
Development and Extension of Atomic Memory Operations
in OpenSHMEM

Pavel Shamis, Manjunath Gorentla
Venkata, Stephen W. Poole

Computer Science and Mathematics Division
Oak Ridge National Laboratory

Oak Ridge, Tennessee 37831-6173
{shamisp,manjugv,spoole}@ornl.gov

Swaroop Pophale, Michael Dubman,
Richard Graham, Dror Goldenberg,

Gilad Shainer
Mellanox Technologies

Sunnyvale, California 94085
{swaroop, miked, richardg, gdror,

shainer}@mellanox.com

ABSTRACT
A distinguishing characteristic of OpenSHMEM compared
to other PGAS programming model implementations is its
support for atomic memory operations (AMOs). It provides
a rich set of AMO interfaces supporting 32-bit and 64-bit
datatypes. On most modern networks, network-implemented
AMOs are known to outperform software-implemented AMOs.
So, for achieving high-performance, an OpenSHMEM imple-
mentation should try to offload AMOs to the underlying net-
work hardware when possible. Nevertheless, the challenge
arises when (a) underlying hardware does not support full
set of atomic operations, (b) more that one device is used,
and (c) heterogeneous systems with multiple types of devices
are involved. In this paper, we analyze the challenges and
discuss potential solutions to address these challenges.

Categories and Subject Descriptors
C.2.6 [COMPUTER-COMMUNICATION NETWORKS]:
Internetworking—Standards

1. INTRODUCTION
OpenSHMEM [1] is a de-facto standard for SHMEM libraries
that defines the library API, its behavior, and functional-
ity. While the concept of SHMEM was introduced before
the Partitioned Global Address Space (PGAS) model was
formally introduced, the SHMEM memory model fits the
PGAS programming model. Each processing element (PE)
manages a partition of the symmetric memory heap used
for symmetric data object allocations. Memory allocations
within the symmetric heap can be accessed through a rich
set of remote memory access (RMA) operations including
AMOs. The unique characteristic of AMOs is the fact that
the target memory is updated atomically with respect to
other AMOs. In other words, at any given moment, only
a single PE may access (read or write) the target memory
through the AMOs. It worth noting that atomicity of mem-

ory updates is not guaranteed with respect to any other
OpenSHMEM operations.

The OpenSHMEM AMOs include two major classes of oper-
ations: the fetch (blocking) operations that return the orig-
inal value and the non-fetch operations. The fetch oper-
ations include fetch-and-add (FADD), fetch-and-increment
(FINC), swap (SWAP), and compare-and-swap (CSWAP).
All the above operations atomically update the remote sym-
metric data object and fetch the original value stored in the
specified symmetric data object. The non-fetch operations
include add (ADD) and increment (INC). The non-fetch op-
erations atomically update the remote symmetric data ob-
ject without fetching the original value. All operations de-
fined for 32 and 64 bit integer datatypes.

Hardware components like CPU, PCIe, and network devices
such as InfiniBand HCA, Cray’s Gemini/Aries ASIC etc.
typically provide some AMOs. But in the current High-
Performance Computing (HPC) systems leveraging and co-
ordination of these operations between hardware compo-
nents is a non-trivial task. In this paper we discuss cer-
tain challenges faced by OpenSHMEM library implementers
while providing performance driven AMO implementations.

The rest of the paper is organized as follows: Section 2 dis-
cusses the challenge associated with implementation of the
AMOs. Section 3 proposes solutions that aim to address
the challenges and Section 4 evaluates performance of one
of the proposed solutions. Section 5 summarize the paper
and concludes the discussion.

