Towards a matrix-oriented strided interface in
OpenSHMEM

Jeff R. Hammond
Extreme Scalability Group and Parallel Computing Lab
Intel Corporation
jeff_hammond@acm.org

ABSTRACT

New communication routines are proposed for OpenSHMEM
to allow the efficient implementation of distributed matrix
computations.

1. INTRODUCTION

Matrix computations are fundamental to many domains of
science and are therefore ubiquitous in high-performance
computing. Distributed-matrix algorithms frequently use
a two-dimensional decomposition (e.g. the block-cyclic dis-
tribution used in ScaLAPACK [4]), wherein both the row
and column index spaces are tiled and wrapped cyclically.
Global Arrays [10, 11] uses a two-dimensional distribution
by default and supports user-defined blocking in both dimen-
sions. For this reason, multidimensional subarray operations
are an essential and highly optimized feature in ARMCI [9,
13]. Co-array Fortran [14], which is now standardized in
ISO Fortran 2008, also supports multidimensional arrays
distributed in each of the dimensions.

Vendor SHMEM implementations and the OpenSHMEM 1.1
specification support two types of data layouts: contiguous
and indexed. The indexed PUT and GET routines take a
source and target stride but only support striding in a single
data element. For example, one can communicate the even
elements of a vector of doubles using a stride of two, but
there is no way — at least within a single function call —
to communicate four doubles in a row at a stride of eight
doubles.

The inability to send multiple elements with a stride means
that communicating with submatrices, as is often required
for distributed matrix computations, cannot be done effi-
ciently. For example, if one wants to send an M by N sub-
matrix corresponding to row-major layout ! , either M calls
to a contiguous operation acting on N elements or N calls

'We will use this convention throughout the paper. Unless
said otherwise, it is implied.

to an indexed operation acting on M elements is required.
The overhead of multiple function calls is exacerbated by the
absence of true nonblocking operations in OpenSHMEM, al-
though these are an active topic for inclusion in a future
version of the standard. However, even if nonblocking oper-
ations were available, preventing the user from exposing the
semantics of their application, i.e. that they are communi-
cating a submatrix, prevents optimizations at the network
level for noncontiguous data that may exist due to the sup-
port of these features in MPI [8], ARMCI [13], and GAS-
Net [2], among others.

In the case of a tall, skinny submatrix, the use of indexed
operations reduces the number of function calls but may re-
quire touching cache lines more times than would otherwise
be required, which is undesirable on all modern memory
systems. For example, if a submatrix of dimension 4 by n
doubles of a matrix of m by n (m > 8) is communicated
via indexed puts, each cache line will be touched four times,
once each to load the first, second, third and fourth elements
out of eight (we assume a 64-byte cache line, but observes
the same behavior for a 128-byte cache line if m > 16). Of
course, this assumes CPU-like access to memory — a network
that can address DRAM directly at word granularity may
avoid such issues.

2. PROPOSED FEATURES

We propose to add array-oriented communication operations
for PUT and GET, generalizing the existing contiguous and
indexed operations for all types. The syntax of array-put
(APUT) is given below; the corresponding GET operation
can be inferred.
void shmemx_<T>_aput(T * dst, const T * src,

ptrdiff_t dst_str,

ptrdiff_t src_str,

size_t blockelems,

size_t blockcount,
int pe);

Just as for the indexed PUT (IPUT) operation, there are ar-
guments for the source and destination strides. The nelems
argument is replaced with two arguments in order to capture
the fact that these operations moved blocks of data rather
than single elements. The mapping from APUT to IPUT
is trivial; one merely sets blockelems = 1 and blockcount =
nelems.

In the event that the user calls APUT such that there are
overlapping writes to the same memory location, the result



Figure 1: Pictorial representation of the PUT (left)
and IPUT (right) operations acting on a 4-by-5 sub-
matrix of an 8x8 matrix. The blue bars represent
contiguous put operations while the red bars repre-
sent indexed (element-wise strided) put operations.

is undefined. Implementations may be able to write atom-
ically, in which case one of these writes will succeed and
the others will fail, but this behavior cannot be assumed,
as other implementations may not be able to write atomi-
cally. Other semantics should be inferred from the mapping
of APUT to IPUT noted above.

