
Fault Tolerance for OpenSHMEM

Pengfei Hao
University of Houston

phao@uh.edu

Pavel Shamis
Oak Ridge National

Laboratory
shamisp@ornl.gov

Manjunath Gorentla
Venkata

Oak Ridge National
Laboratory

manjugv@ornl.gov

Swaroop Pophale
University of Houston
spophale@uh.edu

Aaron Welch
University of Houston
dawelch@uh.edu

Stephen Poole
Oak Ridge National

Laboratory
spoole@ornl.gov

Barbara Chapman
University of Houston

bchapman@uh.edu

ABSTRACT
On today’s supercomputing systems, faults are becoming
a norm rather than an exception. Given the complexity re-
quired for achieving expected scalability and performance on
future systems, this situation is expected to become worse.
The systems are expected to function in a nearly constant
presence of faults. To be productive on these systems, pro-
gramming models will require both hardware and software
to be resilient to faults. With the growing importance of
PGAS programming model and OpenSHMEM, as a part of
HPC software stack, a lack of a fault tolerance model may
become a liability for its users. Towards this end, in this
paper, we discuss the viability of using checkpoint/restart
as a fault-tolerance method for OpenSHMEM, propose a
selective checkpoint/restart fault-tolerance model, and dis-
cuss challenges associated with implementing the proposed
model.

Categories and Subject Descriptors
C.2.6 [COMPUTER-COMMUNICATION NETWORKS]:
Internetworking—Standards

1. INTRODUCTION
Modern high-performance computing (HPC) systems con-
sist of an increasing number of computing resources, not
only CPU cores but also hybrid architectures with GPUs
and FPGAs. For example, the Oak Ridge Leadership Com-
puting Facility (OLCF) hosts the TITAN supercomputer,
one of the largest HPC systems in the world, which con-
tains 18,688 nodes, a total of 299,008 CPU cores, and 18,688
Nvidia Tesla K20 GPUs (each of which having 2496 CUDA
cores). In addition, HPC programs are also increasing in
size and complexity and often perform high volume data
processing; such applications require highly reliable systems
with low failure rates. Achieving continuous running time
without failures is a major issue on such large-scale systems,
due to the superposition of failure possibilities across the
computing resources.

Moreover, the Mean Time To Failure (MTTF) of individ-
ual components of the HPC system is not expected to in-

crease. This assumption is based on a number of facts. First,
the complexity, density, and sensitivity of individual com-
ponents increases over time; hardware vendors increase the
density of silicon chips, increase the number of transistors,
and decrease power consumption of the components. This
leads to a lower MTTF of system components. Second, ac-
cording to the literature[3], the reliability of components in
HPC systems has not improved in the last ten years. Since
the reliability of individual components is not expected to
increase while the number of components grows, the overall
MTTF of the whole system is projected to decrease. Based
on the above facts, there is a consensus among the HPC
community that the future generation (Exascale) of systems
will operate with a constant presence of faults.

The OpenSHMEM specification[4] currently lacks fault miti-
gation features, making OpenSHMEM programs vulnerable
to system failures. The primary contribution of the this
paper is to propose of a fault tolerance model in the Open-
SHMEM specification. Although our discussion is focus on
OpenSHMEM only, the proposed model can be applied to
other libraries and languages of the PGAS programming
model.

2. BACKGROUND

2.1 Related Work
Research in the area of fault tolerance for the PGAS pro-
gramming model is sparse. Ali, et al.[1] proposed an application-
specific fault tolerance mechanism. They achieved fault-
tolerance using redundant communication and shadow copies.
They evaluated the approach by implementing it as a part of
Global Arrays, a shared-memory programming interface for
distributed systems, and using NWChem [7], a framework
specifically for computational chemistry problems. Our ap-
proach is more encompassing and not limited to a specific
application or kernel.