2. THE CHALLENGE
In the section we discuss in detail each one of the challenges
outlined in the abstract.

2.1 Underlying hardware does not support full
set of operations.

If the underlying hardware does not support all the AMOs
defined by the OpenSHMEM specification, the implementa-
tion has to fallback to a common mechanism that handles
all AMOs. The common mechanism may provide imple-
mentations for all AMOs and ignore the operations that are
supported in hardware or implement some logic that syn-
chronizes AMOs between different types of hardware and



software. While the last option might be the most desir-
able, to the best of our knowledge, most OpenSHMEM im-
plementations fallback to the software based implementa-
tion of AMOs for all operations because some operations
are not possible in hardware. As a result, a single unsup-
ported AMO in hardware may result in a fallback to subpar
software AMO implementation for all operations supported
by OpenSHMEM. In most cases, software implementations
introduce additional overheads, which discourages the usage
of AMOs by application developers. Therefore, the Open-
SHMEM community should be cautious when adding new
AMOs to the API, since it may negatively affect the usabil-
ity of already supported operations.

2.2 More than one device is used
When more than a single hardware device of the same type
is used for node connectivity in an HPC system, the devices
have to coordinate the AMO execution. While in theory,
it is possible to implement such coordination, most popular
interconnects do not support it. As a result, OpenSHMEM
implementations have to either re-route all AMOs through a
single device, or, similar to the case described in 2.1, fallback
to a subpar software implementation.

2.3 Heterogeneous systems with multiple types
of devices

This challenge is most relevant for most of today’s systems
since majority of the machines provide different communi-
cation path for inter-node and intra-node communication.
Intra-node communication is typically implemented through
shared memory that by-passes the inter-node communica-
tion path. As a result, OpenSHMEM implementations choose
to fallback to common AMO mechanism, which is imple-
mented in software. Alternatively, similar to challenge de-
scribed in 2.2, the implementation may select one communi-
cation path over another. For example, some OpenSHMEM
implementations redirect all AMOs through InfiniBand de-
vice and bypass shared memory optimizations.

The common denominator for the above challenges is the
fact that OpenSHMEM implementation have to switch to
a common AMO mechanism. This typically result in a
software based implementation of AMOs and slower per-
formance. In the following section 3 we discuss potential
solutions that aim to mitigate the issue.

3. POTENTIAL SOLUTIONS
The OpenSHMEM library implementation can go through
hardware atomic path, or choose to employ the software im-
plementation of the atomic. The main challenge is to decide
when to fallback to the suboptimal software implementation.
In this section we discuss possible approaches that could be
used.

3.1 Hints by the Programmer
With new innovations in hardware, OpenSHMEM library
developers may be able to develop faster AMOs by offload-
ing certain functionality to the hardware rather than relying
on suboptimal software solutions. A programmer could de-
clare ahead of time which AMOs the application uses. As we
know, InfiniBand specification does not define the SWAP op-
eration nor support 32bit AMOs. If the application notifies

the OpenSHMEM library that the unsupported operations
are not used by the application, the library may switch to
offloaded AMOs, otherwise software based implementation
is used. This could be incorporated with a slight change to
the OpenSHMEM library initialization. The proposed solu-
tion aims to solve the challenge 2.1, and it helps mitigate
the effect of challenges 2.2 and 2.3.

The drawback of this approach is that the application de-
veloper has to review the application and identify all AMOs
used. Moreover, such approach does not guarantee that all
AMOs will be offloaded to hardware, even so, the OpenSH-
MEM library will have more information in order to make
optimal selection of an AMO implementation. This ap-
proach requires only minimal modifications from an appli-
cation perspective and provides opportunities for different
OpenSHMEM library optimization.

3.2 Hints by the OpenSHMEM library imple-
mentation

Another approach that might be helpful is if the specific
OpenSHMEM library implementation exposes information
about the quality or nature of the AMOs (or any other op-
erations) implementation available. For instance, if the im-
plementation does not provide high-performance SWAP op-
eration, the application programmer may choose to replace
it with some other equivalent operation. Similar to the ap-
proach discussed before, the solution aims to solve challenge
2.1 and alleviates the effect of challenges 2.2 and 2.3.