It is worth asking whether it is worthwhile to generalize the
APUT operation for dimensions higher than two to support
tensor operations (for some applications, see [7] and [15]).
There are two arguments against this. First, operations on
subarrays of dimension greater than two can be expressed in
terms of a single APUT operation by combining the strides;
for example, a three-dimensional subarray operation can be
cast in terms of a two-dimension subarray computation if the
stride over z and y are multiplied together (here we assume z
is the contiguous dimension that is captured by blockelems).
Regardless of the number of dimensions associated with the
strides, the key efficiency gain with APUT is accomplished
by operating on blocks of contiguous data rather than sin-
gle elements, as is the case for IPUT. Second, the myr-
iad of applications involving tensor operations include many
cases where cartesian subarrays are not useful. For exam-
ple, in the domain of quantum chemistry, most tensors have
permutation (anti-)symmetry and thus cannot make use of
operations designed for non-symmetric subarrays. Such is
the complexity of tensor data in the NWChem [3] Tensor
Contraction Engine [6] that block-sparse and permutation-

(anti)symmetric tensors are mapped to one-dimensional global

arrays with an application-defined hashing scheme.

3. PROTOTYPE IMPLEMENTATION

We describe an implementation of the proposed additions to
OpenSHMEM using the OpenSHMEM 1.1 functionality and
an optimized one using the Cray® DMAPP interface [1]. For
clarity in the code, we show only the case of type double, as
the extension to other types is obvious.

3.1 Reference Implementation

To illustrate that APUT is inherently compatible with Open-
SHMEM in its current form, it is useful to map from the
proposed features to existing ones. One reason to show this
implementation is to prove that there is no special burden on
implementers to change the internal design of their OpenSH-

void shmemx_double_aput (double * dest,
const double * src,
ptrdiff_t dstr,
ptrdiff_t sstr,
size_t blksz,
size_t blkct, int pe)

double *dtmp dest;
const double *stmp src;
if (blksz<blkct) /* may require tuning */ {
for (size_t i=0; i<blksz; i++) {
shmem_double_iput (dtmp, stmp, dstr, sstr,
blkct, pe);

dtmp++; stmp++;
¥
} else {
for (size_t i=0; i<blkct; i++) {
shmem_double_put (dtmp, stmp, blksz, pe);
dtmp += dstr; stmp += sstr;
}
}
}

Figure 2: Implementation of APUT in terms of PUT
and IPUT.

MEM runtime to support APUT. The second reason is that
the obvious performance deficiences in the reference imple-
mentation motivate the addition of APUT to OpenSHMEM
to allow implementers to optimize for it.

The implementation shown in Figure 2 attempts to minimize
the number of SHMEM calls, which may not be the best
metric. The overhead of moving data via IPUT may be
higher than PUT, in which case a different threshhold is
appropriate. In any case, this detail is not significant here;
we merely aspire to illustrate the semantics of this function
by mapping to ones with which the reader is surely familiar.

3.2 Optimized Implementation

The implementation shown in Figure 3 leverages the Cray®
DMAPP interface [1], which closely resembles SHMEM but
has a number of additional features, including nonblocking
one-sided calls corresponding to the existing blocking one-
sided operations in OpenSHMEM. These come in both im-
plicit and explicit form, which is to say, one set of nonblock-
ing operations takes a handle that can be tested or waited
upon in a similar manner to MPI nonblocking Send and Re-
ceive, whereas the other (implicit) is associated with bulk
completion via global synchronization (gsync) operations.

Because DMAPP does not support an unlimited number of
outstanding nonblocking operations of the implicit type, we
must periodically wait on their completion. An explicit non-
blocking implementation requires the creation of numerous
(the minimum of blksz and blkct) handles and their individ-
ual testing — DMAPP does not provide a bulk handle com-
pletion function akin to MPI_Waitall and friends) — hence
they are not a good match for APUT.

4. CONCLUSION AND FUTURE WORK

In this short paper, we have described a new set of features —
proposed for inclusion in a future version of OpenSHMEM
— that would allow the efficient expression of distributed
matrix algorithms involving two-dimensional blocked data
distributions.



void shmemx_double_aput (double * dest,
const double * src,
ptrdiff_t dstr,
ptrdiff_t sstr,
size_t blksz,
size_t blkct, int pe)

int maxnbi = DMAPP_DEF_OUTSTANDING_NONBLOCKING/2;
double *dtmp = dest;
const double *stmp = src;
if (blksz<blkct) /* may require tuning */ {
for (size_t i=0; i<blksz; i++) {
dmapp_iput_nbi(dtmp, _sheap, pe, (doublex*)stmp,
dstr, sstr, blkct, DMAPP_QW);
if (i%maxnbi==0) dmapp_gsync_wait ();
dtmp++; stmp++;
}
} else {
for (size_t i=0; i<blkct; i++) {
dmapp_put_nbi(dtmp, _sheap, pe, (doublex*)stmp,
blksz, DMAPP_QW);
if (i%maxnbi==0) dmapp_gsync_wait();
dtmp += dstr; stmp += sstr;
¥
if (blkct%maxnbi!=0) dmapp_gsync_wait ();

Figure 3: Implementation of APUT in terms of non-
blocking PUT and IPUT from the Cray® DMAPP
interface.

