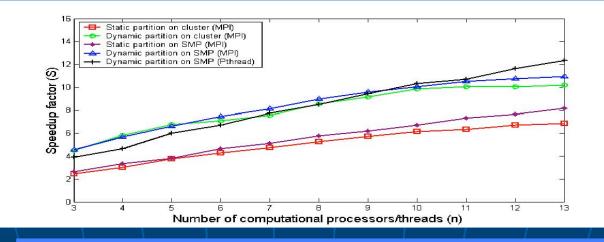
A Parallel Structured Ecological Model for High End Shared Memory Computers

Dali Wang

Department of Computer Science, University of Tennessee, Knoxville dwang@cs.utk.edu

Background and Context

5.) N	ATLSS STRUCTURE
a set a set	Across Trophic Level System Simulation
	Model Type
	Individual-Based Models Cape Sable Seaside Sparrow Snail Kite White-tailed Deer Radio-telemetry Tracking Tools
	Age/Size Structure Models Fish Functional Groups Alligators Reptiles and Amphibians
	Linked Cell Models
	Lower Trophic Level Components Vegetation
	Cape Sable Long-legged Short-legged White-tailed Deer
0 5 10 20 30	Spatially-Explicit Cape Sable Long-legged Short-legged White-tailed Deer Species Index Models Snail Kite Snail Kite Alligators
COPYRIGHT AT LSS T IEMUTIC 2003	Abiotic Conditions Models High Resolution Topography High Resolution Hydrology Disturbance


to provide a quantitative modeling package to assist stakeholders in the South and Central Florida restoration effort. to aid in understanding how the biotic communities of South Florida are linked to the

hydrologic regime and other abiotic factors, and

to provide a tool for both scientific research and ecosystem management.

Previous Experiments

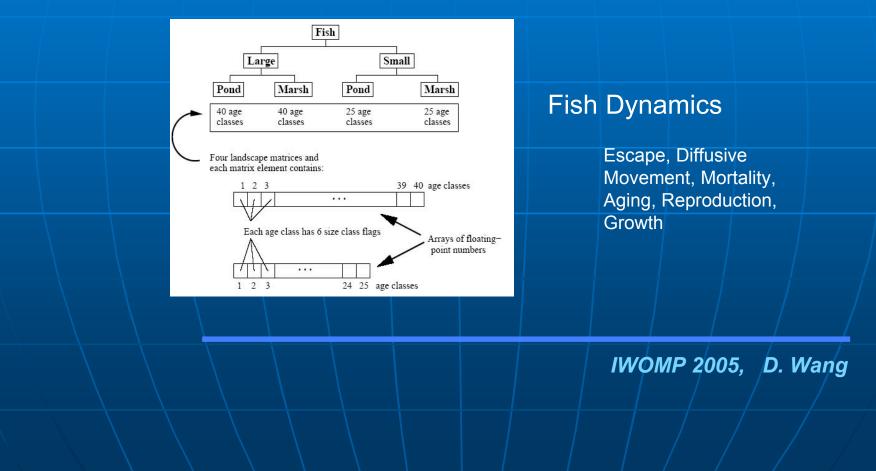
A successful approach to the parallelization of landscape based (spatiallyexplicit) fish models is spatial decomposition. For these cases, each processor only simulates the ecological behaviors of fish on a partial landscape. This approach is efficient in standalone fish simulations because the low movement capability of fish does not force large data movement between processors.