Other researchers have proposed fault-aware and fault-tolerant
models for message passing models, particularly MPI. Bland
et al. have proposed and evaluated user level failure mitiga-
tion extensions to MPI. This provides an interface for han-

Figure 1: OpenSHMEM Memory Model [4]

dling faults by the user (HPC application) without aborting
the entire MPI job [2][3]. Graham et al. [5] have proposed
similar models and evaluated MPI collective algorithms in
the presence of faults [6].

In this paper, we explore the best practices in the fault tol-
erance domain to propose a solution addressing the fault
tolerance challenge for OpenSHMEM.

2.2 OpenSHMEM Memory Model
OpenSHMEM is a PGAS library interface specification that
provides an interpretation of the PGAS model. In OpenSH-
MEM, a Processing Element (PE) is an execution context
which has access to local private memory and global mem-
ory. A partition of global memory is mapped to each PE.
The PEs collectively manage the global memory. A PE can
access the memory on remote PEs using the OpenSHMEM
interfaces.

Figure 1 presents a programmer view of OpenSHMEMmem-
ory model. In OpenSHMEM the following kinds of data
objects are symmetric:

• Fortran data objects in common blocks or with the
SAVE attribute. These data objects must not be de-
fined in a dynamic shared object (DSO).

• Global and static C and C++ variables. These data
objects must not be defined in a DSO.

• Fortran arrays allocated with shpalloc

• C and C++ data allocated by shmalloc

3. FAULT TOLERANCE MODEL

3.1 Model introduction
Fault tolerance is the ability for a system to continue oper-
ating in the event of faults in its components. As a start-
ing point we propose the checkpoint/restart mechanism for
OpenSHMEM. We checkpoint the system state periodically
and restart from the most recent checkpoint on detecting a
fault.

Instead of saving the entire memory associated with a PE,
we save only the symmetric memory data objects. We make
this design choice because the symmetric data objects are

accessible through the OpenSHMEM API by all PEs, so,
most relevant information that needs to be communicated
is stored there. Typically, distributed algorithms use this
memory region to coordinate execution and share informa-
tion.

In our model, we propagate the fault causing errors to the
application (user), which means that the user needs to mod-
ify the application code to take advantage fault-tolerance
capabilities.

3.2 Fault-tolerant Interfaces
In order to introduce explicit checkpoint functionality, we
introduce the following interface:

int shmem checkpoint all(void)

This is a collective checkpoint operation requiring partic-
ipation of all PEs. For each PE, the operation creates a
shadow copy of the symmetric memory region on another
PE (Figure 2). The operation gathers fault notifications
that are inquired through the runtime environment. If any
fault event was signaled between current and the previous
checkpoint, the function returns a special error code.

PE 0

Global and Static
Variables

Symmetric Heap

Local Variables

Shadow Memory

PE 1

Global and Static
Variables

Symmetric Heap

Local Variables

Shadow Memory

PE N-2

Global and Static
Variables

Symmetric Heap

Local Variables

Shadow Memory

PE N-1

Global and Static
Variables

Symmetric Heap

Local Variables

Shadow Memory

Figure 2: Shadow region for backup symmetric
memory

If a fault occurs, then an error event is triggered, the ap-
plication may use the following function in order to inquire
details about the failure:

shmem query fault(int **pes, int **pes status, size t
*numpes)

Once the information about the failed PEs is gathered, the
application may use the following restart function:

int shmem restart pes(int *pes, size t numpes)

This operation spawns new PEs using the underlying run-
time environment.

The memory restore (rollback) interface is provided through
the following interface:

int shmem restore all(void)

This function is a coordinated rollback operation that re-
stores the symmetric memory region from the last check-
point on all PEs. Listing. 1 is the pseudo that executes
steps of a computation algorithm in a loop. This demon-
strates how the proposed model is intended to be used by
applications.

