
Experiences Parallelizing
a Web Server with OpenMP

J. Balart, A. Duran, M. Gonzàlez,
X. Martorell, E. Ayguadé, J. Labarta

CEPBA-IBM Research Institute
Computer Architecture Department
Universitat Politecnica de Catalunya

2IWOMP'05, June 2 2005

Outline

● Motivation
● The Boa web server
● Parallelizations
● Evaluation
● Experiences
● Conclusions

3IWOMP'05, June 2 2005

Motivation

● OpenMP has been successful for numeric
applications
– The API has been influenced by these applications

● New parallel applications are emerging
– with new needs

● Objective: Explore a new kind of application

4IWOMP'05, June 2 2005

Boa

● Single threaded event-driven architecture
– Does not use a thread/process by connection

● Multiplexes requests over a single thread
– Round Robin scheduler

● Two queues: ready & blocked
● Requests are processed by chunks

● Uses non-blocking I/O for sockets
● Uses mmap for local files

– Maintains a cache of open files to avoid remappping

5IWOMP'05, June 2 2005

Boa: main loop

for (; ;) {

process signals

unblock requests

accept new connections

process ready requests

select();

}

blocked queue

ready queue

6IWOMP'05, June 2 2005

Boa: main loop

for (; ;) {

process signals

unblock requests

accept new connections

process ready requests

select();

}

blocked queue

ready queue

new data available

7IWOMP'05, June 2 2005

Boa: main loop

for (; ;) {

process signals

unblock requests

accept new connections

process ready requests

select();

}

blocked queue

ready queue

8IWOMP'05, June 2 2005

Boa: main loop

for (; ;) {

process signals

unblock requests

accept new connections

process ready requests

select();

}

blocked queue

ready queue

9IWOMP'05, June 2 2005

Boa: request processing loop

for each ready request {

result = work_on(request);

accept new connections

if (result == BLOCK)
block(request);

if (result == FINISHED)
free(request);

else keep it ready;

}

blocked queue

ready queue

10IWOMP'05, June 2 2005

Boa: request processing loop

for each ready request {

result = work_on(request);

accept new connections

if (result == BLOCK)
block(request);

if (result == FINISHED)
free(request);

else keep it ready;

}

blocked queue

ready queue

11IWOMP'05, June 2 2005

Boa: request processing loop

for each ready request {

result = work_on(request);

accept new connections

if (result == BLOCK)
block(request);

if (result == FINISHED)
free(request);

else keep it ready;

}

blocked queue

ready queue

12IWOMP'05, June 2 2005

Boa: request processing loop

for each ready request {

result = work_on(request);

accept new connections

if (result == BLOCK)
block(request);

if (result == FINISHED)
free(request);

else keep it ready;

}

blocked queue

ready queue

13IWOMP'05, June 2 2005

Boa: request processing loop

for each ready request {

result = work_on(request);

accept new connections

if (result == BLOCK)
block(request);

if (result == FINISHED)
free(request);

else keep it ready;

}

blocked queue

ready queue

14IWOMP'05, June 2 2005

Boa: main loop

for (; ;) {

process signals

unblock requests

accept new connections

process ready requests

select();

}

blocked queue

ready queue

15IWOMP'05, June 2 2005

Parallelization ...

● Sources of parallelism
– Computation of each request in parallel

– Different tasks in parallel
● serving requests
● accepting new connections

16IWOMP'05, June 2 2005

Parallelization ...

● Common issues
– Critical access was required for

● global variables
● manipulation of queues
● access to the open files cache
● server log files

– A lot of static variables
● false per-thread global variables
● changed to an extra parameter

17IWOMP'05, June 2 2005

.... with pthreads

● Schema
– One producer

– N-1 consumers

● mutex locks for
critical accesses

blocked queue

ready queue

main
loop

process
request

18IWOMP'05, June 2 2005

... with OpenMP

● Producer-consumer not easy in OpenMP
● Request processing loop parallelized

– Needs to maintain the same number of elements
inside the workshare

● Splitted in two

– Unbounded loop
● do workshare cannot be used
● single workshare with nowait used

● Critical sections and OpenMP locks used for
critical accesses

19IWOMP'05, June 2 2005

... with OpenMP (II)

#pragma omp parallel

{

for each request in the ready queue

#pragma omp single nowait

request.result = work_on(request)

}

for each request in the ready queue

{

if (request.result == BLOCK) block(request)

else if (request.result == FINISHED) free(request)

else keep it in the queue

}

ready queue

ready queue

20IWOMP'05, June 2 2005

... with dynamic sections

● Could be done without managing requests at
application level?

● Available parallelism can be seen as collection of
tasks
– Dynamic sections can be used to express it

21IWOMP'05, June 2 2005

Dynamic sections

● Dynamic sections
– A single thread executes the serial code

● which can be seen as an implicit section too

– Parallel tasks are created with section directives

– Any thread can create new work
● nesting of SECTION directive

– Tasks are executed by any available thread

22IWOMP'05, June 2 2005

... with dynamic sections (II)

#pragma omp parallel

#pragma omp sections dynamic

while (1) {

foreach request in the blocked queue

if (dependences are met)

#pragma omp section captureprivate(request)

work_on(request)

if (new connection) {

accept it

#pragma omp section captureprivate(request)

work_on(request)

}

select()

}

blocked queue

pool of tasks

23IWOMP'05, June 2 2005

Evaluation

● Server: 4-wa Xeon at 1.4GHz with 2GB RAM
● Client: 2-way Xeon at 2.4GHz with 2GB RAM
● SO: Linux 2.6
● Network: Gigabit network
● Workload:

– Surge workload

– Static content requests with think time

– Different loads of clients

24IWOMP'05, June 2 2005

Evaluation: Througput

25IWOMP'05, June 2 2005

Evaluation: Response time

26IWOMP'05, June 2 2005

Experiences

● Handling of static variables was a consuming
tasks
– tools can help

● Critical accesses
– In general easier in OpenMP

– But, when the same code applies to different data
● Using locks, lock and unlock calls is as pthreads
● Idea: have dynamically named critical sections

– Example: #pragma omp critical (cache_lock[i])

27IWOMP'05, June 2 2005

Experiences (II)

● Pthread version
– Much easier because of complex serial code

– Overall effort: moderate

● OpenMP version
– Much easier because of complex serial code

– Few directives

– Main difficulty: Correctness of single workshare

– Reduction in performance because not enough
parallelism was available

28IWOMP'05, June 2 2005

Experiences (III)

● Dynamic sections version
– Simpler

● did not use the request management of the serial version

– Could easily handle different parallel tasks
● pthreads code would grow in complexity

– Good performance

29IWOMP'05, June 2 2005

Conclusions

● Web server could be parallelized with a handful of
directives
– but had bad performance

● Dynamic sections was also easier to use
– matched pthreads performance

30IWOMP'05, June 2 2005

Future work

● Other web scenarios
– SSL applications

– Dynamic content

● Other applications
● Point-to-point synchronizations

– wait/signal?

31IWOMP'05, June 2 2005

