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Abstract. A multi-cluster computational environment with mixed-neo@dPI +
OpenMP) parallelism for estimation of unknown regionalctieal conductiv-
ities of the human head, based on realistic geometry frormsated MRI up
to 256 voxels resolution, is described. A finite difference mebimponent al-
ternating direction implicit (ADI) algorithm, parallelédl using OpenMP, is used
to solve the forward problem calculation describing thetieal field distribu-
tion throughout the head given known electrical sourcesnipkex search in the
multi-dimensional parameter space of tissue conduawits conducted in pa-
rallel across a distributed system of heterogeneous catipoél resources. The
theoretical and computational formulation of the problenpiesented. Results
from test studies based on the synthetic data are providedparing retrieved
conductivities to known solutions from simulation. Perf@nce statistics are also
given showing both the scaling of the forward problem andpisgormance dy-
namics of the distributed search.

1 Introduction

The essence of most tomographic techniques is to deternmikieown complex co-
efficients in PDEs governing the physics of the particulgrezimental modality. Such
problems are typically non-linear and ill-poised. The fatsfp in solving such an inverse
problemis to find a numerical method to calculate the direcivard) problem. When
the physical model is three-dimensional and geometricaimplex, the forward solu-
tion can be difficult to construct and compute. However,ithanly the first stage of the
tomographic solution. The second stage involves a seardssaa multi-dimensional
parameter space of unknown (to be found) model properties.sEarch employs the
forward problem with chosen parameter estimates and aifimtttat determines the
error of the forward calculation with an empirically measdiresult. As the error resid-
uals of local inverse searches are minimized, the globatbatetermines convergence
to final property estimates based on its knowledge of how thielparameter space has
been sampled.

Fundamental problems in neuroscience involving expertedemodalities like elec-
troencephalography (EEG) and magnetoencephalograpy jMiE®aturally expressed
as tomographic imaging problems. The difficult problemsafrce localization and
impedance imaging require modeling and simulating the associated bioete=figids.



Forward calculations are necessary in the computationalftation of these problems.
Until recently, most practical research in this field hasedptor analytical or semi-

analytical models of a human head in the forward calculatj@n2]. This is in contrast
to approaches that use realistic 3D head geometry for pasmfssignificantly improv-

ing the accuracy of the forward and inverse solutions. Toajdewever, requires that
the geometric information be available from MRI or CT scanih such image data,
the tissues of the head can be better segmented and moratetguepresented in the
computational model. Unfortunately, these realistic niodetechniques have intrin-
sic computational complexities that grow as the image tefol increases. This is the
primary reason such techniques have not be used in the past.

In source localization we are interested in finding the elest source generators
for the potentials that might be measured by EEG electrodéiseoscalp surface. Here,
the inverse search is looking for those sources (theiriposiind amplitude) on the cor-
tex surface whose forward solution most accurately dessribe electrical potentials
observed. The computational formulation of the sourcelipaion problem assumes
the forward calculation is without error. However, thiswasgtion in turn assumes the
conductivity values of the modeled head tissues are knawgeheral, for any individ-
ual, they are not known. Thus, the impedance imaging proldemtually a predecessor
problem to source localization. In impedance imaging, teiise search finds those tis-
sue impedance values whose forward solution best matchasumesl scalp potentials
when experimental stimuli are applied. In either probleourse localization or im-
pedance imaging, solving the inverse search usually iegtlkie large number of runs
of the forward problem. Therefore, computational methamtstlie forward problem,
which are stable, fast and eligible for parallelization waadl as intelligent strategies
and techniques for multi-parameter search, are of paratmoyortance.

To deal with complex geometries, PDE solvers use finite eferfi€E) or finite dif-
ference (FD) methods [3, 4]. The main computational ideartuketihese methods is to
reduce a continuous problem with infinitely many unknowrdfiedlues to a finite num-
ber of unknowns by discretizing the solution region intoneéats. Application of each
of these approximation methods to the governing equationthe specific modality
yields eventually a system of linear equations of the fotdd = b, which must be
solved to obtain the final solution. The solution technigeess be broadly categorized
as direct and iterative solvers. The choice of the particdaution method is highly de-
pendent upon the approximation technique employed tomttailinear system, upon
the size of the resulting system, and upon accessible catiquol resources.

