Contexts: A Mechanism for High Throughput
Communication in OpenSHMEM

James Dinan and Mario Flajslik
Intel Corporation

ABSTRACT

This paper introduces a proposed extension to the OpenSHMEM
parallel programming model, called communication contexts. Con-
texts introduce a new construct that allows a programmer to gen-
erate independent streams of communication operations. In hy-
brid executions where multiple threads execute within an Open-
SHMEM process, contexts eliminate interference between threads,
and enable the OpenSHMEM library to map operations generated
by threads to private communication resource sets. By providing
thread isolation, contexts eliminate synchronization overheads and
enable each thread to drive a similar set of resources and achieve
performance comparable to an OpenSHMEM process. In conven-
tional, single-threaded execution, contexts provide greater control
over ordering of operations and can improve communication and
computation overlap. A detailed description of the contexts inter-
face and its implementation for the Portals 4 network programming
interface is described. The implementation is evaluated using Man-
delbrot set and integer sorting (IS) benchmarks. Contexts provide
a 25% performance improvement for Mandelbrot by eliminating
thread interference and enabling pipelining, and a 35% improve-
ment was achieved for IS by enabling more effective communica-
tion/computation overlap.

1. INTRODUCTION

Current trends in high performance computing (HPC) systems in-
dicate that the number of cores per node will continue to increase,
and that there will be a commensurate increase in the capabilities
of the system interconnect to support high rates of communica-
tion through all cores. Hybrid parallel programming models that
combines a system-level communication library, such as OpenSH-
MEM [12] or MPI [9], with a node-level, shared memory paral-
lel programming model have become increasingly prevalent as a
means to align applications with systems and enable more efficient
use of node-level resources. In such scenarios, a single instance
of the communication library is shared by many threads, requiring
synchronization within the library and mapping the operations of
all threads to a shared set of communication resources.

HPC networks also allow increasing degrees of out-of-order mes-

sage delivery, for example to route around congestion, providing
more efficient use of the network, but introducing additional com-
plexity in the management of communication operations. While
such architectures are compatible with existing communication li-
braries, not all parallel programming models are well-equipped to
express independence between communication operations, which
is required for efficient use of such networks. For such models, this
artificial dependence can limit opportunities for overlapping com-
munication with computation.

OpenSHMEM is a one-sided communication library that provides
a partitioned global address space (PGAS) parallel programming
model. The OpenSHMEM specification represents an ongoing com-
munity effort to standardize the SHMEM parallel programming in-
terface that has been in use for over two decades. During this pro-
cess, the community seeks to introduce new features to enhance
the performance and capabilities of SHMEM on current and future
HPC systems. A key activity in this effort is defining the interac-
tion of OpenSHMEM with threads and ensuring that OpenSHMEM
will achieve high performance in multithreaded environments.

In this paper, we present OpenSHMEM contexts, a proposed exten-
sion to the OpenSHMEM interface that is intended to address these
challenges. Contexts introduce separate communication streams
that can be isolated to enable efficient communication in hybrid
SHMEM-and-threads executions and on out-of-order networks. In
particular, contexts address the following performance challenges
to both multithreaded and single-threaded SHMEM programs: (1)
thread interference, by allowing threads to generate independent
streams of communication operations; (2) multithreaded commu-
nication throughput, by enabling a mapping of a thread’s commu-
nication operations to independent network injection resources; (3)
out-of-order communication, by providing a mechanism to express
independent streams of communication operations; and (4) overlap
of communication with computation, by providing greater control
over completion of nonblocking operations through completion of
individual streams.

