Efficient Interoperability of OpenSHMEM on Multicore
Architectures

Khaled Z. Ibrahim
Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
kzibrahim@Ibl.gov

ABSTRACT

Most HPC programming models face an interoperability chal-

lenge because of the advent of multi/many core architec-

tures [1-3]. Efficient interoperability—for instance, with shared

memory programming models such as OpenMP-requires re-
considering the design of various levels of the programming
model software stack. While support for interoperability
typically exists at the hardware and system messaging li-
brary levels, most programming models lack the interfaces
that ease such interoperability. In this paper, we discuss
requirements of efficient interoperability and show the al-
ternative paths for satisfying them for OpenSHMEM. We
discuss the implication of maintaining the current interfaces
and enhancements to ease interoperability.

1. INTRODUCTION

Architectural trends show increase in core concurrency in
node designs, as well as increase in heterogeneity. Multi-
ple programming models are likely needed to efficiently ex-
ploit such architectures. Among metrics for efficient inter-
operability is the ability to support shared memory mod-
els within a node using pthreads and distributed models
using processes across nodes without performance penalty.
For instance, we need runtimes capable of initiating com-
munication within multithreaded parallel region without in-
crease in latency compared with the single-threaded case.
This eases programming, reduces synchronization, and al-
lows better scaling.

Most optimized parallel libraries within a node (or a co-
herence domain) rely solely on pthreads model because it
utilizes a single name space for data and functions, thus re-
ducing runtime overheads in address and function shipping
across compute threads. Shared memory models also allow
more efficient memory usage. Physical memory is typically
a scarce resource at scale, which could be stressed by com-
munication runtime internal buffers that scale with the run
size. Unfortunately, architectural trends show reduction in
physical memory per core. At the application level, explicit
shared memory programming allows efficient resource allo-
cation (no data replication). While it is possible to support
sharing with processes, sharing data requires memory map-
ping to a shared file (thus creating aliases and offset-based
indexing) and sharing functions requires an RPC mecha-
nism. These mechanisms introduce overheads for shipping
data or functions. Additionally, processes do not provide a
guarantee of physical sharing, thus forcing runtimes to fre-
quently check for sharing before applying optimizations.

| Application

Shared Resource Pool
(e.g. C/C++, Fortran, etc) |

Multicore runtime
(e.g. OpenMP, pthreads, CUDA, etc)

2K 2 20 20 2 2

HPC Runtime P
(e.g. OpenShmem, UPC, etc) /

| Portable Message Runtime |

(e.g. GASNet) Split resources

N
X

System Message Runtime
(e.g. Cray GNI/DMAPP, IBM PAMI)

Figure 1: A typical software stack or PGAS language. With
the use of pthreads-based runtime, we have the choice of either
splitting resources or sharing them and protecting access using a
mutual exclusion mechanism.

2. EFFICIENT INTEROPERABILITY CON-
DITIONS

Multiple considerations, regarding resource management
and addressability of pthreads, should be considered across
the whole software stack to achieve interoperability. A ba-
sic requirement is the need to split the resources at various
levels of the software stack such that accessing the inter-
connect does not involve any serialization (including using
locking or lock-free atomic-based algorithms). Effectively,
we need thread-specific separate paths in carrying transfers
while maintaining full reachability and addressability to the
shared state.

In Figure 1, we show a typical PGAS language software
stack. The efficiency of the system relies on the aggregate
support in all layers. Creating a separate injection path for
each thread requires resource split in all layers of the stack.
Some system libraries, such as IBM PAMI, support thread-
specific allocation of resources, called contexts. Others, such
as Cray GNI, are not thread-safe, or thread-safe using li-
brary locks, such as Cray DMAPP or Infiniband. Our recent
study [3] shows how to use Cray GNI domains, intended to
support multiple client runtimes, to create thread-specific
separate injection paths. At the second level of the stack
(from bottom), earlier approaches for GASNet and MPT [1]
argue for lock-free data structures (using atomic operation)
to make serialization brief, we found that insufficient. Mov-
ing the interconnect controller on-chip makes the injection
overhead as small as few tens of nanoseconds. The increase
in the number of cores makes any serialization and lock mi-
gration extremely expensive. This leads to an increased gap
between serialization-free accesses to the interconnect and
serialized ones.

In Figure 2, we show the increase in latency for a pthreads-
based implementation as we increase the level of concurrency

Table 1: Suggested Modification to OpenSHMEM APIs

API ¢

functionality

start_pes(IN npes, INOUT endpoint_count)
shmem my_endpoint(OUT endpoint)
shmem_create_endpoint(OUT endpoint)

Initialize, and request maximum thread-safe resources
query default endpoint
create an endpoint

shmem_int_put(IN endpoint, IN target, IN source, IN nelems, IN pe)

other APIs similar to shmem_int_put

put operation of integer with injection resource argu-
ment

“Suggested modification from current standard are colored in blue.