Usually, for the geometry with the given complexity levlet-E methods are more
economical in terms of the number of unknowns (the size obtlimess matrix A, is
smaller, as homogeneous segments do not need a dense neksé3dting computa-
tional cost. However, the FE mesh generation for a 3D, higielerogeneous subject
with irregular boundaries (e.g., the human brain) is a diffitask. The process involves
a significant degree of preprocessing and smoothing of fitialigeometry through
manual means. A fully automated process of image segmentatid mesh generation
is unavailable at present.

At the same time, the FD method with a regular cubed grid i€g#ly the easiest
method to code and implement. It is often chosen over FE ndetfar simplicity and



the fact that MRI/CT segmentation map is also based on a datigx of nodes. There-
fore, meshes are relatively easy to construct (once segii@mis accomplished) as the
cubic/rectangular elements can be "mapped" directly flmwbxels of the medical im-
ages (3D MRI scans). Many anatomical details (e.g., olfgqierforations and internal
auditory meatus) or structural defects in case of traunta, (skull cracks and punc-
tures) can be included as the computational load is basedeonumber of elements
and not on the specifics of tissues differentiation. Thus,niodel geometry accuracy
can be the same as the resolution of MRI scans (exg.1 x 1mm), while in the FEM
approach, simplification of the geometry is unavoidable @salt of mesh generation.
In addition, the multiscale (multigrid) strategy of calatibns on a hierarchy of coarser
grids (starting with64 x 64 x 44 and feeding the results into the next cycle of iterations
on the finer grid) can be easily implemented in a FD forwardesolThe FD grid can be
made non-uniform and/or applied in the spherical cooréim&b capture more details
in the regions of interest.

In the present work we adopt a model based on FD methods asttecia hetero-
geneous distributed and mixed-mode parallel simulatiosrenment for conductivity
optimization through inverse simplex search. FE simutefij is used to solve for rela-
tively simple phantom geometries that we then apply as "gaiddards" for validation.

2 Mathematical Description of the Problem

The relevant frequency spectrum in EEG and MEG is typicajow 1kH z, and
most studies deal with frequencies betwéeh and 100H z. Therefore, the physics
of EEG/MEG can be well described by the quasi-static appnation of Maxwell's
equations, the Poisson equation. The electfimalard problem can be stated as fol-
lows: given the positions, orientations and magnitudesusfent sources, as well as
geometry and electrical conductivity of the head voluthealculate the distribution of
the electrical potential on the surface of the head (sdatp)Mathematically, it means
solving the linear Poisson equation:

V-a(:c,y,z)v¢(x,y,z) =5, (1)

in 2 with no-flux Neumann boundary conditions on the scalp:
o(Ve) -n=0, ()

onlp. Hereo = o;5(x, y, 2) is an inhomogeneous tensor of the head tissues conduc-
tivity and S is the source current. Having computed potentigls, y, z) and current
densities] = —o(V¢), the magnetic field3 can be found through the Biot-Savart law.
In this paper, we do not consider anisotropy or capacitaffeete (the latter because
the frequencies of interest are too small), but they can tleded in a straightforward
manner. (Eq.(1) becomes complex-valued, and complex tditgishould be used.)

