
OpenSHMEM Reference Implementation using UCCS-uGNI
Transport Layer

Tomislav Janjusic, Pavel Shamis, Manjunath Gorentla Venkata, and Stephen W. Poole
Computer Science and Mathematics Division

Oak Ridge National Laboratory
Oak Ridge, Tennessee 37831-6173

{janjusict,shamisp,manjugv,spoole}@ornl.gov

ABSTRACT
OpenSHMEM is a library interface implementation and spec-
ification that enables the implementation of the Partitioned
Global Address Space (PGAS) model. It exports modern
RDMA network functionality and communication semantics
to applications very e�ciently. There are many closed source
implementations of OpenSHMEM for modern RDMA inter-
connects such as InfiniBand and Cray’s Gemini and Aries.
Given the important role that Cray systems play in HPC,
in this paper, we present an open source implementation of
OpenSHMEM for Cray XE/XK/XC systems.

To implement OpenSHMEM, we use the uGNI interface.
uGNI is a generic interface that is designed for multiple
programming models. The interface fits well the goal of
UCCS. Having OpenSHMEM with UCCS-uGNI allows us-
age of the same implementation over multiple interconnects.
This also translates into many advantages that come with
common code such as resource sharing, increasing produc-
tivity because of less code maintenance, etc. Preliminary
results show that OpenSHMEM-UCCS performs compara-
ble to state-of-the-art Cray SHMEM for Put, Get, and AMO
operations.

Categories and Subject Descriptors
C.2.6 [COMPUTER-COMMUNICATION NETWORKS]:
Internetworking—Standards

1. INTRODUCTION
OpenSHMEM is a de-facto standard that enables the im-
plementation of the PGAS programming model, and defines
the SHMEM library API. It is an open source e↵ort lead by
a community including academic, research, and industry in-
stitutions. There are many production-grade closed source
implementations of the SHMEM library API, SGI’s Message
Passing Toolkit (MPT), Cray’s SHMEM library implemen-
tation for Aries and Gemini interconnects, HP’s SHMEM
library to name a few. Unlike closed source software, the

OpenSHMEM open source availability enables users to re-
search and develop new capabilities (extensions) in Open-
SHMEM [4].

The current communication middle-ware technologies typ-
ically take two approaches. First, a subset of communica-
tion packages provide flexible and high performance APIs
for specific network hardware technologies; however, this
poses a challenge for programming model developers who
want to develop codes for multiple platforms. Second, by
using a more universal approach and tune APIs for specific
programming models they lack broader interface reconcil-
iation. UCCS answers the demand for a universal, low-
level, high performance, multi-platform/protocol/network,
scalable, and open source network library [5].

Endpoint
Process 0

Endpoint
Process 0Endpoint

Process 0
Endpoint
Process 0

Endpoint
Process 0Endpoint
Process N

UCCS Resource context
Cray Gemini 2

UCCS Context

UCCS Resource context
Infiniband

Endpoint
Process 0

Endpoint
Process 0Endpoint

Process 0
Endpoint
Process 0

Endpoint
Process 0Endpoint
Process N

Endpoint
Process K

Endpoint
Process 0Endpoint

Process 0
Endpoint
Process 0

Endpoint
Process 0Endpoint
Process M

UCCS Resource context
Cray Gemini 1

Figure 1: UCCS API relationship

The Universal Common Communication Substrate (UCCS)
is a single low-level communication substrate that exposes
high-performance communication primitives, and provides
network platform interoperability. The UCCS API is hard-
ware agnostic which isolates the programmer from hardware
specific details. It defines several key concepts for achiev-
ing data transfers, which are represented using opaque han-
dles that contain all the necessary information. A commu-
nication context is a method which provides a communica-
tion scope and isolates multiple instances of user or system
code. A communication resource represents a communica-
tion channel such as Cray’s Gemini, Mellanox’ Infiniband,
etc. An endpoint represents the destination for a commu-
nication process. UCCS selects a specific endpoint to com-



plete a communication call. Figure 1 describes the relation
between communication contexts, resources, and endpoints.
UCCS interface is divided between its core features and the
run-time environment (RTE) responsible for providing the
necessary run-time services such as process start-up.

The rest of the document is organized as follows. In section
2 we discuss the uGNI interface and current UCCS-uGNI
capabilities. In section 3 we discuss are benchmarks and
present our preliminary results. In section 4 we present our
conclusions and discuss future work. A detailed description
of UCCS is available the UCCS’ website [3].