IWOMP 2005, D. Wang

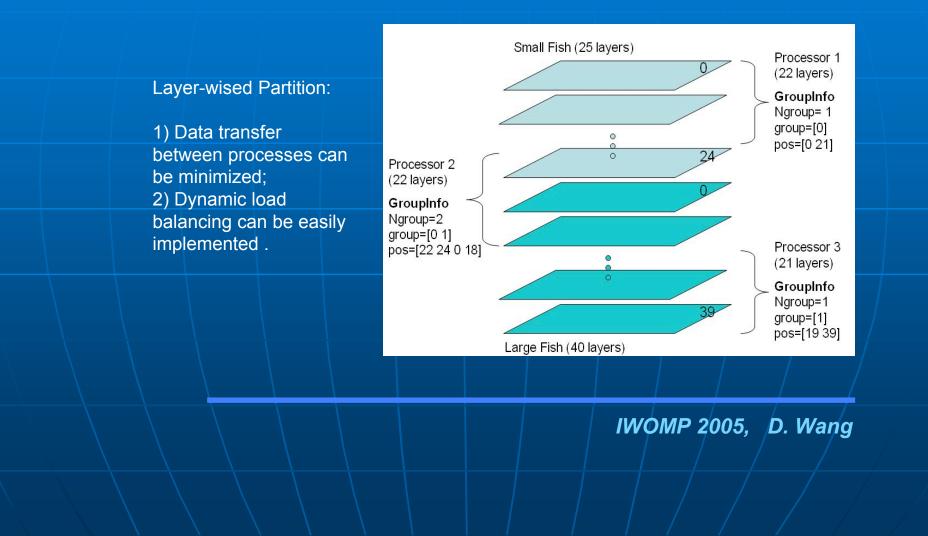
Motivations & Objectives

However, in an integrated simulation with an individualbased wading bird model, intensive data immigration across all processors is inevitable, since a bird's flying distance may cover the whole landscape.

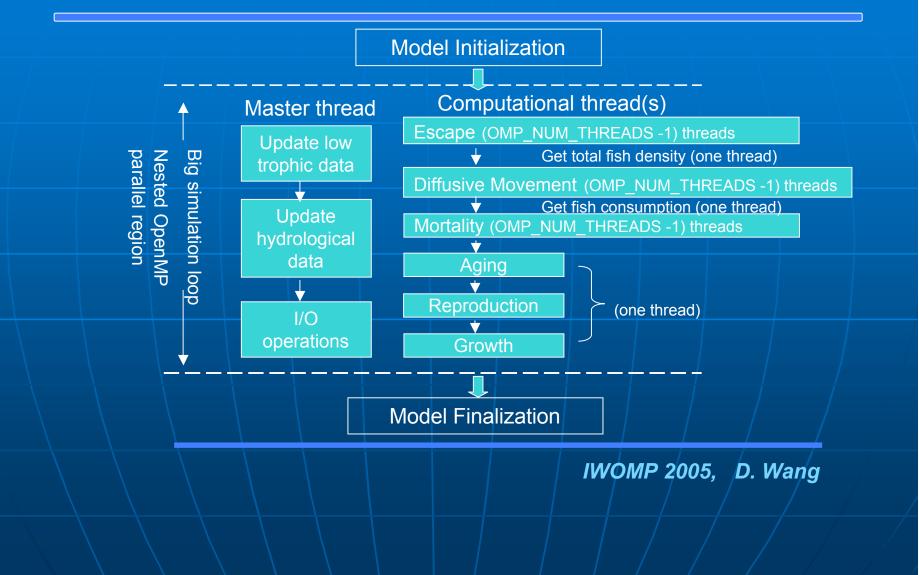
Typical memory-intensive applications


Design a new partition approach

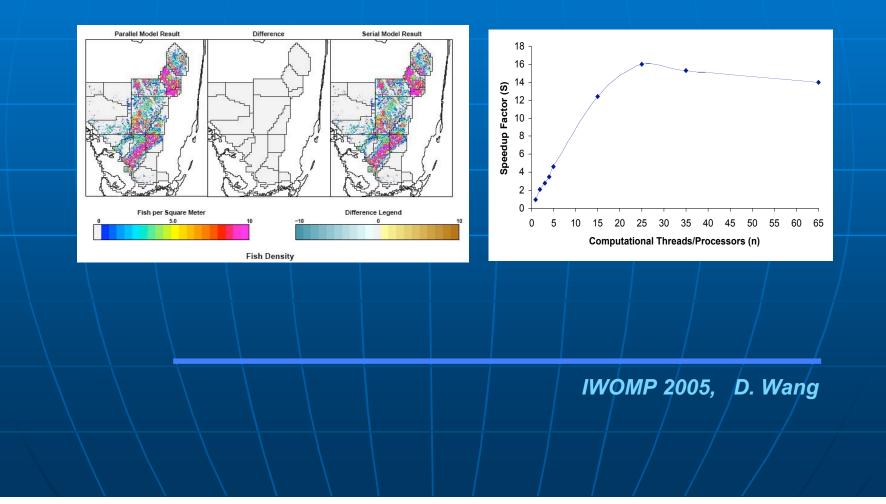
to minimize the data transfer;


• to efficiently utilize the advanced features of sharedmemory computational platforms;

Model Structure and Fish Dynamics


Computational domain: approximately 111,000 landscape cells, each has two basic types of area: marsh and pond.

