be equivalent to performing them in some total (i.e., sequential) order. 

Sequential consistency is often considered difficult to maintain in modern multi-
processors. The program order restriction prevents many important compiler optimi-
zations that reorder program statements [4].  Frequently, sequentially consistent mul-
tiprocessors do not complete a write until its effect is available to all other processors. 



Relaxed consistency models remove the ordering guarantees for certain reads and 
writes, but typically retain them around synchronizations [4][5][6].  There are many 
types of relaxed consistency.  The OpenMP memory model is most closely related to 
weak ordering.  Weak ordering prohibits overlapping a synchronization operation 
with any other shared memory operations of the same thread, while synchronization 
operations must be sequentially consistent with other synchronization operations.  
Thus, the set of orderings guaranteed by weak ordering is the following:  {S→W, 
S→R, R→S, W→S, S→S}. 

Relaxed consistency models have been successful because most memory opera-
tions in real parallel programs can proceed correctly without waiting for previous 
operations to complete.  Successful parallel programs arrange for a huge percentage 
of the work to be done independently by the processors, with only a tiny fraction of 
the memory accesses being due to synchronization.  Thus, relaxed consistency se-
mantics allows the overlapping of computation with memory access time, effectively 
hiding memory latency during program execution. 

OpenMP makes no guarantees about the ordering of operations during a parallel 
region, except around flush operations.  Flush operations are implied by all synchro-
nization operations in OpenMP.  So, an optimizing compiler can reorder operations 
inside a parallel region, but cannot move them into or out of a parallel region, or 
around synchronization operations.  The flush operations implied by the synchroniza-
tion operations form memory fences.  Thus, the OpenMP memory model relaxes the 
order of memory accesses except around synchronization operations, which is essen-
tially the definition of weak ordering. 

The programmer can use explicit flushes to insert memory fences in the code that 
are not associated with synchronization operations.  Thus, the OpenMP memory con-
sistency model is a variant of weak ordering. 

The OpenMP memory model further alters weak ordering by allowing flushes to 
apply only to a subset of a program’s memory locations.  The atomic construct in-
cludes an implied flush with a flush set consisting of only the object being updated.  
An optimizing compiler can reorder accesses to items not in the flush set with respect 
to the flush.  Further, no ordering restrictions between flushes with empty flush set 
intersections are implied.  In general, using a flush set implies that memory access 
ordering is only required for that set.  The correct use of flush sets can be very com-
plicated and we urge OpenMP users to avoid them in general. 

The ordering constraint of OpenMP flushes is modeled on sequential consistency, 
similar to the restrictions on synchronization operations in weak ordering and lazy 
release consistency [7][8][9]. Specifically, the OpenMP memory model guarantees: 

1. If the intersection of the flush-sets of two flushes performed by two different 
threads is non-empty, then the two flushes must be completed as if in some 
sequential order, seen by all threads; 

2. If the intersection of the flush-sets of two flushes performed by one thread is 
non-empty, then the two flushes must appear to be completed in that thread’s 
program order; 

3. If the intersection of the flush-sets of two flushes is empty, then the threads 
can observe these flushes in any order. 



If an OpenMP program uses synchronization constructs and flushes to avoid data 
races, then it will execute as if the memory was sequentially consistent. 

5   Future Implications of the OpenMP Memory Model 

Messaging latency to remote nodes in a modern computational cluster is hundreds 
or thousands of times higher than latency to memory for modern processors (see 
Figure 7). This latency makes the traditional method of enforcing sequential consis-
tency (requiring a thread that issues a write of a shared variable to wait for the value 
to be visible to all threads) prohibitively expensive for OpenMP clusters.  Fortu-
nately, the OpenMP memory consistency model allows latency hiding of memory 
operations.  This freedom is useful for a hardware shared memory (HSM) OpenMP 
implementation, but it is essential for a distributed shared memory (DSM) version of 
OpenMP, which simply has more memory latency to hide. 

latency to L1: 1-2 cycles 
latency to L2: 5 - 7 cycles 
latency to L3: 12 - 21 cycles 
latency to memory: 180 – 225 cycles 
Gigabit Ethernet - latency to remote 
node: ~28000 cycles 
Infiniband - latency to remote node: 
~23000 cycles 

Figure 7. Itanium® latency to caches compared with latency to remote nodes 

So, we claim that the relaxed memory model of OpenMP, with its ability to do 
cheap reads and hide the latency of writes, enables DSM OpenMP implementations.  
Without the ability to hide a cluster’s enormous memory latency, DSM OpenMP 
implementations might only be useful for embarrassingly-parallel applications. 

