Performance Evaluation of Parallel

Sparse Matrix-Vector Products on
SGI Altix3700

H. Kotakemori [1], H. Hasegawa [2], T. Kajiyama [1]
A. Nukada [1], R. Suda [1], A. Nishida [1]

[1] University of Tokyo / CREST, JST
[2] University of Tsukuba / CREST, JST

Outline

Introduction
Sparse Matrix-Vector Product

SGI Altix3700
— NUMA architecture
— First-touch mechanism

Experiments
— Sparse matrix-vector product
— Conversion costs

Conclusions

Introduction (1) &

Scalable Software Infrastructure

* Demands for reliable and portable parallel
numerical libraries are growing.

» Scalable Software Infrastructure Project

— Started as a 5-year national projects since
Nov. 2002.

— Development
 Portable implementation of the following libraries:
 Parallel eigen solvers
 Parallel linear system solvers
 Parallel fast integral transforms

Introduction (2)

* We are planning to develop a library of
iterative solvers, which includes a wide
range of iterative solvers, preconditioners,
and storage formats.

* The matrix-vector product is the most

important kernel operation for iterative
linear solvers.

* |ts performance has a significant effect on
the performance of linear solvers.

Introduction (3)

* We discuss the performance of sparse

matrix-vector products on a cc-NUMA
machine SGI Altix3700.

* What's problems :
— First-touch mechanism

— The performance of sparse matrix-vector
product for each storage format.

— conversion costs of the storage format.

Outline

Introduction
Sparse Matrix-Vector Product

SGI Altix3700
— NUMA architecture
— First-touch mechanism

Experiments
— Sparse matrix-vector product
— Conversion costs

Conclusions

Sparse Matrix-Vector Product with OpenMP

« Sparse Matrix-Vector Product y=Ax
— The storage formats affect the performance

« Parallelize using OpenMP.
— OpenMP is designed for shared memory machines.

* Advantages
— a serial program can be parallelized one loop at a time.

— Compiler directives are used, so that the same code can be
compiled for serial or parallel execution.

— portability

« Special treatment for data locality, such as first-touch,
may be required, especially for cc-NUMA architectures
(will be discussed later).

Compressed Row Storage (CRS)

% \
21 |22 n=4
A= iy
32| 33 nnz =
41 43 44,

A.ptr| 1] 2| 4] 6] 9

A.index| 1| 1| 2| 2| 3| 1| 3| 4
A.value | 11| 21| 22| 32| 33| 41|43 44

Matrix-Vector Product for CRS

for(i=0; i<n; i++) {
t=0.0;
for(j=A.ptr[i];j<A.ptr[i+1];j++)
t += A.valuelj] * x[A.index]j]];
ylil = t;
}

Matrix-Vector Product for CRS with OpenMP

#pragma omp parallel for private(i,j,t)
for(i=0; i<n; i++) {
t=0.0;
for(j=A.ptr[i];j<A.ptr[i+1];j++)
t += A.valuelj] * x[A.index]j]];
yli] =t
}

Block Sparse Row (BSR)

111 A n=4
271 22 nr=nlr=2
A= 32 | 33 bnnz =3
ror=>2
41 43 44J>
C c=2
Y
C
A.bptr | 1| 2] 4
A.bindex | 1| 1| 2
A.value |11121] 0(22] 0]41]|32 33|43 44

Matrix-Vecotr Product for BSR

for(i=0; i<nr; i++) {
t0 =t1 =0.0;
for(j=A.bptr[i];j<A.bptr[i+1];j++) {
jj = A.bindex[j];

t0 += A.value[j*4+0] * x[jj*2+0];
t1 += A.value[j*4+1] * x[jj*2+0];
t0 += A.value[j*4+2] * x[jj*2+1];
t1 += A.value[j*4+3] * x[jj*2+1];

}
y[2%i+0] = t0; y[2*i+1] = t1;
}

Matrix-Vecotr Product for BSR with OpenMP

#pragma omp parallel for private(i,j,jj,t0,t1)
for(i=0; i<nr; i++) {
t0 =11 =0.0;
for(j=A.bptr[i];j<A.bptr[i+1];j++) {
jj = A.bindex]j];

t0 += A.value[j*4+0] * x[jj*2+0];
t1 += A.value[j*4+1] * x[jj*2+0];
t0 += A.value[j*4+2] * x[jj*2+1];
t1 += A.value[j*4+3] * x[jj*2+1];

}
y[2%i+0] = t0; y[2*i+1] = t1;
}

Outline

Introduction
Sparse Matrix-Vector Product

SGI Altix3700

— NUMA architecture
— First-touch mechanism

Experiments
— Sparse matrix-vector product
— Conversion costs

Conclusions

NUMA Architecture

16NODES
ltanium2 1.3GHz| | tanium2 1.3GHz - - ~

I FSB 6.4GB/s I
Inter-node comm | 7/4 I -"//

| .
NUMAlink3 3.2GBJs S 4
SHUB 5
NUMAlinkd 6.4GB/s DDR333 SDRAM / I \

]

Total 10.8GB/s NUMAlink4 NUMAIink3

 With 16 or fewer threads, the threads are allocated to
different nodes using the dplace command.

