
IWOMP 2005 - OMPlab on Sun 1/8

OMPlab on Sun - Lab Programs

Introduction

We have prepared a set of lab programs for you.

We have an exercise to implement OpenMP in a simple algorithm and also various programs to
demonstrate certain features of the Sun OpenMP implementation.

The following lab programs are available:

mxv.c - demonstrates automatic parallelization in C; can also be parallelized with
OpenMP

mxv.fortran - demonstrates automatic parallelization in Fortran; can also be parallelized with
OpenMP

sun-mp-warn - demonstrates the use and run-time behavior of SUNW_MP_WARN
autoscoping - demonstrates the use of autoscoping in Fortran
strassen - implements nested parallelism and includes a performance analyzer demo

Below you will find a description of each lab program.

All directories have a Makefile. If you just type “make” you will get an overview of what
commands are supported. There will not be an extensive description of these commands. Most
of them are hopefully straightforward. Please ask for help if you need clarification.

Installation of the OMPlab programs

Go to your home directory (% cd) and unpack the distribution directory by using the unzip
command:

% cd
% unzip /tmp/OMPlab_on_Sun.zip

You will now have a directory called “OMPlab_on_Sun”. In this directory you will find the various
lab programs. Each lab will be in a specific directory. If you go into this directory you will find the
Makefile, sources and other files that might be needed to do the lab.

There will be no hand out with the solutions to these labs. Do not hesitate
to consult the Sun people in case of questions or problems.

RvdP/V1.2 Copyright © 2005 Sun Microsystems

IWOMP 2005 - OMPlab on Sun 2/8

Lab: mxv.c and mxv.fortran

This program implements the well-known matrix vector multiplication algorithm. This is a popular
and simple mathematical operation. A Fortran and C version are available. The behavior and
workings are largely identical and therefore we have combined the description of these two labs.

The program compares the performance on 3 different implementations of this algorithm. One
with poor memory access, one with good memory access and a tuned library version from the
Sun Performance Library.
We refer to Appendix A for more details on the workings of this lab program.

Getting started

Make sure you're search path is set up correctly. Type this in to make sure you will be using the
correct versions of the compilers and tools:

% make check

This command will also check whether you have the “gnuplot' command in your search path

Assignment 1 - Automatic parallelization

We will first compile and run the program using the automatic parallelization feature on the Sun
compilers. To this end, build and run the program using the make file and standard options
supplied:

% make apar
% make run_apar

After the program has finished, plot the results:

% make plot_apar

The performances for the row, column and library version are plotted for 1, 2 and 4 threads.

Assignment 2 - OpenMP parallelization of the row version

Use OpenMP directives to parallelize the row version (mxv_row.c in C, mxv_row.f95 in Fortran).

Build and run the program:

% make omp
% make run_omp

After the program has finished, you can plot the results:

% make plot_omp

Note that the performance of the column version is the same for all threads.
This is because you have not yet parallelized it!

RvdP/V1.2 Copyright © 2005 Sun Microsystems

IWOMP 2005 - OMPlab on Sun 3/8

Assignment 3 - OpenMP parallelization of the column version

Verify that the the nested loop in this algorithm can not be parallelized over the outermost loop.
This will give rise to a data race condition. Instead, parallelize the initialization loop and the
innermost loop in this algorithm.

Build and run the program:

% make omp
% make run_omp

After the program has finished, you can plot the results:

% make plot_omp

Do not worry if the program runs for a long time. The column version has not been
parallelized very efficiently!

Assignment 4 - Tuning our OpenMP versions

The graphs will clearly show for what problem sizes the algorithm should not be executed in
parallel. We can use the if-clause in OpenMP to avoid executing in parallel if the matrix is too
small.

Include the OpenMP if-clause in both the row and column version. For this you can make use of
two program variables called “threshold_row” and “threshold_col” respectively.

