
One-Sided Append: A New Communication Paradigm
For PGAS Models

James Dinan and Mario Flajslik
Intel Corporation

{james.dinan, mario.flajslik}@intel.com

ABSTRACT
One-sided append represents a new class of one-sided operations
that can be used to aggregate messages from multiple communica-
tion sources into a single destination buffer. This new communica-
tion paradigm is analyzed in terms of its impact on the OpenSH-
MEM parallel programming model and applications. Implementa-
tion considerations are discussed and an accelerated implementa-
tion using the Portals 4 networking API is presented. Initial exper-
imental results with the NAS integer sort benchmark indicate that
this new operation can significantly improve the communication
performance of such applications.

1. INTRODUCTION
Partitioned Global Address Space (PGAS) models – such as Open-
SHMEM [1] and Unified Parallel C (UPC) [2] – are characterized
by global data that is accessed through one-sided get, put, atomic
update, and atomic read-and-update operations. This set of opera-
tions can produce efficient communication patterns because these
operations require no coordination between sending and receiving
processes. However, when coordination is required between pro-
cesses, a strictly one-sided interface can be less efficient, as coor-
dination must be constructed by the application using a series of
one-sided operations to update coordination structures (e.g. locks,
flags, or counters) in the global address space [3].

Parallel sorting algorithms, such as the parallel bucket sort algo-
rithm used by the NAS Parallel Benchmarking (NPB) Integer Sort
(IS) benchmark [4], perform periodic many-to-many communica-
tions to exchange items during the sorting process. The number of
items communicated between peers varies throughout the sorting
process and is dependant on the input data. When such algorithms
are implemented using PGAS models [5], users must construct a
method for pre-posting adequate buffer space to allow remote pro-
cesses to write data through one-sided put operations. A global
coordination step can be used to collectively establish communica-
tion buffers, so that a fixed amount of buffer space can be posted for
each sender-receiver pair. Alternatively, a large, shared buffer can
be posted and processes can append or push items into available
space at the tail of the buffer.

start_disp = shmem_fadd(push_counter, src_size,
dest_pe);

shmem_putmem(((char *) dest_buf) + start_disp,
src_buf, src_size, dest_pe);

Listing 1: One-sided append implementation of parallel sorting key
exchange step.

Such one-sided append operations can be implemented on top of
OpenSHMEM as shown in Listing 1. Where a shared “push” counter
is updated using an atomic fetch-and-add (FADD) operation to re-
serve space at the tail of a shared buffer and data is then written to
this shared buffer using a one-sided put operation.

In this approach, a globally accessible counter is used to coordinate
among multiple processes that write data to adjacent locations in a
shared buffer. This approach has the advantage of using a shared
buffer, which can use memory efficiently and avoid global com-
munication. However, the coordination step requires an additional
round-trip fetch-and-add communication operation, doubling the
number of communication operations performed.

We propose a new PGAS communication operation – one-sided
append – which bundles coordination and communication enabling
PGAS runtime systems to optimize this pair of actions. In Sec-
tion 2 we discuss an API extension to provide one-sided append
in the OpenSHMEM library. We discuss implementation consid-
erations in Section 3, and describe an accelerated implementation
using the Portals 4 network programming interface [6]. We demon-
strate the application of one-sided append to the NAS integer sort
benchmark and present an early evaluation of our prototype Portals
4 implementation in Section 4. Our results show that one-sided ap-
pend can provide up to a 500% improvement in performance when
key exchange messages are small.

2. ONE-SIDED APPEND EXTENSION TO
OPENSHMEM

We define a new SHMEM object, shmem_oct_t, which establishes
the offset counter (OCT) needed to support one-sided append op-
erations. In Listing 2, we propose an application programming in-
terface (API) extension to OpenSHMEM that utilizes an OCT to
support one-sided append.

