
Smart OpenMP

 Alejandro Duran

CEPBA-IBM Research Institute
Computer Architecture Department
Universitat Politecnica de Catalunya

2IWOMP'05, June 2

OpenMP forecast

● New architectures will increase the parallelism
demand
– Outside scientific domains

● Not enough offer to cope with the demand
– Programmers barely now what parallelism is

– They could learn...

● They'll do the easier & quicker
– no fancy staff just defaults

3IWOMP'05, June 2

Portability vs Performance

● Data set
● Architecture
● My little jacobi history

500x500 1000x1000 2000x2000 5000x5000
0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

5

5,5

6

6,5

SMT (8 threads)

Jacobi “a”

Jacobi “b”

Input Size

S
pe

ed
-u

p

500x500 1000x1000 2000x2000 5000x5000
0

0,5
1

1,5
2

2,5
3

3,5
4

4,5
5

5,5
6

6,5
7

7,5
8

CMP (8 threads)

Jacobi “a”

Jacobi “b”

Input Size

S
p

ee
d

-u
p

4IWOMP'05, June 2

OpenMP 3.0

● Decouple exploitation from semantics
● Allow plenty of room for dynamic optimizations by

default
– Smart exploitation

– Smart schedules

– Smart blocking

– Smart data layout

– ...

● Bottom line: Make defaults performance-wise!!!

5IWOMP'05, June 2

OpenMP 3.0

● Already “supported” in some cases
– schedule by default is implementation dependent

● Expand the cases
– parallel definition

– number of threads

– OMP_DYNAMIC should be default

– ...

● Encourage the runtime/compiler work
– reword “implementation dependent” to “application-

architecture dependent”

6IWOMP'05, June 2

Smart Parallel Exploitation

● Compiler/Runtime decides best exploitation
– How many threads to use?

● Depending on current system load, input data,
architecture, ...

– Which loop has the best granularity?
● Depending on input data, architecture, number of threads, ...

– Use nested parallelism?
● Determine the optimal number of groups and their sizes

7IWOMP'05, June 2

Smart scheduling

● Feedback guided
scheduling

● Load Balancing

● Architectural
schedules

● SMTs
● DSMs
● ...

8IWOMP'05, June 2

Conclusion

● Looking through our crystal ball™
– Parallelism goes mainstream

● Great times for programmers :-)

– Smart runtimes/compilers
● Semantically powerful defaults
● Optimized for applications & architectures

→ Extra time for friends & beers