We have built a finite difference forward problem solver fay. 1) and (2) based
on the multi-component alternating directions impliciti¥h algorithm [8,9]. It is a
generalization of the classic ADI algorithm as describedHigischer et al [6], but
with improved stability in 3D (the multi-component FD ADIseme is unconditionally
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Fig. 1. A visualization of a 3D human head CT scan with the measulliectrdes

stable in 3D for any value of the time step [8, 9]). The alduorithas been extended to
accommodate anisotropic tissues parameters and souoassdribe the electrical con-
ductivity in the heterogeneous biological media withiniaelsy geometry, the method

of the embedded boundaries has been used. Here an objeterekiris embedded into
a cubic computational domain with extremely low condutyivialues in the external

complimentary regions. This effectively guarantees tlaeeano current flows out of the
physical area (the Neuman boundary conditions, Eq.(2ptisrally satisfied). The idea
of the iterative ADI method is to find the solution of Eq. (1)daf2) as a steady state
of the appropriate evolution problem. At every iteratiogpsthe spatial operator is split
into the sum of three 1D operators, which are evaluatedraitaely at each sub-step.
For example, the difference equationgidirection is given as [9]

GPT = (o7 + o7 + o}

T

+ 0,07+ 8,97 + 0207 = S, 3

wherer is a time step andl, ,, . is a notation for the appropriaté) second order spatial
difference operator (for the problems with variable coédfits it is approximated on a
“staggered” mesh). Such a scheme is accuraf¥to+ Az? + Ay® + Az?). In contrast
with the classic ADI method, the multi-component ADI doe$ remuire the operators
to be commutative. In addition, it uses the regularizatmrefaging) for evaluation of
the variable at the previous instant of time.

It is worth noting, that the multi-component ADI algorithnarc be also easily
adapted for solving PDEs describing other tomographic itdeta In particular, we



have used itin other related studies, for example, in sitimiaf photon migration (dif-
fusion) in a human head in near-infrared spectroscopy of limpuries and hematomas.

The inverse problem for the electrical imaging modality hias general tomo-
graphic structure. From the assumed distribution of thel isaue conductivitiess;;,
and the given injection current configuratiah,it is possible to predict the set of poten-
tial measurement valueg? , given a forward modeF' (Eq. (1), (2)), as the nonlinear
functional [5, 6]:

(bp = F(Uij (Iv Y, Z)) (4)

Then an appropriate objective function is defined, whiclrcdbss the difference
between the measureld, and predicted data?, and a search for the global minimum
is undertaken using advanced nonlinear optimization a@tyuos. In this paper, we used
the simple least square error norm:

) N 1/2
E=<N;<¢€—Vi>2> ! (5)

whereN is a total number of the measuring electrodes (cl. Fig. 1)sdlge the non-
linear optimization problem in Eq.(5) , we employed the dbillrsimplex method of
Nelder and Mead as implemented by Press et al[3]. In theedtisense, this means
finding the conductivity at each node of the discrete messiniplified models with the
constraints imposed by the segmented MRI data, one needw®to énly the average
regional conductivities of a few tissues, for example, gcakull, cerebrospinal fluid
(CSF) and brain, which significantly reduces the demenéigrd the parameter space
in the inverse search, as well as the number of iterationsrinarging to a local mini-
mum. To avoid the local minima, we used a statistical apgroébe inverse procedure
was repeated for hundreds sets of conductivity guessesdpmmopriate physiological
intervals, and then the solutions closest to the globalmmimn solutions were selected
using the simple critire®& < Eipreshold-

3 Parallel Computional Design

The solution approach maps naturally to a multi-level cotafional design that can
benefit from parallel execution both in the parametric defwc conductivities and the
forward problem calculations. Fig. 2 gives a schematic vidihe approach we ap-
plied in a heterogeneous environment of parallel computingters. Theonductivity
optimizer (CO) is responsible for launching new inverse problems gitbsses of con-
ductivity values. Upon completion, the inverse solverametonductivity solutions and
error results to the master. Inverse solvers run on a sepaoatputational server. The
system design allows for the servers to be added dynamaadiyhe number of proces-
sors per inverse solve to be decided at execution time, thdig off inverse search
parallelism versus forward problem speedup.
The CO interacts with each server using a TCP/IP-basedacterWe use MPI to

parallelize the inverse solvers as a master-worker cortipatd heinverse master (IM)
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Fig. 2. Schematic view of the parallel computational system