2. UGNI OVERVIEW
The user-level generic network interface (uGNI) and dis-
tributed memory application (DMAPP) interface provide
low-level communication services to user-space software.
uGNI exposes the communications capabilities of the Cray
interconnect. The uGNI and DMAPP APIs allow devel-
opment of portable system software while maximizing the
hardware performance of Cray’s network interconnect [2].
UGNI is more generic interface enabling implementation of
programming models other than PGAS, which is the pri-
mary design motivation of the DMAPP interface. For this
reason uGNI can be used to extend UCCS’ component ca-
pabilities to implement other programming models, eg. an
MPI programming model. The primary reason is that
DMAPP is specifically designed for a one-sided communica-
tion model, thus it would require implementing an additional
software layer to support message passing which would likely
cause additional performance overhead.

Driver driver

UCCS
VERBs uGNI

Open SHMEM

RT
E

Shared
Memory

ORTE

STCI

SLURM

ALPS/CRAY
Hardware

Direct

Hardware

Figure 2: OpenSHMEM and UCCS context diagram.

Figure 2 depicts the relationship between OpenSHMEM ref-
erence implementation and UCCS. Moreover, Figure 2 high-
lights the context of the uGNI component implementation.
The UCCS uGNI transport layer supports Put, Get, and
64bit atomic (AMO) operations. We discuss Put, Get, and
AMO operations performance in Section 3.

The put and get operations use the PostFMA and PostRDMA
message protocols. Our implementation uses FMA protocol
for 64K byte or smaller messages, and RDMA for larger mes-
sages. Due to alignment restrictions, get operations perform
additional checks in order to fragment the message appro-
priately.

3. RESULTS
The preliminary results of this implementation were con-
ducted on a Cray system located at Oak Ridge National
Laboratory. The testbed system’s architecture resembles
the Titan HPC system. Each node consists of two 8-core

2.2Ghz AMD Opteron (Interlagos) processor and 32GB of
RAM running Cray Linux Environment version . Two nodes
share a Cray Gemini high-speed interconnect router. Our
tests use the OpenSHMEM reference implementation and
the most recent UCCS release. We compare our results
against state-of-the-art Cray/SHMEM v7.0.0 library. For
our benchmarks we used the Ohio Micro-Benchmark suite
[1]. The tests consisted of Put, Get, and 64 bit AMO oper-
ations to validate and compare our results.

3.0.1 Message Put

The Put benchmark measures the latency of a shmem put()
operation for di↵erent data transfers. The user selects if
the bu↵er is allocated in global or heap memory. This test
performs on exactly 2 processing elements (PEs). PE-1 is-
sues a shmem putmem() operations and then calls SHMEM
shmem quiet(). This test is repeated using 1 to 8M byte data
transfer sizes and taking the average round-trip latency re-
quired to complete each communication call. In this, as well
as the following tests, we used the symmetric heap option.

 0

 0.5

 1

 1.5

 2

1 2 4 8 16 32 64 128
256

512
1024

2048

L
a
te

n
cy

 (
u
se

c)

Transfer Size (bytes)

Cray/7.0.0
UCCS/OSHMEM

4096
8192

16384

32768

65536

 0

 2

 4

 6

 8

 10

 12

 14

 16

Figure 3: Put 1 - 64K bytes.

In Figure 3 we can observe the latency di↵erence when send-
ing 1 to 64K byte data transfers between PE-0 and PE-1.
The results are encouraging showing comparable, ⇡ 3% vari-
ation, latency results against Cray’s SHMEM implementa-
tion. The performance switch around 4K byte data trans-
fers can be explained by Cray SHMEM switch from FMA
to BTE at 4K byte transfer sizes.

In Figure 4 we can observe the latency di↵erence when send-
ing larger, 128K to 8M byte, data transfers. Similarly, our
experiment shows that our put latency is comparable to
Cray’s SHMEM implementation.

 1

 10

 100

 1000

 10000

128k
256k

512k
1M

B
2M

B
4M

B
8M

B

L
a
te

n
cy

 (
u
se

c)

Transfer Size (bytes)

Cray/7.0.0 UCCS/OSHMEM

Figure 4: Put 128K - 8MB bytes (logscale).

3.0.2 Message Get



The Get benchmark is similar to Put except that the sender,
PE-0, issues a shmem getmem() function call to read from
PE-1. Similarly to the Put test, the benchmark reports the
average round-trip latency required to complete a single Get
operation. Figure 5 shows the latency di↵erence for 1 to 64K
byte data transfers. In Figure 6 we can observe the latency
di↵erence for larger, 128K to 8M byte, data transfers. Due to
the relative subpar performance of Cray’s shmem getmem()
operation Cray recommends to use shmem get64 which is
tailored for 8byte alligned messages and does not support
non-aligned operations. In order to demonstrate perfor-
mance we modified the original benchmark. Notice the la-
tency disparity manifesting for data transfers larger than 512
bytes using Cray’s shmem getmem() operation, and for data
transfers larger than 4K bytes using UCCS’ shmem getmem()
compared to Cray’s shmem get64() operation. We believe
that there is an optimization issue when using Cray’s
shmem getmem() operation. Moreover, it is evident from
the results in Figure 6 that Cray’s shmem get64() opera-
tion outperforms ours by a significant margin. We omitted
UCCS’ shmem get64() results because the underlying imple-
mentation does not di↵erentiate between shmem getmem()
and shmem get64().