« With 32 processors, the bus of each node is shared with
the two processors in the node.

First-touch Mechanism

« Each page is stored in the memory of the
node with a processor that accesses the
page first.

« Data must be transferred via interconnects

when it is accessed by a processor out of
the node that owns the data.

* |t Is necessary to take into account the
first-touch mechanism for the construction

of each storage format.

Convert from CRS to BSR (Sequential)

for(bi=0;bi<nr;bi++) {
I = bi*r; ii=0;
while(i+ii<n && ii<=r-1) {
for(k=Ain.ptr[i+ii];k<Ain.ptr[i+ii+1];k++) {

Aout.bindex[kk] = Ain.index[k]/c; Aout.value[ij] = Ain.value[k]; kk = kk+1;

...... }
i =ii+1;
}
Aout.bptr[bi] = Kkk;
} CPUO CPU1
11 A.bptr| 1| 2] 3
21 22

v A.bindex|| 1] 2
43 44 A.value|[11]21| 022

33|43 0|44

Convert from CRS to BSR (Parallel)

#pragma omp parallel for private(...)
for(bi=0;bi<nr;bi++) {
I =bi*r; ii=0; kk=Aout.bptr[bil;
while(i+ii<n && ii<=r-1) {
for(k=Ain.ptr[i+ii];k<Ain.ptr[i+ii+1];k++) {

Aout.bindex[kk] = Ain.index[k]/c; Aout.valuelij] = Ain.value[k]: kk = kk+1:

}
il =ii+1;
}
b CPUO CPU1
K A.bptr | 1] 2 3
21 22 ,
3 A.bindex|[]
43 44 A.value 11| 21 0223343 O

Control First-touch vs. NOT Control First-touch

300

[*2]
)]
(&}
& 200)/
£ —&—Data on each node
é 150 —- All data on a single node
=
& 100 |,
)
>
& 50
h

0 —— —

0 10 20 30 40
Number of threads

« All data on a single node is poor performance.

« The data distribution is important for taking into account the first-
touch mechanism.

Summary : SGI Altix3700

* In order to obtain good performance, each
page should be assigned to the node with
the processor that most often accesses

the page.

* To control first-touch, we parallelized the
storage format conversion routines.

Outline

Introduction
Sparse Matrix-Vector Product

SGI Altix3700
— NUMA architecture
— First-touch mechanism

Experiments
— Sparse matrix-vector product
— Conversion costs

Conclusions

Experiments

* We examined
— times of parallel matrix-vector products
— speed-ups of parallel matrix-vector products
— storage format conversion costs

Test Matrices

Name Dimension Nonzeros Ave.
(a) |af23560 23,560 484,256 | 20.55
(b) |fidapm37 9,152 765,944 | 83.69
(c) |fidap011 16,614 1,091,362| 65.69
(d) |bcsstk30 28,924 2,043,492 | 70.65
(e) |s3dkg4m?2 90,449 4,820,891 53.30
(f) |Poisson 1,000,000 26,463,592 | 26.46

* (a)to(e)
* (f)

- Matrix Market.
: FEM of the three-dimensional Poisson

equation on a cube.

« Ave

elements per row.

. The average number of the non-zero

Execution times (in seconds) of
1000 iterations

Number of threads

Matrix Format 1 ° 4 | 10 32
CRS 3.79 1.89 0.91 0.46 0.24 0.14
@ BSR 41 1.46 0.72 0.28 0.15 0.09 0.07
CRS 2.53 1.33 0.63 0.32 0.18 0.10
(b) BSR 22 2.24 1.19 0.57 0.24 0.14 0.09
CRS 3.87 1.98 1.01 0.48 0.26 0.15
(©) BSR 41 2.51 1.30 0.65 0.24 0.13 0.09
) CRS 6.81 3.53 1.88 0.97 0.46 0.24
BSR 41 4.48 2.34 1.30 0.61 0.23 0.14
CRS 20.87 10.47 5.26 2.71 1.43 0.68
() BSR 41 9.17 4.65 2.39 1.30 0.62 0.27
CRS 149.50 74.96 37.43 18.76 9.51 4.97
(f) BSR_ 31 85.60 43.25 21.53 10.92 5.63 4.87
DIA 178.50 89.19 44.34 16.40 4.72 2.81