manages multiple solvers at the same time. For each , the pidlies new conductiv-
ity search values, lunches the simplex search and colleetsesults . The CO passes
the initial seed to the IM to start simplex refinement for eaetv inverse worker. The
IM sends a MPI message containing conductivity values teeifiwverse worker (IW)

to use in the forward calculation. The IM then waits to reesiwa solution from any
IW, knowing which IW is working on what inverse solution. Tfarward solver (FS)

is parallelized using OpenMP. It has been chosen over MP #éisei shared memory
environment we avoid high data traffic naturally in solviigEPat 3D geometry. Paral-
lelization of the ADI algorithm is straightforward, as itrsists of nests of independent
loops over “bars” of voxels for solving the effective 1D plein (Eq. (3)) at each it-
eration. These loops can be easily unrolled for efficientetien on a shared memory
multiprocessor system.

The inverser solver MPI program executes as a mixed-modsi@lacomputation.
Based on the number of cluster processors available ancheoslutster is organized, we
decide at runtime how many inverse workers to create and hamyrthreads to assign
to the forward calculation. In this manner, the program capdrted without change to
both distributed memory and shared memory parallel clasterd can naturally scale
to meet available processing resources.

At the University of Oregon, we have access to a computatsysiems environ-
ment consisting of seven multiprocessor clusters. Of theeshmemory clusters, three
are 8-processor IBM Powerd+ p655 machines, one is a 16-gsoctBM Power4 p690
machine, and two (Phoenix and Optix) are 16-processor 3@intim-2 machines, an



Altix and Prism machine. The one distributed memory clustarDell 16x2-processor
Pentium Xeon machine. All of the clusters run Linux and ameneected by a high-speed
gigabit network. The conductivity optimizer can run on argahine, including a work-
station. In our experiments below, we show results onlytiershared memory clusters.
Also, the mixed-mode inverse solve program allocated foteads for the OpenMP
forward calculation in each inverse worker.

20 40 60 10 20 30 40

Fig. 3. Segmented MRI data (64x64x44 voxels resolution), top row,@alculated absolute value
of potential, bottom row, for two points current injectidog and back of the head)

4 Computational Results

The forward solver was tested and validated against a 4-sbieérical phantom, and
low (64 x 64 x 44) and high(256 x 256 x 176) voxels resolution human MRI data. For
comparison purposes, the initial MRI data segmentatiom tieh tissues types as it is
shown in the top row of Fig.3 was reduced to only four tissyeey Their values were
set to those in the spherical model (cl. Table 1). We compptadntials at standard
locations for thel 29 electrodes configuration montage on the spherical phantam a
compared the results with the analytical solution [2] alalé for a 4-shell spherical
phantom in Fig. 4. One can we see very good agreement, saserf@ minor discrep-
ancies caused by the mesh orientation effects (the culsaspherical symmetry).
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Fig. 4. Validation of the forward solver accuracy against anap/far a 4-shell spherical phantom.

Table 1. Tissues parameters in 4-shell models[2]

Tissue typéo (2~ 'm~')[Radius(cm)Reference
Brain 0.25 8.0 Geddes(1967)
Csf 1.79 8.2 Daumann(1997)
Skull 0.018 8.7 Law(1993)
Scalp 0.44 9.2 Burger(1943)

Similarly, we found the good agreement for spherical phaustbetween our re-
sults and the solution of the Poisson equation using thelatdr-EM packages such as
FEMLAB [7]. Also, we have performed a series of computatiforelectric potentials
and currents inside a human head with surgical or traumagaings in the skull. We
found that generally low resolutios{ x 64 x 44 voxels)like the one which is shown
in the bottom row of Fig. 3 is not enough for accurate desionipof the current and
potentials distribution through the head, as the coarsaatization creates artificial
shunts for currents (mainly in the skull). With increasesbiation (128 x 128 x 88 or
256 x 256 x 176 voxels) our model has been shown to be capable to capturetheédi
tails of current/potential redistribution caused by threctural perturbation. However,
the computational requirements of the forward calculaitimnease significantly.