 0

 1

 2

 3

 4

 5

 6

1 2 4 8 16 32 64 128
256

512
1024

2048

L
a
te

n
cy

 (
u
se

c)

Transfer Size (bytes)

Cray, shmem_getmem()
UCCS, shmem_getmem()

Cray, shmem_get64()

4096
8192

16384

32768

65536

 0

 20

 40

 60

 80

 100

Figure 5: Get 1 - 64K bytes.

 1

 10

 100

 1000

 10000

 100000

128k
256k

512k
1m 2m 4m 8m

L
a
te

n
cy

 (
u
se

c)

Transfer Size (bytes)

Cray, shmem_getmem()
UCCS, shmem_getmem()

Cray, shmem_get64()

Figure 6: Get 128K - 8MB bytes (logscale).

We are unsure of the exact causes behind our performance
degradation and continue to investigate. Our implementa-
tion selects code-paths naively based on data transfer size.
For data transfers smaller than or equal to 64K bytes we
use uGNI’s postFMA operation, and for larger transfers we
use a less optimal postRDMA protocol. It is evident from
Figure 6 that we must revisit this policy in order to stay
comparable to Cray’s shmem get64() operation. In future
version we will include a special optimization for 8 byte al-
ligned transfers. Overall, UCCS’ shmem getmem operation
outperforms Cray’s shmem getmem().

3.0.3 Atomics 64bit

The atomic test performs atomic operations and reports a
base-line performance for each operation. The benchmark
performs a warm-up phase and a measurement phase. The
measurement phase reports the average rate and latency of
an atomic operation. Figure 8 and Figure 7 show the latency
and number of operations per second results for atomic oper-
ations, respectively. The swap operation is not natively sup-
ported by Gemini ASIC. From Figure 8 and 7 we can observe
that UCCS-uGNI outperforms Cray’s in shmem llong add
and shmem llong inc() operations while staying comparable
for other operations.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

llong_fadd

llong_finc

llong_add

llong_inc

llong_csw
ap

M
ill

io
n
 o

p
s/

s

Operations

Cray UCCS

Figure 7: Atomic operations / sec.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

llong_fadd

llong_finc

llong_add

llong_inc

llong_csw
ap

L
a
te

n
cy

 (
u
se

c)

Operations

Cray UCCS

Figure 8: Atomic operations latency.

4. CONCLUSIONS AND FUTURE WORK
The motivation of this paper is to introduce the High-Performance
OpenSHMEM reference implementation using UCCS-uGNI
component. As part of this e↵ort we identified vendor SHMEM
implementation variations which we concluded were likely
implementation errors and we notified the vendor accord-
ingly. The UCCS-uGNI transport layer code-paths have to
be carefully considered in order to stay competitive. We
compared OpenSHMEM reference implentation using UCCS-
uGNI transport layer against state-of-the-art Cray SHMEM
library. While our initial results are encouraging, there are
several issues left to be resolved. First, we must reconsider
the Get (shmem memget()) operation to stay comparable
with Cray’s shmem get64() operation tailored for 8byte al-
ligned data transfers. At present our implementation does
not support 32bit and swap AMO operations and we plan
to implement them.

Acknowledgment
This work is supported by the United States Department of
Defense and used resources of the Extreme Scale Systems
Center located at the Oak Ridge National Laboratory.



5. REFERENCES
[1] OSU Micro-benchmark.

http://mvapich.cse.ohio-state.edu/benchmarks,
2014.

[2] Cray. Using the GNI and DMAPP APIs. http://docs.
cray.com/books/S-2446-3103/S-2446-3103.pdf,
February 2014.

[3] ORNL. UCCS website. http://uccs.github.io/uccs,
2014.

[4] P. Shamis, M. G. Venkata, S. W. Poole, A. Welch, and
T. Curtis. Designing a High Performance OpenSHMEM

Implementation Using Universal Common
Communication Substrate as a Communication
Middleware. In OpenSHMEM and Related Technologies.
Experiences, Implementations, and Tools - First
Workshop, OpenSHMEM 2014, Annapolis, MD, USA,
March 4-6, 2014. Proceedings, pages 1–13, 2014.

[5] Shamis, P., Venkata, M.G., Kuehn, J.A., Poole, S.W.,
Graham, R.L. Universal Common Communication
Substrate (UCCS) Specification. Technical Report
ORNL/TM-2012/339, Oak Ridge National Laboratory

(ORNL), 2012.