We present an implementation of OpenSHMEM contexts in the
open source Portals-SHMEM library [13]. Portals-SHMEM uti-
lizes the Portals 4 [16] low-level network API, which is represen-
tative of a modern, high-performance, offload network. We ana-
lyze the effectiveness of the contexts interface and evaluate its per-
formance using a multithreaded Mandelbrot set benchmark and a
single-threaded Integer Sort (IS) benchmark from the NAS par-
allel benchmark suite. Through the addition of contexts, we ob-
served a 25% performance improvement for Mandelbrot by elimi-
nating thread interference and enabling pipelining, and a 35% per-
formance improvement for IS by enabling more effective overlap

of communication and computation. Results indicate that contexts
provide isolation across communication streams, yielding signif-
icant improvements in multithreaded communication, as well as
significantly improving overlap in single-threaded communication.

The rest of this paper is organized as follows. In Section 2 we
provide background on the OpenSHMEM parallel programming
model. In Section 3 we present the OpenSHMEM contexts ex-
tension and we describe its implementation on top of Portals 4 in
Section 4. We present an experimental evaluation in Section 5, dis-
cuss design alternatives and tradeoffs in Section 6, and compare
our approach with related work in Section 7. We conclude with
Section 8.

2. BACKGROUND

SHMEM is an SPMD library that enables multiple processes, re-
ferred to as processing elements (PEs), to exchange data through
one-sided get and put memory copy operations, as well as one-
sided atomic operations. A point-to-point ordering in the local PE’s
communication operations can be induced through the fence oper-
ation. A stronger operation, quiet, ensures remote completion and
global visibility of all operations issued by the local PE. In addition,
the quiet operation also completes all outstanding nonblocking op-
erations. Data in SHMEM PEs is private by default, and data is
shared through symmetric objects where an instance of the object
is allocated at every PE. Dynamically allocated symmetric objects
are stored in a symmetric heap and all static objects in a SHMEM
program’s data segment are shared automatically through a sym-
metric data segment.

The SHMEM parallel programming model was developed in 1994 [2,

5], as a high performance parallel programming interface for the
Cray T3D family of systems. Over the subsequent years, SHMEM
has been supported by a number of vendors, and many have gener-
alized and expanded upon the original interface.

Recently, OpenSHMEM [12], a community-driven open standard,
has emerged as an effort to standardize SHMEM and extend its in-
terface to better serve users. Among the goals of the OpenSHMEM
effort are enabling efficient hybrid parallel programming that com-
bines OpenSHMEM with a shared memory programming model
(e.g. OpenMP), and enabling better overlap of computation with
communication [15]. For the remainder of this paper, we use the
names OpenSHMEM and SHMEM interchangeably.

2.1 Portals 4 Network Programming Interface
In this work, we demonstrate the communication contexts exten-
sion using the open source OpenSHMEM implementation for the
low-level Portals networking API [3, 13]. The Portals interface ex-
poses sections of a process’ address space for one-sided remote ac-
cess using read, write, and atomic operations. Accesses to exposed
memory regions can be guarded through matching criteria that are
used when implementing matched, or two-sided, communication
operations. For one-sided communication, a non-matching inter-
face is provided that allows all operations targeting the process to
access the given memory region.

The ordering of operations is an important component in synchro-
nization for one-sided communication models. Portals presents the
programmer with an unordered network model, where data is not
guaranteed to arrive at the target in the order in which it was sent.
This delivery model enables dynamic message routing, and also
ensures reliable delivery. When a message has been delivered to

the target, an acknowledgement message is returned to the sender.
Thus, when a process waits for communication operations to com-
plete, it waits for acknowledgement messages from the target. Ac-
knowledgements can generate a full event that includes detailed in-
formation about the data transfer, but they are most commonly ag-
gregated into a counting event, which generates less overhead and
counts the number of acknowledgements that have been received.

3. COMMUNICATION CONTEXTS

The OpenSHMEM communication contexts extension provides a
mechanism for isolating streams of communication operations; the
context is provided as an argument to every SHMEM communica-
tion and synchronization operation. Thus, operations from different
threads within a PE can be isolated by using separate contexts for
each thread. Likewise, both single-threaded and multithreaded PEs
can perform sets of nonblocking operations using different con-
texts, allowing them to be completed as separate batches, providing
better overlap.