The forward solver was parallelized using OpenMP. The parémce speedups (ex-
ecution times) foR56 x 256 x 176 sized problems on the IBM and SGI machines are
shown in Fig. 5. While the performance is reasonable at ptese believe there are
still optimizations that can be made, particularly on thd Bf@chines. The importance
of understanding the speedup performance on the clustepuenservers is to allow
flexible allocation of resources between inverse and fadvygaocessing.

To investigate the best balance of parallelism betweernrsevand forward process-
ing, we conducted an experiment to optimize the numbers df tissks and openMP
threads at 12 processors of the 16-processors p690 madhittds experiment we
considered the total number of forward solutions perfordmgdhe cluster for several
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Fig. 6. Forward solutions throughput for different resource atoans between the forward and
inverse problems. The total number of available processdiged to 12 in all configurations.

configurations in a fixed period of time. The number of itemasi per a forward solution
was fixed. The total number of forward solutions performedabgiven cluster con-
figuration was chosen as the figure of merit over the numbestaf inverse solutions
due to the variation of the required number of forward corapahs in different in-
verse searches. The results are presented at Fig. 6. It cmehehat allocation of four
threads per an inverse worker (3x4) gives the highest thmpuor the total number of
forward solutions.

In the inverse search the initial simplex was constructedoanly based upon the
mean conductivity values (cl. Table 1) and their standardadiens as it is reported
in the related biomedical literature. In the present tasthstwe did not use the real
experimental human data, instead, we simulated the expatahset of the reference
potentialsV in Eq. 5 using our forward solver with the mean conductiviyues from
Table 1, which had been assumed to be true, but not known gy ioioa user running
the inverse procedure. The search was stopped when one ariteria were met. The
first is when the decrease in the error function is fractilyrehaller than some toler-
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Fig. 7. Results of the inverse search. Dynamics of the individuatde(left) and statistics of the
retrieved conductivities for about 200 initial random gaess The actual number of the solutions
shown is 71, their error function is less than 1 microvolt.

ance parameter. The second is when the number of steps dfithkes exceeds some
maximum value. During the search, the conductivities wergstrained to stay within
their pre-defined plausible ranges. If the simplex algamitdttempted to step outside of
the acceptable range, then the offending conductivity wastrto the nearest allowed
value. Our procedure had the desired effect of guiding theckebased on prior knowl-
edge. Some number of solution sets included conductivitiaswere separated from
the bulk of the distribution. These were rejected as owtlibased on the significant
larger square error norm in Eqg. (5) (i.e., the solution setsviltered according to the
criteria & < Eypresnota)- We have found empirically that settifg, -csnoiq = 14V in
most of our runs produced a fair percentage of solutionedimshe global minimum.

The distribution of the retrieved conductivities is showrFig. 7 (right). The fact
that the retrieved conductivities for the intracraniasties (CSF and brain) have wider
distributions is consistent with the intuitive physicapéanation that the skull, as hav-
ing the lowest conductivity, shields the currents injedigthe scalp electrodes from the
deep penetration into the head. Thus, the deep intraciissaks are interrogated less
in comparison with the skull and scalp. The dynamics of aividdal inverse search
convergence for a random initial guesses is shown in Figeff).(In general, the con-
ductivities for the extra cranial tissue and skull convesgmewnhat faster than the brain
tissues, due to the better interrogation by the injecteceotr

After filtering data according to the error norm magnitude,fitted the individual
conductivities to the normal distribution. The mean re@conductivities (2~ *m 1)
and their standard deviationss are: Brain (0.24/.01), CSF (1.79/.03), Skull (0.0180
/.0002), and Scalp (0.4400 / .0002). It is interesting to pare these values to the
"true" conductivities from Table 1. We can see excelleningstes for the scalp and
skull conductivities and a little bit less accurate estesdr the intracranial tissues.
We also have done some preliminary runs with the realistismiocluded. These runs
and the similar investigation in Ref. [2] for a spherical pttan suggest that noise leads
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to some deterioration of the distributions and more unagstén the results. In general,
it still allows the retrieval of the unknown tissue paranngte