Your OpenMP version could use these variables as follows:

#pragma omp parallel if (m > threshold_row) (mxv_row.c)
#pragma omp parallel if (m > threshold_col) (mxv_col.c)

!$omp parallel if (m > threshold_row) (mxv_row.f95)
!$omp parallel if (m > threshold_col) (mxv_col.f95)

The two threshold variables threshold_row and threshold_col are read in from input file INPUT
and accessible in the sources of the row and column versions. You can find and set the values
on the second row of file INPUT. Currently they have been set to 1. This implies these routines
will always run in parallel. Clearly that is not a good idea.

Experiment with higher threshold values to find the optimal cross over point for both algorithms.

Assignment 5 (advanced) - Tuning the column OpenMP version

This is a challenge. The column version can be implemented at the outer loop level, but you
need to work for it.

Recall that this version takes linear combinations of the columns of the matrix. Well, in that case
each thread can calculate partial linear combination and then these partial results can be
combined. Sounds like a reduction operation, doesn't it?

RvdP/V1.2 Copyright © 2005 Sun Microsystems

IWOMP 2005 - OMPlab on Sun 4/8

Lab: sun-mp-warn

This is a demo program to show you how the SUNW_MP_WARN environment variable can help
diagnosing run-time problems (e.g. violations of the OpenMP standard).

Assignment 1 - Getting started

Study the Makefile. You will see a make variable called THREADS. This variable controls how
many threads will be used. The current setting is such that the program will run the first two
cases fine, but will hang on the third (when using 2 threads).

Verify this behavior by executing the “make run” command. This will (re)build the program and
run the test cases.

Assignment 2 - Additional experiments

Set make variable WARN to TRUE and run the experiments again. Note the run-time messages
you now get.

RvdP/V1.2 Copyright © 2005 Sun Microsystems

IWOMP 2005 - OMPlab on Sun 5/8

Lab: autoscoping

Autoscoping is a convenient feature to relieve the programmer from explicit scoping as much as
possible.

If the compiler is not able to determine the scope of a variable, a warning will be issued and the
parallel region will be executed on one thread only. In such a case one can explicitly scope those
variables not handled by the compiler, thereby typically greatly reducing the number of variables
to be scoped.

The following examples are available:

make blas - compiles a BLAS routine
make cfd - compiles a kernel derived from a CFD program
make critical - compiles and runs an example using critical sections
make reduction - compiles and runs an example using reductions
make as-failure - compiles and runs an example where autoscoping fails

Assignment 1 - Getting started

Run each of the cases listed above by issuing the appropriate make command (e.g. “make
blas”). Try to understand the messages that come out of the compiler.

Assignment 2 - Assisting autoscoping

The last test case (“as-failure”) can be repaired by explicitly scoping the variable the compiler
can not scope automatically. Try this and compare the difference in run-time behavior.

RvdP/V1.2 Copyright © 2005 Sun Microsystems

IWOMP 2005 - OMPlab on Sun 6/8

Lab: strassen

This is a very elaborate example to demonstrate nested parallelism. It is also a good example to
use the Sun Performance Analyzer.

Three different versions of matrix multiplication are compared. We start with the regular “classic”
matrix multiply, followed by a faster variant called the “Strassen” algorithm. The latter implements
a recursive algorithm and has also been parallelized using nested parallelism in OpenMP. This is
the third version we run.

Although this is largely meant as a free running exercise, we will also give some guidance in the
form of assignments1.

Performance information

Each of the 3 versions will be timed separately and the results will be shown on the screen. The
program will also produce (or update) a file with timing information. This file is called
“timings_strassen.csv”. Per run, one line will be added to this file. If the file does not exist yet, it
will be created. Each line contains the relevant parameters, plus the timing information for that
run. The fields are tab separated and can easily be loaded into a (StarOffice) spreadsheet for
further processing.

Assignment 1 - Getting started

Make sure you can build and run the standard test case. The easiest thing to do is to use the
Makefile for this.

Type “make run_quick” and watch what happens.

You will see that the program runs on two threads only.

Note the warning that two Sun specific environment variables have not been set yet. This will be
done for you in the next assignment and you can experiment with it yourself in Assignment 4.

Assignment 2 - Exploiting nested parallelism

We will now run several cases. We will do this for a fixed number of threads (2 in this case), and
different nesting levels.