Communication contexts are transmit-side constructs that are ap-
plied to point-to-point communication operations. Contexts do not
alter the existing structure of OpenSHMEM symmetric memory,
symmetric object creation, or collective operations. Contexts be-
have similarly to request objects that are used by many communi-
cation libraries to manage completion of individual operations. An
important difference is that contexts are intended to also provide a
mapping to per-context communication resources in multithreaded
executions, thus providing thread isolation when each thread uses
its own context.

3.1 Application Programming Interface

The OpenSHMEM API extension to support contexts is shown in
Listing 1. Context creation and destruction operations are local to
the calling PE; that is, these operations are not collective. Multiple
contexts can be created at once for convenience. An optional as-
sertion argument can be used to assert a restricted usage model,
potentially enabling the implementation to operate on the given
context more efficiently. For example, if a context will be used
by a single thread in a multithreaded PE, the user can supply the
value SHMEM_THREAD_SERIALIZED as the assertion argument,
enabling the runtime system to eliminate internal synchronizations.

3.1.1 Communication Operations

New bindings are added for all one-sided get, put, and atomic op-
erations. We show a subset of these operations in Listing 1 for
conciseness. In particular, we show the nonblocking variants of
get, put, and integer fetch-and-add (FADD) operations since they
represent a broad set of usage models. However, blocking vari-
ants of communication operations are also added. All operations
require an additional context argument that indicates the context in
which the operation should be performed. A special context, called
SHMEM_CTX_DEFAULT is added and can be supplied as the con-
text argument in any operation. Existing operations that do not have
a context argument are defined to operate on this context.

3.1.2 Completion and Ordering of Operations

Context quiet and fence operations are added to provide remote
completion and point-to-point ordering, respectively, at the level
of individual contexts. A context quiet or fence must provide
the desired completion or ordering semantic only for the context
on which the operation was performed. A call to the existing
shmem_quiet() or shmem_fence() operation impacts only on the

*/
int assertion,
shmem_ctx_t ctx[]);

/# Creation and destruction routines (local)
int shmem_ctx_create (int num_ctx,
void shmem_ctx_destroy (int num_ctx,

/* Communication routines (one-sided, 1list abbreviated)
void shmem_ctx_putmem_nb (shmem_ctx t ctx, void xtarget,
void shmem_ctx_getmem_nb (shmem_ctx t ctx, void xtarget,
int shmem_ctx_int_fadd_nb (shmem ctx t ctx, int

/+ Completion and ordering routines (one-sided) x/
void shmem_ctx_fence (shmem_ctx_t ctx);

void shmem_ctx_quiet (shmem_ctx_t ctx);

*/
int logPE_stride,

/+* Synchronization routines (collective)
void shmem_sync (int PE_start,
void shmem_sync_all (void);

*target,

int PE_size,

shmem_ctx_t ctx[]);

*/

const void =*source,
const void =*source,
int value, int pe);

size_t len,
size_t len,

int pe);
int pe);

long x*pSync);

Listing 1: OpenSHMEM communication contexts Application Programming Interface (API), C programming language.

SHMEM_CTX_DEFAULT context. If a second thread performs com-
munication operations on a context in parallel with a quiet or fence
operation on that same context, the new communication operations
are not guaranteed to be completed or ordered by the quiet or fence
operation.

3.1.3 PE Synchronization

The existing shmem_barrier() and shmem_barrier_all()! operations
include an implicit quiet operation, which is performed on the de-
fault context. We also add a new barrier construct, which we call
shmem_sync(). This so-called “loud” barrier does not include an
implicit quiet; it requires the user to synchronize contexts explic-
itly. This enables the user to synchronize all PEs while allowing
nonblocking communication issued before the barrier to continue
in the background beyond the barrier, e.g. to pipeline several stages
or iterations of a parallel computation. Like the barrier operation,
sync does not offer any inter-PE synchronization between threads.