Even taking advantage of latency hiding, a DSM OpenMP implementation may be 
useful for only certain types of applications.  In an Intel® prototype DSM OpenMP 
system, called Cluster OMP, we have found that codes in which certain characteris-
tics dominate are very difficult to make perform well, while codes with other domi-
nant characteristics can have good performance. 

Codes that use flushes frequently tend to perform poorly.  This means that codes 
that are dominated by fine-grained locking, or codes using a large number of parallel 
regions with small amounts of computation inside, typically have poor performance.  
Frequent flushes emphasize the huge latency between nodes on a cluster, since they 
reduce the frequency of operations that can be overlapped. 

Codes dominated by poor data locality are also unlikely to perform well with DSM 
OpenMP implementations.  Poor data locality for the Cluster OMP system means that 
memory pages are being touched by multiple threads.  This implies that more data 
will be moving between threads, over the cluster interconnect.  This data movement 
taxes the cluster interconnection network more than for a code with good data local-



ity.  The more data being moved, the more messaging overheads will hurt perform-
ance. 

On the other hand, in experiments with the Cluster OMP system, we have ob-
served that certain applications achieved speedups that approach the speedups ob-
tained with an HSM system (see Figure 8).  We have seen that computation with 
good data locality and little synchronization dominates the highest performing codes. 

The applications we tested were gathered from Intel® customers who were partici-
pating in a technology preview of the prototype system.  We can’t reveal details of 
the codes, but the application types were: 

1. a particle simulation code 
2. a magneto-hydro-dynamics code 
3. a computational fluid dynamics code 
4. a structural simulation code 
5. a graph processing code 
6. a linear solver code 
7. an x-ray crystallography code 
Figure 8 shows the performance results we obtained for these codes.  The speedup 

is shown for both the OpenMP and Cluster OMP versions of each code.  In addition, 
the ratio of those speedups is shown, in the form of the Cluster OMP speedup as a 
percentage of the OpenMP speedup.  For these seven codes, five of them achieved a 
Cluster OMP speedup that was more than 70% of the performance of the OpenMP 
performance. 

We have found that the applications for which Cluster OMP works well are usu-
ally those that have a large amount of read-only shared data and a small amount of 
read-write shared data.  If, in addition, the data access patterns are irregular, then the 
applications would be more difficult to write using a direct messaging API, such as 
MPI. 

These characteristics are typical of an emerging class of applications, known as 
RMS workloads (Recognition, Mining, and Synthesis) [10].  These workloads in-
volve applications that typically use massive amounts of input data, such as pattern 
recognition, parallel search, data mining, visualization, and synthesis.  We speculate 
that a DSM implementation of OpenMP may be useful for applications of this type. 

6 Conclusion 

The proposed OpenMP 2.5 spec unifies and clarifies the OpenMP memory model.  
The refined memory model description alleviates some of the confusion over the use 
of the flush directive and simplifies the correct use of OpenMP.  Further, the pro-
posed OpenMP 2.5 spec has added an implicit no-list flush to the lock API routines, 
making their use more intuitive. 

OpenMP enforces a variant of weak ordering, as clearly demonstrated in the mem-
ory model description.  This has performance implications for programs run on HSM 
systems, because it allows the compiler to apply optimizations and reorder code in a 
program.  It also has important implications for reasonable performance of OpenMP 
on future DSM systems. 
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Figure 8. Raw speedup of Cluster OMP on a cluster and OpenMP on a hardware shared mem-
ory machine, plus speedup percentage of Cluster OMP versus OpenMP for a set of codes. 
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