We hope that inclusion of these features in OpenSHMEM
spurs the development of OpenSHMEM-based dense linear
algebra libraries similar to Global Arrays and otherwise en-
ables both performance and productivity for this class of
computations.

In the future, we will explore the mapping of the Global Ar-
rays programming model to OpenSHMEM both as end in its
own right and as a vehicle for understanding the utility of
APUT in important scientific applications (e.g. NWChem).
An obvious issue with this task is the lack of remote accu-
mulate in SHMEM APIs. However, it has already been dis-
cussed how to [12] how one can implement the accumulate at
the initiator using a lock-get-accumulate-put-unlock imple-
mentation, which can be implemented using shmem_set_lock,
shmem_clear_lock, and the appropriate put and get opera-
tions for the datatype. An implementation of Global Arrays
using OpenSHMEM has the potential to be implemented
without an asynchronous agent (i.e. polling thread), which
obviates many of the issues associated with such a design [5].

Acknowledgment
The author thanks Jim Dinan for feedback.

5. REFERENCES

[1] Using the GNI and DMAPP APIs. Technical Report
S-2446-52, Cray, 2014.

[2] D. Bonachea. Proposal for extending the UPC
memory copy library functions and supporting
extensions to GASNet. Technical Report LBNL-56495,
Lawrence Berkeley National Lab, 2004.

[3] E. J. Bylaska et. al. NWChem, a computational
chemistry package for parallel computers, version
6.1.1, 2012.

[4] J. Choi, J. Demmel, I. Dhillon, J. Dongarra,

S. Ostrouchov, A. Petitet, K. Stanley, D. Walker, and

[5]

[6]

[7]
8]

[9]

(10]

(11]

(12]

(13]

(14]

(15]

R. C. Whaley. ScaLAPACK: A portable linear algebra
library for distributed memory computers - design
issues and performance. In Applied Parallel Computing
Computations in Physics, Chemistry and Engineering
Science, pages 95-106. Springer, 1996.

J. R. Hammond, J. Dinan, P. Balaji, I. Kabadshow,

S. Potluri, and V. Tipparaju. OSPRI: An optimized
one-sided communication runtime for leadership-class
machines. In The 6th Conference on Partitioned
Global Address Space Programming Models, Santa
Barbara, CA, 04/2011 2011.

S. Hirata. Tensor Contraction Engine: Abstraction
and automated parallel implementation of
configuration-interaction, coupled-cluster, and
many-body perturbation theories. J. Phys. Chem. A,
107:9887-9897, 2003.

T. G. Kolda and B. W. Bader. Tensor decompositions
and applications. SIAM review, 51(3):455-500, 2009.
MPI Forum. MPI: A message-passing interface
standard. Version 3.0., Nov. 2012.

J. Nieplocha and B. Carpenter. ARMCI: A portable
remote memory copy library for distributed array
libraries and compiler run-time systems. In Parallel
and Distributed Processing, pages 533-546, London,
UK, 1999. Springer-Verlag.

J. Nieplocha, R. J. Harrison, and R. J. Littlefield.
Global arrays: a portable “shared-memory”
programming model for distributed memory
computers. In Supercomputing ’94: Proceedings of the
1994 ACM/IEEE conference on Supercomputing,
pages 340-349, New York, 1994. ACM.

J. Nieplocha, R. J. Harrison, and R. J. Littlefield.
Global arrays: A non-uniform-memory-access
programming model for high-performance computers.
The Journal of Supercomputing, 10:10-197, 1996.

J. Nieplocha, V. Tipparaju, and E. Apra. An
evaluation of two implementation strategies for
optimizing one-sided atomic reduction. In Parallel and
Distributed Processing Symposium, 2005. Proceedings.
19th IEEE International, pages 7-pp. IEEE, 2005.

J. Nieplocha, V. Tipparaju, M. Krishnan, and

D. Panda. High performance remote memory access
communications: The ARMCI approach. International
Journal of High Performance Computing and
Applications, 20(2), 2006.

R. W. Numrich and J. Reid. Co-array fortran for
parallel programming. In ACM Sigplan Fortran
Forum, volume 17, pages 1-31. ACM, 1998.

E. Solomonik, D. Matthews, J. Hammond, and

J. Demmel. Cyclops tensor framework: Reducing
communication and eliminating load imbalance in
massively parallel contractions. In Proceedings of the
2013 IEEE 27th International Symposium on Parallel
and Distributed Processing, IPDPS ’13, pages 813-824,
Washington, DC, USA, 2013. IEEE Computer Society.



