
Performance Evaluation of Parallel
Sparse Matrix-Vector Products on

SGI Altix3700

H. Kotakemori [1], H. Hasegawa [2], T. Kajiyama [1]
A. Nukada [1], R. Suda [1], A. Nishida [1]

[1] University of Tokyo / CREST, JST
[2] University of Tsukuba / CREST, JST

Outline
• Introduction
• Sparse Matrix-Vector Product
• SGI Altix3700

– NUMA architecture
– First-touch mechanism

• Experiments
– Sparse matrix-vector product
– Conversion costs

• Conclusions

Introduction (1)
• Demands for reliable and portable parallel
numerical libraries are growing.

• Scalable Software Infrastructure Project
– Started as a 5-year national projects since
Nov. 2002.

– Development
• Portable implementation of the following libraries:
• Parallel eigen solvers
• Parallel linear system solvers
• Parallel fast integral transforms

Im

p

l
e

m

e

n

t
a

t
io

n

Ｌ

Ｅ

Ｑ

Ｆ

Ｆ

Ｔ

Ｆ

Ｆ

Ｔ

Ｆ

Ｆ

Ｔ

Ｆ

Ｆ

Ｔ

Ｅ
Ｉ
Ｇ

Scalable Software Infrastructure
SSISSI

Introduction (2)
• We are planning to develop a library of
iterative solvers, which includes a wide
range of iterative solvers, preconditioners,
and storage formats.

• The matrix-vector product is the most
important kernel operation for iterative
linear solvers.

• Its performance has a significant effect on
the performance of linear solvers.

Introduction (3)
• We discuss the performance of sparse
matrix-vector products on a cc-NUMA
machine SGI Altix3700.

• What’s problems :
– First-touch mechanism
– The performance of sparse matrix-vector
product for each storage format.

– conversion costs of the storage format.

Outline
• Introduction
• Sparse Matrix-Vector Product
• SGI Altix3700

– NUMA architecture
– First-touch mechanism

• Experiments
– Sparse matrix-vector product
– Conversion costs

• Conclusions

Sparse Matrix-Vector Product with OpenMP
• Sparse Matrix-Vector Product y=Ax

– The storage formats affect the performance
• Parallelize using OpenMP.

– OpenMP is designed for shared memory machines.
• Advantages

– a serial program can be parallelized one loop at a time.
– Compiler directives are used, so that the same code can be
compiled for serial or parallel execution.

– portability
• Special treatment for data locality, such as first-touch,
may be required, especially for cc-NUMA architectures
(will be discussed later).

Compressed Row Storage (CRS)
















=

444341
3332

2221
11

A

A.value
A.index

A.ptr

4443413332222111
43132211

96421

8
4
=

=

nnz

n

Matrix-Vector Product for CRS

for(i=0; i<n; i++) {
t = 0.0;
for(j=A.ptr[i];j<A.ptr[i+1];j++)
t += A.value[j] * x[A.index[j]];
y[i] = t;
}

Matrix-Vector Product for CRS with OpenMP

#pragma omp parallel for private(i,j,t)
for(i=0; i<n; i++) {
t = 0.0;
for(j=A.ptr[i];j<A.ptr[i+1];j++)
t += A.value[j] * x[A.index[j]];
y[i] = t;
}

Block Sparse Row (BSR)
















=

444341
3332

2221
11

A

A.value
A.bindex

A.bptr

33 43 0 440324102202111
211

421

r

c

2
2

3
2/

4

=

=

=

==

=

c
r
bnnz

rnnr
n

Matrix-Vecotr Product for BSR

for(i=0; i<nr; i++) {
t0 = t1 = 0.0;
for(j=A.bptr[i];j<A.bptr[i+1];j++) {
jj = A.bindex[j];
t0 += A.value[j*4+0] * x[jj*2+0];
t1 += A.value[j*4+1] * x[jj*2+0];
t0 += A.value[j*4+2] * x[jj*2+1];
t1 += A.value[j*4+3] * x[jj*2+1];
}
y[2*i+0] = t0; y[2*i+1] = t1;
}

Matrix-Vecotr Product for BSR with OpenMP
#pragma omp parallel for private(i,j,jj,t0,t1)
for(i=0; i<nr; i++) {
t0 = t1 = 0.0;
for(j=A.bptr[i];j<A.bptr[i+1];j++) {
jj = A.bindex[j];
t0 += A.value[j*4+0] * x[jj*2+0];
t1 += A.value[j*4+1] * x[jj*2+0];
t0 += A.value[j*4+2] * x[jj*2+1];
t1 += A.value[j*4+3] * x[jj*2+1];
}
y[2*i+0] = t0; y[2*i+1] = t1;
}

Outline
• Introduction
• Sparse Matrix-Vector Product
• SGI Altix3700

– NUMA architecture
– First-touch mechanism

• Experiments
– Sparse matrix-vector product
– Conversion costs

• Conclusions

NUMA Architecture

• With 16 or fewer threads, the threads are allocated to
different nodes using the dplace command.