Parallelization Strategy


Computational Model

Computational Platform

- A SGI Altix system at the Center for Computational Sciences (CCS) of ORNL.
- 256 Intel Itanium2 processors running at 1.5 GHz, each with 6 MB of L3 cache, 256K of L2 cache, and 32K of L1 cache.
- 8 GB of memory per processor for a total of 2 Terabytes of total system memory
- The operating system is a 64-bit version of Linux.
- The parallel programming model is supported by OpenMP.

Model Result and Performance

Future Work (Ecological aspect)

Field Data Calibration and Verification

Ecological Model Integration With

- individual-based wading bird model
- spatially-explicit spices index model

Ecological Impact Assessment (scenario analysis, ...)

Simulation-based ecosystem management (spatial optimal control, real-time ecological system analysis)

Future Work (Computational aspect)

Large-scale simulation:

- Fine resolution- A hybrid, reconfigurable twodimensional (spatial/temporal) partitioning using a hybrid MPI/OpenMP model.
- Fault tolerant computing/simulation

Model integration:

A component based parallel simulation framework

Related References

Parallel Implementation

- D. Wang, et al. Design and Implementation of a Parallel Fish Model for South Florida. Proceedings of the 37th Hawaii International Conference on System Sciences.
- D. Wang, et al. A Parallel Landscape Fish Model for Ecosystem Modeling, Simulation: The Transactions of The Society of Modeling and International.

Grid Computing Module

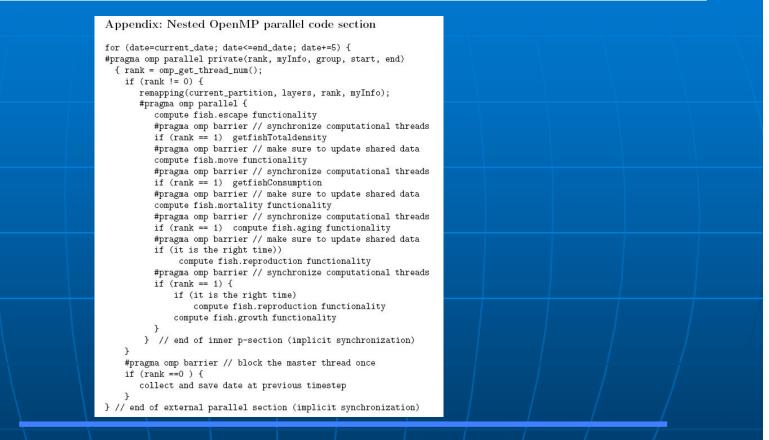
D. Wang, et al. A Grid Service Module for Natural Resource Managers, Internet Computing.

Performance Evaluations

• D. Wang, et al. On Parallelization of a Structured Ecological Model, International Journal on High Performance Computing Applications.

Simulation Framework

- D. Wang, et al. Toward Ecosystem Modeling on Computing Grids, Computing in Science and Engineering.
- D. Wang, et al. A Parallel Simulation Framework for Regional Ecosystem Modeling, IEEE Transactions on Distributed and Parallel Systems


Websites

- www.atlss.org
- www.tiem.utk.edu/gem

Acknowledgement

- National Science Foundation
- U.S. Geological Survey, through Cooperative Agreement with UT
- Department of Interior's Critical Ecosystem Studies Initiative
- Computational Science Initiatives through the Science Alliance at UT/ORNL
- This research used resources of the Center for Computational Sciences at ORNL, which is supported by the Office of Science of the Department of Energy

Parallel code section

Lessons

MPI/OpenMP

Easy Process/Thread Management (dynamic vs. static)

Minimum Code Modification vs. Flexible Performance Tuning (user involvement needed)

Parallel Profiling Tools (TAU, PAPI, ...)

High Portability (SMP and Cluster, even New systems (multi-core, embedded)