This approach simplifies the OpenSHMEM library develop-
ment and potentially enables efficient utilization of underlay-
ing hardware capabilities. With this approach the burden of
AMO management is upon the application developers, who
now have to understand the technical details of the under-
laying OpenSHMEM implementation. This may not be a
portable solution either.

3.3 Manage a different memory store for each
variation of AMOs

The central implication of all the challenges is that the atom-
icity cannot be guaranteed when the AMOs are provided by
different implementations (providers). i.e. a complete set of
AMOs are provided by different network devices, by a com-
bination of CPU and network hardware, or a combination
of hardware and software. This approach ensures atomicity
by using a different memory store for each of the providers.

This approach assigns a different symmetric heap for each
atomic provider. Where a complete set of operations are
provided by a combination of software and hardware imple-
mentation, the OpenSHMEM library will allocate a separate
memory regions for hardware AMOs, and a separate mem-
ory regions for software AMOs. Similarly, for the challenge
2.3 where the PEs are connected using different networks,
the library manages a separate memory region for each dif-
ferent type of the network.

This approach ensures that AMO performance is not de-
graded when there are multiple AMO providers. For ex-
ample, in an OpenSHMEM job, where PEs are connected
through a shared-memory and InfiniBand networks, if a par-



tial set of OpenSHMEM AMOs are faster with CPU imple-
mentation and another partial set of OpenSHMEM AMO
are faster on InfiniBand, this approach allows the applica-
tion to use them both. In contrast to the above solutions,
the proposed approach solves challenges 2.1, 2.2, and 2.3.

The primary drawback of this approach is that it delegates
the complexity of AMO’s management to an application de-
veloper. The developer is responsible to enquire about dif-
ferent groups of AMOs, allocate and manage AMOs over a
particular region of memory.

3.4 Using existing hardware AMOs as build-
ing blocks

Another alternative for software based collectives could be
an implementation that leverages already existing AMOs
to implement operations that are not directly supported by
hardware. For example, OpenSHMEM-UCCS [2][3], which
is a high-performance implementation of the OpenSHMEM
specification, implements the SWAP operations and 32 bit
AMOs for Mellanox InfiniBand and Cray Gemini intercon-
nects through 64bit CSWAP operation that is supported in
hardware.

The initiator of the operation atomically reads the remote
value, based on an operation updates the value, and executes
compare-and-swap (CSWAP) using the originally fetched
value and the updated value. If the operation fetches a value
that is identical to the one that was fetched in the first step,
the update is considered successful. Otherwise, the update
fails and the algorithm repeats previous steps. For the rest of
the paper we refer to the algorithm as the hardware-software
algorithm. Using the above algorithm the OpenSHMEM-
UCCS implementation addresses the challenge described in
2.1.

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 5
 5.5

 6
 6.5

 7
 7.5

 8
 8.5

 9

am
_event_am

o_estim
ate

shm
em

_longlong_fadd

shm
em

_longlong_finc

shm
em

_longlong_csw
ap

shm
em

_longlong_sw
ap

shm
em

_int_finc

shm
em

_int_csw
ap

shm
em

_int_sw
ap

L
a

te
n

c
y

 (
u

s
e

c
)

Figure 1: Evaluation of OpenSHMEM-UCCS AMOs

4. EVALUATION
The Figure 1 shows a comparison between blocking (fetch
based) AMOs supported in hardware, AMOs implement with
the above algorithm, and software based AMOs. The eval-
uation was conducted on a HP ProLiant DL380p system
located at the Oak Ridge National Laboratory’s Extreme
Scale System Center. The system consists of two compute
nodes, each with two Intel Xeon E5-2650 CPUs, for a total
of 16 CPU cores and 32 threads. Compute nodes are inter-
connected with Mellanox ConnectX-3 VPI HCA connected

back-to-back (no switch). The system runs CentOS release
6.5 with MLNX-OFED-2.2-1.5.5 and OpenSHMEM-UCCS
v0.3.