• With 32 processors, the bus of each node is shared with
the two processors in the node.

Itanium2 1.3GHz Itanium2 1.3GHz

SHUB

FSB 6.4GB/s

DDR333DDR333DDR333DDR333 SDRAM

NUMAlink3 3.2GB/s
NUMAlink4 6.4GB/s

Total 10.8GB/s

Inter-node comm

NUMAlink4 NUMAlink3

16NODES

First-touch Mechanism
• Each page is stored in the memory of the
node with a processor that accesses the
page first.

• Data must be transferred via interconnects
when it is accessed by a processor out of
the node that owns the data.

• It is necessary to take into account the
first-touch mechanism for the construction
of each storage format.

Convert from CRS to BSR (Sequential)
for(bi=0;bi<nr;bi++) {
i = bi*r; ii = 0;
while(i+ii<n && ii<=r-1) {
for(k=Ain.ptr[i+ii];k<Ain.ptr[i+ii+1];k++) {
......
Aout.bindex[kk] = Ain.index[k]/c; Aout.value[ij] = Ain.value[k]; kk = kk+1;
...... }
ii = ii+1;
}
Aout.bptr[bi] = kk;
......
}
















=

4443
33

2221
11

A

A.value
A.bindex

A.bptr

4404333
2202111

21
321

CPU0 CPU１

Convert from CRS to BSR (Parallel)
#pragma omp parallel for private(...)
for(bi=0;bi<nr;bi++) {
i = bi*r; ii = 0; kk = Aout.bptr[bi];
while(i+ii<n && ii<=r-1) {
for(k=Ain.ptr[i+ii];k<Ain.ptr[i+ii+1];k++) {
......
Aout.bindex[kk] = Ain.index[k]/c; Aout.value[ij] = Ain.value[k]; kk = kk+1;
......
}
ii = ii+1;
}
......
}
















=

4443
33

2221
11

A

A.value
A.bindex

A.bptr

33
2

43 0 442202111
1

21 3
CPU0 CPU１

Control First-touch vs. NOT Control First-touch

• All data on a single node is poor performance.
• The data distribution is important for taking into account the first-touch mechanism.

0

50

100

150

200

250

300

0 10 20 30 40

Number of threads

E
x
e
c
u
t
i
o
n

t
i
m

e
s

(
i
n

s
e
c
o
n
d
s
)

Data on each node

All data on a single node

Summary : SGI Altix3700
• In order to obtain good performance, each
page should be assigned to the node with
the processor that most often accesses
the page.

• To control first-touch, we parallelizeｄ the
storage format conversion routines.

Outline
• Introduction
• Sparse Matrix-Vector Product
• SGI Altix3700

– NUMA architecture
– First-touch mechanism

• Experiments
– Sparse matrix-vector product
– Conversion costs

• Conclusions

Experiments
• We examined

– times of parallel matrix-vector products
– speed-ups of parallel matrix-vector products
– storage format conversion costs

Test Matrices

• (a) to (e) : Matrix Market.
• (f) : FEM of the three-dimensional Poisson equation on a cube.
• Ave : The average number of the non-zero elements per row.

26.4626,463,5921,000,000Poisson(f)
53.304,820,89190,449s3dkq4m2(e)
70.652,043,49228,924bcsstk30(d)
65.691,091,36216,614fidap011(c)
83.69765,9449,152fidapm37(b)
20.55484,25623,560af23560(a)

Ave.NonzerosDimensionName

Execution times (in seconds) of
1000 iterations

2.814.7216.4044.3489.19178.50DIA
4.875.6310.9221.5343.2585.60BSR_31(f)
4.979.5118.7637.4374.96149.50CRS
0.270.621.302.394.659.17BSR_41(e) 0.681.432.715.2610.4720.87CRS
0.140.230.611.302.344.48BSR_41(d) 0.240.460.971.883.536.81CRS
0.090.130.240.651.302.51BSR_41
0.150.260.481.011.983.87CRS(c)

0.090.140.240.571.192.24BSR_22
0.100.180.320.631.332.53CRS(b)