OCTs are created and destroyed collectively. When an OCT is
created, the user supplies a pointer to the symmetric buffer that
will be appended to. All SHMEM processes, or PEs, in a given
collective call to shmem_oct_create() must provide local point-



/* Offset counter (OCT) creation/destruction functions (collective) */
void shmem_oct_create(shmem_oct_t *oct, void *buffer, size_t len);
void shmem_oct_destroy(shmem_oct_t *oct);

/* Appending put, a.k.a "push", communication operation (one-sided) */
void shmem_push(shmem_oct_t oct, const void *src_buffer, size_t len, int pe);

/* Offset counter update/query routines (local) */
void shmem_oct_reset(shmem_oct_t oct);
size_t shmem_oct_get(shmem_oct_t oct);

Listing 2: OpenSHMEM one-sided append API.

ers to the same symmetric buffer that was allocated statically in
the static data segment or dynamically, e.g. using shmalloc().
This requirement ensures that the runtime system can store a single
symmetric pointer for use in append operations, avoiding an OCT-
related structure whose size is proportional to the number of PEs.
The create function could also be defined to allocate a symmetric
buffer that will be used for append operations; however, performing
allocation outside of the OCT interface provides greater flexibility.
For example, the proposed interface can be used with a symmetric
buffer located in the static data segment.

A one-sided append is performed by a call to either the blocking
shmem_push() function or its nonblocking counterpart. A push
operation appends the source buffer data to the append buffer as-
sociated with the given OCT at the destination PE. Data is writ-
ten contiguously, starting at the first free memory location in the
buffer. While push operations do not need to be aligned, it is likely
that appending messages whose size results in aligned accesses will
provide higher performance.

2.1 Offset Counter Semantics
Several options are available for handling the situation where the
space available at the destination PE is not sufficient to hold the
pushed data. A simple approach is to leave this behavior undefined
or to define it as an erroneous program. Alternatively, push can be
defined to truncate the data, storing only the portion that fits in the
remaining space of the destination PE’s buffer. This semantic may
make the interface easier to use and more productive for applica-
tion developers. In order to support a truncation model, the push
operation must be extended to return the number of bytes that were
pushed and the creation routine must also require that the buffer
length argument be identical at all PEs for a given OCT. This latter
requirement ensures that PEs do not need to store an array of buffer
lengths for each PE to determine when truncation occurs.

The OCT can be reset to the beginning of the append buffer through
a call to shmem_oct_reset(). Resetting the OCT is a local op-
eration, and users must ensure that the reset operation is correctly
ordered with respect to push operations performed by remote PEs
on the given OCT. The offset of the next free location in the local
append buffer can be queried through a call to shmem_oct_get().
This operation does not guarantee that pushed data is available to
read; users must synchronize these accesses through other means,
e.g. a call to shmem_barrier(). Alternatively, a counting push
operation could be defined using the approach detailed in [3], which
provides a separate counter to track completed operations. If bytes
completed (rather than messages completed) are tracked, the user
can check for equality between of the offset counter and the com-
pletion counter. When both counters are equal, all data in the ap-
pend buffer up to the current offset counter is valid and can be read.

typedef struct {
ptl_pt_index_t pt;
ptl_handle_me_t me;
ptl_match_bits_t match;
ptl_handle_ct_t ct;

} shmem_oct_t;

Listing 3: Offset counter (OCT) structure used in the Portals 4
SHMEM implementation.

3. IMPLEMENTATION DISCUSSION
The SHMEM push operation can be implemented on top of the ex-
isting OpenSHMEM API using the approach shown in Listing 1.
In this approach, a symmetric offset counter is allocated in the call
to shmem_oct_create() and is atomically updated using fetch-
and-add operations. This represents a general implementation tech-
nique and the SHMEM runtime can internally use low-level RDMA
operations provided by a variety of HPC system interconnects.

While one-sided append can be implemented on top of most PGAS
interfaces, providing a specialized API enables optimizations within
the communication subsystem, as illustrated in Figure 1. We next
explore an accelerated implementation that leverages capabilities
defined by the Portals 4 network programming interface [6] to pro-
vide an efficient implementation. In comparison with an imple-
mentation on top of the OpenSHMEM API, where the sender must
remotely manipulate the offset counter, accelerated implementa-
tions can utilize offload capabilities at the receiver to integrate off-
set counter manipulation with processing of the push message.