3.2 Example Code

We show a simple hybrid SHMEM+OpenMP program in List-
ing 2. In this program, the OpenSHMEM library is initialized in
the SHMEM_THREAD_MULTIPLE mode, enabling multiple threads
in a PE to perform SHMEM operations concurrently. After initial-
izing the library, the PE creates contexts for each thread that will
exist within the OpenMP parallel region. Contexts are created with
the SHMEM_THREAD_SERIALIZED assertion to inform the Open-
SHMEM runtime system that each will be used by a single thread.

Within the OpenMP parallel region, threads query their thread iden-
tity and cache it in the tid variable. This thread-local state is stored
outside of the OpenSHMEM library in a variable that is private to
each thread. The thread ID is used to identify the thread’s context in
the context array. Within the parallel region, threads perform com-
putation followed by a communication step. After issuing multiple
nonblocking put operations, each thread performs a context quiet
operation. The context quiet operation completes only the opera-
tions issued by that thread, allowing threads to proceed indepen-
dently.

4. IMPLEMENTATION OF CONTEXTS

Contexts provide a way to complete a subset of pending communi-
cation. This requires that the OpenSHMEM implementation have a

!"The “all” variant of barrier incorporates participation from all PEs,
whereas shmem_barrier() function can operate on a subset of PEs.

way to track outstanding and completed communication operations
independently for each context. To accomplish that, the implemen-
tation needs some form of aggregate handles for each context. In
one extreme, the implementation might keep a per-operation han-
dle, but that is likely to incur too much overhead. Here we discuss
a particular implementation that uses Portals counters as a form of
aggregate handles.

4.1 Implementation on Portals 4

A block diagram of our context implementation over the Portals 4
interface is shown in Figure 1. The per-context resources required
are a Portals counter (CT) object, a Portals memory descriptor and
a local counter (i.e. an 8-byte variable) held by the runtime sys-
tem. Portals uses memory descriptors (MDs) to drive all of the
communication, and one can attach a Portals counter to the mem-
ory descriptor to count the number of remote completions (ACKs)
received through counting events.

The Portals OpenSHMEM runtime system uses the local counter to
track all of the communication operations issued on each context.
The local counter must be atomically incremented before the call
to the Portals library that issues the communication. Because of
the Portals end-to-end reliability model, when the SHMEM library
needs to guarantee remote completion of any or all of the commu-
nication calls, it must wait until the Portals counter (i.e., the ACK
counter) reaches the value of the local counter. This blocking can
occur during a fence or quiet operation, when the SHMEM library
blocks until all of the communication has completed remotely. It
can also occur on a blocking communication call (e.g. large put
or get) when the library blocks until all communication completes
remotely. Waiting for all operations to complete remotely is nec-
essary in this case, because it is not possible to determine which
operation has completed when Portals counter is incremented. Ide-
ally, for blocking communication one would like to only complete
the current communication call, instead of waiting for all of the
remote completions. We discuss the reasoning for this implemen-
tation decision in Section 4.2.

OpenSHMEM blocking communication calls, require only a local
completion indicating that buffers can be read or reused. Small
puts are commonly buffered by the networking layer or the runtime
system, allowing them to return immediately. However, for large
puts (e.g. larger than the Portals volatile size) the local and remote
completions become equivalent in the presence of message delivery
guarantees. The sender can safely release its buffer only after it

int main(int argc, char xxargv) {
int max_threads = omp_get_max_threads();
shmem ctx_t thread_ctx[max_threads];

shmem_init (SHMEM_THREAD_MULTIPLE) ;

shmem_ctx_create (max_threads, SHMEM_THREAD_SERIALIZED, thread_ctx);

#pragma omp parallel

{
int tid = omp_get_thread_num();

/+ Threads operate on their private (SERIALIZED) contexts #*/

while (!done) {
/% Perform computation x/

/+ Perform communication #*/
for (i = 1; i < npes; i++)

shmem_ctx_putmem_nb (thread_ctx[tid],

shmem_ctx_quiet (thread_ctx[tid]);
}
}
shmem_ctx_destroy (max_threads, thread_ctx);
shmem_finalize () ;

o

., (my_pe + i) % npes);

Listing 2: Hybrid OpenSHMEM+OpenMP communication contexts example.

knows said buffer is not needed for retransmission, which means
the sender must wait for the remote completion before issuing the
local completion.