Listing 1: Pseudo Code
1 int s tep=0;
2 do{
3 i f (shmem checkpoint a l l ()) {
4 /∗ Fa i l u re event was repor t ed ∗/
5 int ∗pes ;
6 int ∗ s t a tu s ;
7 s i z e t num pes ;
8 /∗ Query indexes o f f a i l e d PEs ∗/
9 shmem query fault(&pes , &status , &

num pes) ;
10 /∗ Res tar t f a i l e d PEs ∗/
11 shmem restart pes (pes , num pes) ;
12 /∗ Restore memory ∗/
13 shmem res to r e a l l () ;
14 /∗ Reset the a l gor i thm one s t ep back

∗/
15 step−−;
16 }
17 execute computat ion (s tep) ;
18 s tep++;
19 }while (step<MAX STEPS) ;

3.3 Different restore options
Because this fault tolerance model is based on copying sym-
metric data objects on a partner PE, a node failure not
only results in loss of local data values, but also the loss of
backed up data stored in the shadow region. To tackle this
situation, we give two options for the user to choose from,
depending on the application characteristics.

The first scheme makes two copies of the symmetric memory
- that is, along with the copy on a PE on a remote node, a
local copy is made. If there is a roll back, PEs can use the
local backup stored at the last checkpoint. Only PEs on the
failed node need to do a copy from their partner PE. There
is a trade-off between recovery time and memory usage while
using this scheme. The effective memory usage is only 33%,
but it could provide a speedy restore for PEs nodes that
have not failed due to the local copy.

The second scheme is to ignore old data at failure and use
the newest data to continue the algorithm. This is not a
fully functional checkpoint solution because not all PEs can
roll back to the previous checkpoint instance. Some algo-
rithms, for example, iterative methods, can use this with no
problem. The advantage of this scheme is that it allows for
higher memory usage rate (50%).

4. CONCLUSION
As computational systems and application execution time
grows, fault tolerance is going to become an important as-
pect for the HPC community. Since no prior research has
been done for fault tolerance in OpenSHMEM, this paper
aims at bringing fault tolerance to the attention of the Open-
SHMEM community.

The OpenSHMEM memory model clearly distinguishes be-
tween private and globally accessible memory which allows
us to design an efficient checkpoint/restart strategy. Our
design for OpenSHMEM’s fault tolerance model is based on
the selective-in-memory checkpoint/restart algorithm com-
bined with an application level fault notification mecha-
nism. Moreover, since most PGAS languages and libraries
are based on a similar memory model, the same design can
be applied to them with minor changes.

5. ACKNOWLEDGMENTS
This work is supported by the United States Department of
Defense and used resources of the Extreme Scale Systems
Center located at the Oak Ridge National Laboratory.

6. REFERENCES
[1] N. Ali, S. Krishnamoorthy, N. Govind, and B. Palmer.

A redundant communication approach to scalable fault
tolerance in pgas programming models. In Parallel,
Distributed and Network-Based Processing (PDP), 2011
19th Euromicro International Conference on, pages
24–31. IEEE, 2011.

[2] W. Bland, G. Bosilca, A. Bouteiller, T. Herault, and
J. Dongarra. A proposal for user-level failure mitigation
in the mpi-3 standard. Department of Electrical
Engineering and Computer Science, University of
Tennessee, 2012.

[3] W. Bland, A. Bouteiller, T. Herault, J. Hursey,
G. Bosilca, and J. J. Dongarra. An evaluation of
user-level failure mitigation support in MPI. Springer,
2012.

[4] T. Curtis and et al. Openshmem application
programming interface, 2014.

[5] G. E. Fagg and J. J. Dongarra. Building and using a
fault-tolerant mpi implementation. International
Journal of High Performance Computing Applications,
18(3):353–361, 2004.

[6] J. Hursey and R. L. Graham. Preserving collective
performance across process failure for a fault tolerant
mpi. In Parallel and Distributed Processing Workshops
and Phd Forum (IPDPSW), 2011 IEEE International
Symposium on, pages 1208–1215. IEEE, 2011.

[7] M. Valiev, E. J. Bylaska, N. Govind, K. Kowalski, T. P.
Straatsma, H. J. Van Dam, D. Wang, J. Nieplocha,
E. Apra, T. L. Windus, et al. Nwchem: a
comprehensive and scalable open-source solution for
large scale molecular simulations. Computer Physics
Communications, 181(9):1477–1489, 2010.