3.1 Receiver-Managed Implementation Using
Portals 4

As shown in Figure 1, receiver-managed implementations, where
the receiver manages the offset into the receive buffer, can signif-
icantly improve the efficiency of one-sided append, or push, op-
erations. Such an implementation reduces the amount of com-
munication messages by half, thus providing better latency and
throughput. We use Portals’ locally managed offset to achieve a
receiver-managed implementation of one-sided append, and the in-
ternal structure used to store OCT metadata is shown in Listing 3.
At the receiver, the sender-provided portal table (PT) index and
match bits from the message header are used to look up a match
list entry (ME) corresponding to an OCT. The ME is configured to
use a locally managed offset, which instructs Portals to append in-
coming data to the ME’s buffer. An additional Portals counter (CT)
is used to expose the locally managed offset value for application-
level queries. We explain each of these aspects of the implementa-
tion in greater detail below.



off = fadd(counter)!

putmem(base + off)!

append(…)!

Receiver Process!

(a) Implementation on OpenSHMEM! (b) Receiver-Managed Implementation!

Agent!

Sender Process!Receiver Process!Sender Process!

+!

Figure 1: Sender (a) and receiver (b) managed implementations of one-sided push. Receiver-managed implementations access the offset
counter locally reducing the number of communication operations performed by the sender.

OCT creation is collective across all PEs, much like the creation
of SHMEM counters in [3]. Global coordination is necessary so
that all instances of the OCTs on all PEs agree to use the same por-
tal table match bits values. Tradeoffs can be made to balance the
number of portal table entries assigned to supporting one-sided ap-
pend operations, and the length of the match lists associated with
these portal table entries, as message processing overheads can in-
crease with the length of the match lists. Identical portal table and
match bits allow the sender to address the remote OCT using its
own instance of the corresponding OCT, eliminating the need to
store separate location information for each PE. Similarly, freeing
the OCT is also a global collective operation to guarantee correct
reuse of portal table and match bits values.

During OCT creation, each PE also sets up a match list entry (ME)
for its own append buffer. The match list entry is configured to ad-
dress only the buffer space passed into the shmem_oct_create()
function, and PTL_ME_MANAGE_LOCAL option is set up on the match
list entry to enable the locally managed offset feature. Addition-
ally, match bits are set up to bind the match list entry to the correct
buffer, and a portals counter is attached to the ME to record count-
ing events. The portal table and match bits pair must be unique for
each OCT. This can be achieved by keeping the match bits unique
through a counter that is incremented in shmem_oct_create(),
every time that function is called.

Depending on the desired semantic, SHMEM applications might
be expected to provide enough buffer space in the initial call to
shmem_oct_create() that covers all data that might be pushed
into the buffer. For the remainder of this paper, we assume a model
where behavior is undefined in case of buffer overflow. In our im-
plementation, Portals is configured to truncate data that does not fit
in the remaining buffer space (which can be zero), and the sender is
not made aware of this failure to avoid retransmitting the messages
repeatedly. In this model, it is up to the SHMEM application to
detect and recover from a buffer overflow error.

The API proposed in Listing 2 also provides functions to reset
the OCT object and query the offset counter inside the OCT ob-
ject. Portals 4 API does not provide a way to access the offset
counter in MEs with locally managed offset. However, it is pos-
sible to attach a Portals counter to the ME, and set it to count
the number of bytes received into the append buffer by setting
the PTL_ME_EVENT_CT_BYTES ME option. We keep this Portals
counter inside the OCT object (see Listing 3) as a proxy for the off-

set counter. While the two counters do match eventually, the actual
offset counter is incremented at the beginning of push message pro-
cessing, and the ME byte counter is updated once all of the data has
been received. However, this is okay because applications must use
some form of synchronization before reading the counter, and after
synchronization the ME byte counter and the actual offset counter
have the same value.

The synchronization before reading the counter is required because
of lack of ordering guarantees. There is no implied guarantee that
the data bytes received are stored in the append buffer in order. For
example, in a series of three push operations, the second can arrive
after the others. The application must use some other means of
synchronization (e.g. a barrier) to guarantee that all of expected
data has been placed in the append buffer.