The performance of AMOs was measured using OSU Open-
SHMEM Atomic Test v4.4. It is worth noting that this
test does not evaluate AMOs performance under contention,
but reports the base-line (most optimized) performance for
each operation; this is aligned with the goal of our investi-
gation. In this evaluation we focused on blocking (fetched
based) AMOs, since this type of operations are affected most
by the quality of the AMO implementation and measure
the full round trip communication latency. The green bars
represent AMOs implemented in hardware (64bit/longlong
FADD, FINC, CSWAP), the blue bars represent AMOs im-
plemented within OpenSHMEM-UCCS using the hardware-
software algorithm (64bit/longlong SWAP and 32bit/int
FADD, FINC, CSWAP, SWAP), and the red bar represents
a simulation software based AMO using ib send lat bench-
mark. For the simulation we calculated a round trip latency,
where an initiator sends an active message (InfiniBand send
work request) with a AMO operation descriptor and the
receiver handles the active message receive event though a
thread (we assuming one-sided implementation of atomics)
followed by the reply message with a fetched value. The
initiator receives the reply using busy-loop pull on a com-
pletion queue. Since the simulation is realized using Infini-
Band VERBS interface, it represents close-to-hardware (op-
timal) performance for this type of AMO implementation.
In context of the paper we do not consider AMO implemen-
tations that require explicit progress from the application
level. These type of implementations are useless from the
application’s perspective.

As seen in Figure 1, the hardware-software AMOs (blue
bars) are about two times slower than the hardware based
AMOs (green bars). This is expected, since for the best case
scenario (no contention) the hardware-software algorithm is-
sues two AMO requests (READ and CSWAP), where hard-
ware based implementation issue a single request. Moreover,
as expected, hardware-software operation has no side-effect
on an AMO implemented with hardware. The software
based implementation is about x5.3 times slower compared
to hardware AMOs, and x2.7 slower compared to hardware-
software AMOs. The relative poor performance of software
based AMOs is a result of overhead introduced by asyn-
chronous event handling on the destination PE.

5. CONCLUSION
The primary motivation of the paper is to highlight the
challenges associated with implementing high performance
AMOs. These problems will be amplified with introduc-
tion of new AMOs in the OpenSHMEM specification. In-
troduction of new AMOs may have side-effects and nega-
tively affect the performance of already existing AMOs in
OpenSHMEM. Since the gap between the software require-
ment and hardware capabilities is always expected to be
present, OpenSHMEM community has to provide a mecha-
nism to enable coexistence of software and hardware based
AMOs. In the paper we proposed a few potential solutions
that aim, in some measure, to bridge the gap between the
software requirement and current hardware capabilities. In
addition, the OpenSHMEM community must closely collab-



orate with hardware vendors to ensure that new operations
are supported at the hardware level and the disparity be-
tween software requirements and hardware AMOs support
does not increase.

Acknowledgment
This work is supported by the United States Department of
Defense and used resources of the Extreme Scale Systems
Center located at the Oak Ridge National Laboratory.

6. REFERENCES
[1] OpenSHMEM specification.

[2] P. Shamis, M. G. Venkata, J. A. Kuehn, S. W. Poole,
and R. L. Graham. Universal Common Communication
Substrate (UCCS) Specification. Version 0.1. Tech
Report ORNL/TM-2012/339, Oak Ridge National
Laboratory (ORNL), 2012.

[3] P. Shamis, M. G. Venkata, S. W. Poole, A. Welch, and
T. Curtis. Designing a high performance openshmem
implementation using universal common
communication substrate as a communication
middleware. In OpenSHMEM and Related Technologies.
Experiences, Implementations, and Tools - First
Workshop, OpenSHMEM 2014, Annapolis, MD, USA,
March 4-6, 2014. Proceedings, pages 1–13, 2014.