Finally, in Fig. 8 we present the dynamics of the performasfdbe inverse search
in our distributed multi-cluster computational envirommeSix curves with different
markers show the dynamics of the inverse solution flux at trelactivity optimizer.
The markers correspond to the instances of inverse sofuginival to CO from a spe-
cific inverse master (cluster). The inverse solution rategdetween the clusters based
on several factors: the number of processors availablesgbed of the forward solve,
and inverse search convergence rate. The markers seatesl "aeto” error function
line represent solutions that contribute to the final soludistribution, with the rest of
the solutions rejected as outliers. In average, the thrpugivas 15 minutes per one
inverse solution for thé28 x 128 x 88 MRI resolution test case. The second graph
shows the number of inverse solutions completed by therdifteclusters. Since we
chose four threads to use in the OpenMP forward solve, thehgslaows the number of
inverse solutions completed per inverse worker.



5 Conclusion

We have built an accurate and robust 3D Poisson solver basedfiaite difference
multi-components ADI algorithm for modeling electricalcaaptical problems in het-
erogeneous biological tissues. We focus in particular owetiog the conductivity
properties of the human head. The computational formulatidizes realistic head
geometry obtained from segmented MRI datasets. This isritaptto the effective use
of impedance imaging and source localization in clinicalneémaging applications
where diagnostic accuracy depends significantly on thesgetgrwhich individual dif-
ferences in head structure can be represented. The compatdbormulation of the
problem is as a multi-cluster mixed-mode calculation fuédor parallel execution
on a computational grid. Our results validate FDM approaxhirhpedance imaging
and provide a performance assessment of parallel compuitati six clusters of the
University of Oregon’s ICONIC grid

In the future, we will enhance the computational framewarkéveral ways. Addi-
tional cluster resources will be used to naturally scaleprdormance of the conduc-
tivity optimization. In particular, we will add the 16-nod2-processor per node Dell
cluster to the mix. Consistent with the ICONIC grid, our imtés to evolve the present
interprocess communication (IPC) socket-based code tdhat@ises grid middleware
support, allowing the impedance imaging program to moréyeascess available re-
sources and integrate with neuroimaging workflows. Finallyinsically parallel multi-
component ADI algorithms [9] in a forward solver and moreelligent schemes of
conductivity search based on multi-resolution approacbefd be tried. The idea here
is to first start with fast, low-resolution solutions whichrcthen narrow the range of
and guide initial conductivity guesses for high-resolatimore accurate investigation.

References

[EnY

. Gulrajani, R.M.: Bioelectricity and Biomagnetism. Johiley & Sons, New York (1998)

Ferree, T. C., Eriksen, K. J., Tucker, D. M.: Regional hésslie conductivity estimation for

improved EEG analysis. IEEE Transactions on Biomedicalitg®ging 47(2000) 1584-1592

3. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannd3.P.: The Numerical Recipes in C:
The art of Scientific Computing. 2nd edition. Cambridge énsity Press, New York (1992)

4. Jin, J.: The Finite Element Method in Electromagnetichn)Wiley & Sons, New York(1993)

5. Arridge, S.R.: Optical tomography in medical imagingdrse Problems, 15 (1999) R41-R93

6. Hielscher, A.H., Klose, A.D., Hanson, K.M.: Gradient Bedterative Image Reconstruction
Scheme for Time-Resolved Optical Tomography. IEEE Traimwas on Medical Imaging. 18
(1999) 262-271.

7. http:/lwww.comsol.com

8. Abrashin, V.N., Dzuba, |.A.:Economical Iterative Metisofor solving multi- dimensional
problems in Mathematical Physics. Differential Equati80g1994) 281-291

9. Abrashin, V.N., Egorov, A.A., Zhadaeva, N.G.: On the Gagence Rate of Additive lterative

Methods. Differential Equations. 37 (2001) 867-879

n