3.2 Discussion of Implementation Alternatives
In Portals 4, the locally managed offset counter is not exposed
through the portals interface. An extension to the Portals API that
allows access to this counter would enable a more straightforward
implementation of shmem_oct_get() function. It would also al-
low an implementation that waits until the number of allocated
bytes matches the number of received bytes. When the two coun-
ters match, the receiver is guaranteed that all those bytes are placed
in the buffer in order, which sometimes may remove a requirement
for extra synchronization.

With direct access to the offset counter, we could configure the
ME counter to count the number of received messages (instead of
bytes). Sometimes, applications know to expect each PE to append
exactly one message, or to expect a fixed number of messages. The
ME Portals counter could be used to wait for a specified number of
messages, thus potentially removing a requirement for a barrier.

In our implementation, push buffers are not necessarily required to
be symmetric across all PEs. The proposed SHMEM extension re-
quires symmetric buffers to ensure portability; however, if the user
passes a non-symmetric buffer to shmem_oct_create() our im-
plementation will still behave correctly. This is possible because
the buffers are addressed at the sender using the OCT object, rather
than a symmetric address. Non-symmetric buffers would provide
additional flexibility when managing and mapping memory, which
is not available through an implementation append on top of Open-
SHMEM. For example, one could be much more memory efficient
if using a single PE as an aggregator for all data using push oper-



101 102 103 104 105

Message size (bytes)

100

101

102

103

B
a
n
d
w

id
th

 (
M

B
/s

)

Conventional PGAS approach

One-Sided Append

Figure 2: Bandwidth performance comparison between baseline
and push implementations of key exchange on 16 PEs.

for (i = 0; i < num_pes; i++) {
int k1 = send_offset[i];
int k2; // target offset
k2 = shmem_int_fadd(&counter,

snd_cnt[i], i);
shmem_int_put(key_buf2+k2, key_buf1+k1,

snd_cnt[i], i);
}

Listing 4: Baseline integer sort key exchange code snippet.

ations. However, nonsymmetric allocations are not currently sup-
ported by the OpenSHMEM specification.

4. EVALUATION
Appending data to a remote buffer is performance critical for ap-
plications that perform parallel sorting. One such application is the
integer sort (IS) benchmark in the NAS parallel benchmark suite
[4], which performs parallel bucket sort. In such algorithms, pro-
cesses must periodically exchange data items based on the sorting
keys associated with those items.

The communication-intensive key exchange step of parallel bucket
sort using OpenSHMEM is shown in Listing 4. In this algorithm,
the sending PE first uses atomic fetch-and-add operation to incre-
ment a counter at the receiver and obtain an offset into the receiv-
ing buffer. The counter controlling the offset into the receiving
buffer is located at the receiver, but it is managed by the senders
through one-sided, atomic fetch-and-add operations. After obtain-
ing the target buffer offset, the sender does a one-sided put opera-
tion to place the sorting keys into the receiving buffer at the correct
offset. This algorithm requires two communication operations per
receiver. Additionally, as shown in Figure 1, there is a data depen-
dency between the fetch-and-add and the following put, forcing the
fetch-and-add to complete before the put can be issued.

The same sort key exchange algorithm can be implemented using
one-sided push, as shown in Listing 5. Some time after allocat-
ing the receive buffer, the PE sets up a symmetric offset object for
that buffer enabling the one-sided push to be used with the receive
buffer. In the key exchange loop, the sender makes a single call
to shmem_push() for each receiver. The offset into the receive

101 102 103 104 105

Message size (bytes)

0

1

2

3

4

5

6

7

B
a
n
d
w

id
th

 I
m

p
ro

v
e
m

e
n
t 

Fa
ct

o
r

Figure 3: Bandwidth improvement factor from using one-sided
push. Derived from Figure 2 by dividing the push bandwidth mea-
surement by the baseline.

shmem_oct_create(&off, key_buf2, BUF_SIZE);
...
for (i = 0; i < num_pes; i++) {
int k1 = send_offset[i];
shmem_push(off, key_buf1+k1, snd_cnt[i], i);

}
...
shmem_oct_free(&off);

Listing 5: Integer sort key exchange using one-sided push.

buffer is managed at the receiver side, and there are no more data
dependencies at the sender. Lack of data dependencies allows for
significant performance gains in the small message case. For small
messages that can be buffered in the network, shmem_push() re-
turns immediately, allowing the loop to proceed to the next itera-
tion.