Check the Makefile. This is where to control the jobs to be run. Make variable THREADS can be
used to specify the number of threads you would like to run on. With NESTING you control the
nesting level. Both can be a list.

Run the standard experiments as specified through the Makefile.

% make run

You should now have the file “timings_strassen.csv with the timing information.

1The Makefile has automated several things for you. By changing the values of some make
variables you can still conduct many experiments yourself as well. See also Assignment 4.

RvdP/V1.2 Copyright © 2005 Sun Microsystems

IWOMP 2005 - OMPlab on Sun 7/8

Assignment 3 - Using the Sun Performance Analyzer

The Makefile also has a command to collect performance data on the runs you have done in
Assignment 2.

All you need to do is the following:

% make run_collect
% make run_analyzer

The second command will invoke the Sun Performance Analyzer. It will show you a list with
performance experiments to select from.

The first digit in the name denotes the number of threads used, the second digit is the nesting
level. For example “strassen.2x3.er” has the performance data for an experiment run on 2
threads with a nesting level of 3.

Select an experiment and use the analyzer to understand the performance behavior. We
particularly recommend to take a look at the Timeline tab.

Assignment 4 - Free running lab

Now that you're hopefully somewhat familiar with the workings of this program, it is time to
explore it yourself.

The program has a built-in help function:

% ./strassen.exe -h
Strassen Matrix Multiply - Usage:
Usage: ./strassen.exe -n <dim> -r <repeat> -d <depth> -b <blocking> [-v] [-h]
 -n dimension of square matrices [1024]
 -r repeat count for timing measurements [1]
 -d recursive depth for Strassen algorithm [32]
 -b blocking size for matrix multiply [16]
 -v verbose option [OFF by default, set to -v to activate]
 -h print this message

You can change the settings by specifying one or more of the options explicitly. The options not
specified will maintain their default values.

Note that the parallel behavior will still be controlled through the following OpenMP environment
variables: OMP_NUM_THREADS and OMP_NESTED. In addition to these, you probably also
want to experiment with the two Sun-specific environment variables: SUNW_MP_MAX_POOL
and SUNW_MP_MAX_NESTED_LEVELS.

Therefore, it is probably easiest to use the make variables in the Makefile to
specify the kind of additional experiments you would like to run. Please check the

Makefile on how to do this.

RvdP/V1.2 Copyright © 2005 Sun Microsystems

IWOMP 2005 - OMPlab on Sun 8/8

Appendix A - Description of the matrix times vector program

About the algorithm

This lab contains an implementation of the matrix times vector operation a=B*c. The program
measures performance in Mflop/s for three different implementations.

This algorithm has been chosen because it is both conceptually and from an implementation
point of view, quite simple.

A row-oriented and column-oriented version are supplied in source format. In addition to this, we
will also measure the performance of routine "dgemv" from the Sun Performance Library. This
routine implements various flavors of the matrix times vector operation. We have selected the
parameters such that the same product a=B*c will be calculated as implemented in the source
versions.

It is recommended to examine the source of the main program for the details how "dgemv" is
used. Every routine from the Sun Performance Library has a man page. You can for example
look up the information for the function parameters (%man dgemv).

Lab program input

The program reads it's input values from standard input, but is easiest to redirect this from a file.
Example input can be found in file INPUT. Please use this file when working on the lab
exercises.

The structure of file INPUT is as follows:

thresholds (row col)
1 1
m n krep
 5 5 1500000
 10 10 500000
 20 20 200000
 ... etc ...

Explanation of the structure:

1. The first and third input line are skipped to allow for comment in the input file.

2. The second line should contain 2 integer numbers. It is recommended to use the OpenMP if-
clause to prevent very short loops from running in parallel.

The 2 integer values (currently set to 1) can be used in the OpenMP if-clause for the row and
column versions of the algorithm (first and second value respectively).
Through this mechanism you can easily perform experiments using different parameter
values for the thresholds. This is actually part of these lab exercises: you are asked to find
the optimal parameter values.

3. In the remainder of the input (file), three values are expected. The dimensions M and N, plus
a repeat count to ensure the test runs sufficiently long.

RvdP/V1.2 Copyright © 2005 Sun Microsystems