0.070.090.150.280.721.46BSR_41(a) 0.140.240.460.911.893.79CRS
FormatMatrix 32168421Number of threads

Speed-up ratios

63.5137.8410.884.032.001.00DIA
17.5815.207.843.971.981.00BSR_31(f)
30.0715.727.973.991.991.00CRS
33.6314.737.043.831.971.00BSR_41(e) 30.7214.617.703.971.991.00CRS
32.2119.227.343.451.911.00BSR_41(d) 28.0714.917.003.631.931.00CRS
28.0318.7510.603.831.931.00BSR_41
26.5015.138.033.821.951.00CRS(c)

25.1815.909.423.911.881.00BSR_22
24.1414.237.933.991.901.00CRS(b)

21.6915.779.595.192.041.00BSR_41(a) 27.1615.518.194.182.001.00CRS
FormatMatrix 32168421Number of threads

Result of BSR_31 for matrix (f)

• The absolute performance for the two threads per node is lower than
the one thread per node.

85.6

43.25

21.53

10.92

5.63

73.07

36.58

18.48

9.33

4.87

0

10

20

30

40

50

60

70

80

90

0 10 20 30 40

Number of threads

E
x
e
c
u
t
i
o
n

t
i
m

e
s

(
i
n

s
e
c
o
n
d
s
)

One thread per node

Two threads per node

Result of BSR_31 for matrix (f)

• The speed-ups relative to the performance with two threads are steady up to 32 threads.

0

5

10

15

20

25

30

35

0 10 20 30 40

Number of threads

S
p
e
e
d
-
u
p

r
a
t
i
o

ideal

One thread per node

Two threads per node

Summary : Sparse matrix-vector product

• The speed-ups have attained good results
for any storage format when the FSB was
dedicated to one CPU.

• The performance for the BSR format
causes a great decrease when the FSB is
shared with two CPUs.

• The cache and memory bus architectures
have been observed to influence the
optimum choice of the storage format.

Conversion Costs
• Assumptions:

– Tcrs : the execution times of MV in the CRS formats.
– Ttgt : the execution times of MV target formats.
– Tconv : the execution times of the conversion from the CRS format to the target format.

• Conversion Costs

– If the number of MV ≧ Nth
then it is better to use the target format; otherwise
it is better to use CRS format without conversion.





−=

tgtcrs

conv
th TT

TN

Conversion times Tconv (in milliseconds)

178.8165.7178.0270.3485.6907.4DIA
439.2303.8478.61073.51720.33370.8BSR_31

(f)

53.547.778.2148.5292.7575.9BSR_41(e)
22.220.235.969.8132.3247.6BSR_41(d)
14.111.117.835.468.1132.8BSR_41(c)
8.57.712.424.950.896.9BSR_22(b)
10.46.78.515.030.761.2BSR_41(a)

FormatMatrix 32168421
Number of threads

Threshold numbers of iterations Nth

0

50

100

150

200

250

300

350

400

450

500

1 2 4 8 16 32

Number of threads

T
h
r
e
s
h
o
l
d

n
u
m

b
e
r

o
f

i
t
e
r
a
t
i
o
n
s

N

t
h

(a) BSR_41

(b) BSR_22

(c) BSR_41

(d) BSR_41

(e) BSR_41

(f) BSR_31

(f) DIA

Summary : Conversion Costs
• The value of Nth changes slightly except
(b).

• The conversion of the storage format
provides faster computation of the matrix-
vector product
– If the number of the matrix-vector product is
100 times or more in this test matrices.

Conclusions (1)
• Our Implementations have attained satisfactory scalability.

– It is necessary to take into account the first-touch mechanism.
• The storage format has been observed to greatly affect the performance of matrix-vector products.

– In order to maximize the performance of a machine, users must be able to choose an appropriate storage format for each matrix.
• The conversion of the storage format provides faster computation of the matrix-vector product

– If the number of the matrix-vector product is certain times or more.

Conclusions (2)
• To take into account the First-touch
mechanism.
– we parallelized the storage format conversion
routines using OpenMP.

Future Works
• We are planning to port and to evaluate our
codes to other shared memory parallel
machines.

• Our next goal is parallelization for distributed
memory parallel machines through MPI and
MPI-OpenMP hybrid parallelization.

• We will also work toward high-performance
iterative linear solvers using these kernel
routines and effective preconditioners for the
solvers.

Acknowledgements
• This research was supported in part by
CREST “Development of Software
Infrastructure for Large Scale Scientific
Simulation”, Japan Science and
Technology Agency.

