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OpenMP forecast

● New architectures will increase the parallelism 
demand
– Outside scientific domains

● Not enough offer to cope with the demand
– Programmers barely now what parallelism is

– They could learn...

● They'll do the easier & quicker
– no fancy staff just defaults



3IWOMP'05,  June 2

Portability vs Performance

● Data set
● Architecture
● My little jacobi history
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OpenMP 3.0

● Decouple exploitation from semantics
● Allow plenty of room for dynamic optimizations by 

default
– Smart exploitation

– Smart schedules

– Smart blocking

– Smart data layout

– ...

● Bottom line: Make defaults performance-wise!!!
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OpenMP 3.0

● Already “supported” in some cases
– schedule by default is implementation dependent

● Expand the cases
– parallel definition

– number of threads

– OMP_DYNAMIC should be default

– ...

● Encourage the runtime/compiler work
– reword “implementation dependent” to “application-

architecture dependent”
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Smart Parallel Exploitation

● Compiler/Runtime decides best exploitation
– How many threads to use?

● Depending on current system load, input data, 
architecture, ...

– Which loop has the best granularity?
● Depending on input data, architecture, number of threads, ... 

– Use nested parallelism?
●  Determine the optimal number of groups and their sizes
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Smart scheduling

● Feedback guided 
scheduling

● Load Balancing

● Architectural 
schedules

● SMTs
● DSMs
● ...
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Conclusion

● Looking through our crystal ball™
– Parallelism goes mainstream

● Great times for programmers :-)

– Smart runtimes/compilers
● Semantically powerful defaults
● Optimized for applications & architectures

→ Extra time for friends & beers