Il 1 context

8-Byte Messages - 4 BGQ nodes

o
o
X

I 8 contexts

I 16 contexts
Il 32 contexts
I 64 contexts

Rario of increase in latancy for
threads compared with processes
e
&
)

’ 1lthread 2threads 4threads 8threads 16 threads 32 threads 64 threads
Figure 2: The latency of injecting a transfer using pthreads com-
pared with processes increases with the level of concurrency on
IBM BGQ systems. Assigning threads different contexts reduce
ingection latency.

on IBM BGQ systems. The latency can be reduced if we at-
tach each thread to a unique PAMI context. BGQ systems
provide the lowest possible impact, despite being high, on
transfer injections because a node has a single socket, rela-
tively slow compute cores, and a special L.2 atomic support
that reduces lock migration overheads. Similar trends were
observed on Cray XE&XC systems [3]. The impact is typi-
cally large for small to medium size messages (affecting up
to 128KB transfers on Cray XC nodes compared with 2KB
on IBM BGQ nodes). Berkeley UPC/GASNet recently sup-
ported a full resource split on all layers of the stack using
Cray GNI domains to achieve near optimal one-sided trans-
fers with pthreads-based implementation.

While splitting resources allows for concurrent injection,
the performance of pthreads cannot match processes un-
less language semantic allows addressability of the target
and direct reachability [3]. MPI two-sided transfers [4] and
GASNet active messages [3] are two examples not satisfy-
ing these conditions. The new specification of GASNet is
considering such challenges in its design.

3. EFFICIENT INTEROPERABILITY FOR
OPENSHMEM

OpenSHMEM, being part of the PGAS family, has the
property that the target of a transfer is independent of the
use of thread or process abstractions. The property is ben-
eficial as long as the passive target model is used, e.g. us-
ing hardware accelerated RDMA. If active target model is
used, for instance using a service thread to process incom-
ing transfers, the limitations experienced by MPI [4] and
GASNet Active Messages [3] are likely to negatively impact
performance. Active target models typically create another
bottleneck at the receive end. First, in average, the number
of service threads per node at the target needs to match the
number of threads injecting traffic, thus consuming compute
resources in servicing communication. Second, the service
target needs to be explicitly addressed. Otherwise, multiple
service threads could contend while trying to load-balance
the service for incoming traffic. Overall, an active-target
implementation will be far more challenging in supporting
efficient interoperability.

As it is now, for an OpenSHMEM runtime to exploit re-
source split at lower layers, it is required to lookup thread
specific identifier of the resources in each call. This operation
typically takes several hundreds of cycles on modern archi-
tectures, thus impacting small transfers. The problem can
be handled transparently using some preprocessing to add
the additional thread-specific arguments. GASNet employs
such technique, but in future specifications this identifier is
added explicitly in the APL.

We argue that OpenSHMEM better considers an addition
of a resource argument to its interfaces. In Table 1, we
briefly outline the proposed modifications. The application
can request multiple injection resources endpoints that are
lock-free. The runtime returns the count of endpoints that
could be created, the minimum of what is available and what
is requested. The application, then, allocates endpoints as
needed. In multithreaded setting, the memory transfer APIs
pass an additional argument to select the resources used for
injection. User assertion can be added, whether the user will
guarantee thread safety of the endpoint or the runtime.

This resource argument, endpoint, is originally proposed
for MPI two-sided APIs [2], but the potential for success
in PGAS language setting is greater. Hardware accelerated
RDMA, makes the only resources that need explicit manage-
ment the injection resources at the initiator of the transfer.
Among objectives of this paper is to reopen the discussion
of the implication of adopting such interfaces to both the
runtime design and the application layers.

4. CONCLUSIONS

Efficient interoperability is critical to programming mod-
els in future systems. Trends of hybrid designs, increased
core count, and reduced memory per core make interoper-
ability inevitable. In this paper, we discuss general condi-
tions to achieve efficient interoperability and specific Open-
SHMEM considerations to achieve them.

References

[1] P. Balaji, D. Buntinas, D. Goodell, W. Gropp, and R. Thakur.
Fine-Grained Multithreading Support for Hybrid Threaded
MPI Programming. IJHPCA, 24(1):49-57, 2010.

[2] J. Dinan, P. Balaji, D. Goodell, D. Miller, M. Snir, and
R. Thakur. Enabling MPI Interoperability Through Flexible
Communication Endpoints. EuroMPI, pages 13—18, 2013.

[3] K. Z. Ibrahim and K. Yelick. On the Conditions for Efficient
Interoperability with Threads: An Experience with PGAS
Languages Using Cray Communication Domains. In Proceed-
ings of the 28th ACM International Conference on Supercom-
puting, ICS ’14, pages 23-32, 2014.

[4] S. Kumar, A. Mamidala, D. Faraj, B. Smith, M. Blocksome,
B. Cernohous, D. Miller, J. Parker, J. Ratterman, P. Hei-
delberger, D. Chen, and B. Steinmacher-Burrow. PAMI: A
Parallel Active Message Interface for the Blue Gene/Q Super-
computer. The 26th IEEE International Parallel Distributed
Processing Symposium (IPDPS), pages 763-773, 2012.