Speed-up ratios

Number of threads

Matrix Format 1 ° 4 | 19 32
CRS 1.00 2.00 418 8.19 15.51 27.16
@ BSR 41 1.00 2.04 5.19 9.59 15.77 21.69
CRS 1.00 1.90 3.99 7.93 14.23 24 .14
(b) BSR 22 1.00 1.88 3.91 9.42 15.90 25.18
CRS 1.00 1.95 3.82 8.03 15.13 26.50
(©) BSR 41 1.00 1.93 3.83 10.60 18.75 28.03
) CRS 1.00 1.93 3.63 7.00 14.91 28.07
BSR 41 1.00 1.91 3.45 7.34 19.22 32.21
CRS 1.00 1.99 3.97 7.70 14.61 30.72
() BSR 41 1.00 1.97 3.83 7.04 14.73 33.63
CRS 1.00 1.99 3.99 7.97 15.72 30.07
(f) BSR_31 1.00 1.98 3.97 7.84 15.20 17.58
DIA 1.00 2.00 4.03 10.88 37.84 63.51

Result of BSR 31 for matrix (f)

90

fg 30 485-6 —&— One thread per node
§ -0 73.07 —&— Two threads per node
()
< 60 \
@ o0
2 3.25
5 40 %&36.58
S 30
5 20
(@]
<10
- 0 —& 487
0 10 20 30 40

Number of threads

« The absolute performance for the two threads per node is lower than
the one thread per node.

Result of BSR 31 for matrix (f)

—- deal
~—&— One thread per node
—&— Two threads per node

39

W
o

N DN
o O

Speed—up ratio
(&)]

—_—
o

o O

0 10 20 30 40
Number of threads

« The speed-ups relative to the performance with two
threads are steady up to 32 threads.

Summary : Sparse matrix-vector product

* The speed-ups have attained good results
for any storage format when the FSB was
dedicated to one CPU.

* The performance for the BSR format
causes a great decrease when the FSB is
shared with two CPUs.

* The cache and memory bus architectures
have been observed to influence the
optimum choice of the storage format.

Conversion Costs

* Assumptions:
— T, : the execution times of MV in the CRS formats.
— Tyt - the execution times of MV target formats.

- T : the execution times of the conversion from the
CRS format to the target format.

« Conversion Costs

T
Nth — |7 cony —|
];m _']éy

— If the number of MV = Nth
then it is better to use the target format; otherwise
it is better to use CRS format without conversion.

conv

Conversion times T

(in milliseconds)

conv

Number of threads
Matrix | Format 1 2 4 8 16 32
(a) BSR_41 61.2 30.7 15.0 8.5 6.7 10.4
(b) BSR_22 96.9 50.8 24.9 12.4 7.7 8.5
(c) BSR 41 132.8 68.1 35.4 17.8 11.1 14.1
(d) BSR 41 2476 132.3 69.8 35.9 20.2 22.2
(e) BSR_41 575.9| 292.7| 148.5 78.2 47.7 53.5

BSR_31 | 3370.8 | 1720.3 | 1073.5| 478.6| 303.8| 439.2
U DIA 907.4| 4856| 270.3| 178.0f 165.7| 178.8

Threshold numbers of iterations Ny,

500 '
450 - /
400 =

/'/ \ / —— (a) BSR 41

350
— = (b) BSR 22
300 -

(c) BSR 41
250 (d) BSR 41
200 M —— (e) BSR 41
150 —— (f) BSR_31
’ —— () DIA
100
50 /F%

1 2 4 8 16 32

Number of threads

Threshold number of iterations Nth

Summary : Conversion Costs

* The value of Nth changes slightly except

(b).

* The conversion of the storage format
provides faster computation of the matrix-
vector product

— If the number of the matrix-vector product is
100 times or more in this test matrices.

Conclusions (1)

* Our Implementations have attained satisfactory
scalabillity.

— It is necessary to take into account the first-touch
mechanism.

* The storage format has been observed to
greatly affect the performance of matrix-vector
products.

— In order to maximize the performance of a machine,
users must be able to choose an appropriate storage
format for each matrix.

* The conversion of the storage format provides
faster computation of the matrix-vector product

— If the number of the matrix-vector product is certain
times or more.

Conclusions (2)

o take into account the First-touch
mechanism.

— we parallelized the storage format conversion
routines using OpenMP.

Future Works

* We are planning to port and to evaluate our
codes to other shared memory parallel
machines.

* Our next goal is parallelization for distributed
memory parallel machines through MPI and
MPI1-OpenMP hybrid parallelization.

« We will also work toward high-performance
iterative linear solvers using these kernel
routines and effective preconditioners for the
solvers.

Acknowledgements

his research was supported in part by
CREST “Development of Software
Infrastructure for Large Scale Scientific
Simulation”, Japan Science and
Technology Agency.