Figure 2 shows bandwidth performance of the one-sided push key
exchange algorithm in Listing 5 and the baseline algorithm in List-
ing 4. The relative bandwidth improvement factor is shown in Fig-
ure 3. These experiments were performed on key exchange algo-
rithms shown in Listing 4 and Listing 5, distributed over 16 PEs.
The results were generated on a 16 node InfiniBand? cluster us-
ing a SHMEM over Portals 4 [7] in combination with the Portals
4 on InfiniBand reference implementation [8]. For small messages
that can be buffered in the network, one-sided push implementation
provides more than 5x improvement. Small messages (less than
1kB) are buffered in the Portals layer, and both shmem_int_put()
and shmem_push() return immediately for those small messages.
Larger messages require Portals layer to complete the operation
remotely before it can release the local buffer and return from a
blocking operation. Bandwidth improvement for a 1kB size mes-
sage is about 60%, and it tapers off for very large messages.

5. CONCLUSION
One-sided append is a new extension to PGAS models that aggre-
gates contributions from multiple PEs into a single buffer at the
receiving PE. We have presented an API definition and initial im-
plementation discussion of one-sided append. Through the Portals



4 network programming interface, we showed that the new inter-
face provides opportunities for hardware acceleration that are not
available when append operations are implemented on top of an
existing one-sided communication interface. Using SHMEM push,
an instantiation of one-sided append in the OpenSHMEM API, to
accelerate the key exchange step in the NAS integer sort parallel
benchmark, we observed speedups in excess of 500% for messages
below 1kB.

?Other names and brands may be claimed as property of others.

Intel and Xeon are trademarks of Intel Corporation in the U.S. and/or other coun-
tries. Software and workloads used in performance tests may have been optimized
for performance only on Intel microprocessors. Performance tests, such as SYSmark
and MobileMark, are measured using specific computer systems, components, soft-
ware, operations and functions. Any change to any of those factors may cause the
results to vary. You should consult other information and performance tests to as-
sist you in fully evaluating your contemplated purchases, including the performance
of that product when combined with other products. For more information go to
http://www.intel.com/performance.

6. REFERENCES
[1] OpenSHMEM Application Programming Interface, Version 1.1, Online:

http://openshmem.org, Jun. 2014.
[2] UPC Consortium, “UPC language and library specifications, version 1.3,”

Lawrence Berkeley National Laboratory, Tech. Rep. LBNL-6623E, 2013.
[3] J. Dinan, C. Cole, G. Jost, S. Smith, K. D. Underwood, and R. W. Wisniewski,

“Reducing synchronization overhead through bundled communication,” in
OpenSHMEM, ser. Lecture Notes in Computer Science, S. W. Poole,
O. Hernandez, and P. Shamis, Eds., vol. 8356. Springer, 2014, pp. 163–177.

[4] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter, L. Dagum,
R. A. Fatoohi, P. O. Frederickson, T. A. Lasinski, R. S. Schreiber et al., “The
NAS parallel benchmarks,” International Journal of High Performance
Computing Applications, vol. 5, no. 3, pp. 63–73, 1991.

[5] “NAS parallel benchmarks for OpenSHMEM, version 1.0a,” Online:
http://openshmem.org/site/Downloads/Examples, Aug. 2014.

[6] B. W. Barrett, R. Brightwell, S. Hemmert, K. Pedretti, K. Wheeler,
K. Underwood, R. Riesen, A. B. Maccabe, and T. Hudson, “The portals 4.0.1
network programming interface,” Sandia National Laboratories, Tech. Rep.
SAND2013-3181, April 2013.

[7] “OpenSHMEM implementation using portals 4,” Online:
http://code.google.com/p/portals-shmem/, Aug. 2014.

[8] “Portals 4 open source implementation for InfiniBand,” Online:
http://code.google.com/p/portals4/, Aug. 2014.