All non-context SHMEM operations are internally performed as
context operations on SHMEM_CTX_DEFAULT context. Addi-
tionally, to simplify the implementation, all SHMEM operations
are internally implemented as non-blocking. When a blocking
SHMEM call is made, internally the implementation translates it
to a non-blocking call followed by an appropriate completion op-
eration. In many cases the non-blocking completion is a call to
shmem_quiet(), but sometimes — e.g. in case of small messages
whose size is below the Portals volatile limit, indicating that the
data has been buffered by the Portals layer — that is not necessary.
As aresult, these implementation decisions yield very efficient non-
blocking context operations.

4.2 Minimizing Sender-Side Resources

Our context implementation uses a minimal set of resources, while
still providing the described context functionality. The minimum
required resource for a Portals 4 implementation are: one Portals
counter that keeps track of how many operations have completed
remotely; one Portals memory descriptor (MD) that is used to iden-
tify the sender side Portals counter; and one local counter (i.e. an
8-byte variable) that counts the number of issued communication
operations. The benefits of using fewer resources are that the appli-
cation is free to use more contexts without exhausting the available
resources. However, some of the downsides have to be considered
when writing applications. For example, completing get operations
(as well as fetch atomics) also requires remote completion of all
blocking and non-blocking put operations made on the same con-
text. Because there is only one available Portals counter per con-
text, it is not possible to distinguish get from put operations, and
when one of them must be remotely completed (e.g. using a quiet
operation), the implementation must wait for all of the pending op-
erations to complete. There is a similar potential performance pit-
fall when using blocking and non-blocking operations. A blocking

operation that follows non-blocking operations on the same context
might also force the completion of all of the pending non-blocking
operations. If these performance concerns arise, we suggest creat-
ing separate contexts for blocking and non-blocking operations.

A possible alternative implementation that does not suffer from the
described performance caveats would internally use multiple coun-
ters per context to separate the gets from the puts and blocking
from non-blocking operations. Alternatively, full events rather than
counting events could be generated for fetching operations. While
convenient, such alternative implementation use more of the scarce
counter resources than necessary. Therefore, we choose the leaner
approach that uses fewer resources, and leave it up to the applica-
tion programmer to address the specific performance concerns if
they arise. A very simple way to deal with the described perfor-
mance issues is to simply create an additional context that is used
for fetching operations.

S. PERFORMANCE EVALUATION

Contexts are evaluated on two benchmarks: Mandelbrot and Inte-
ger Sort (IS). Mandelbrot is a multithreaded benchmark that com-
putes the complex-plane points that are members of the Mandelbrot
set [20]. Integer sort is an OpenSHMEM version of IS benchmark
from NAS Parallel Benchmark suite [1, 10] that implements par-
allel bucket sort. Both benchmarks run over the Portals-SHMEM
implementation of OpenSHMEM [13], which has been extended
to include contexts. The Portals-SHMEM implementation itself
was run using the Portals 4 over InfiniBand* reference implemen-
tation [16]. Our analysis is focused on relative performance gains
from using contexts because the absolute numbers heavily depend
on the available Portals 4 implementation.

Experiments were conducted on a 16-node cluster with a Mellanox™
QDR InfiniBand interconnect. Each node in this cluster is config-
ured with 24GB of memory and two Intel® Xeon® X5680 proces-
sors, for a total of 12 cores per node, each supporting two hyper-
threads, for a total of 24 hardware threads per node. Because the

|
Initiating PE | Target PE
1
shmem_ctx_put(ctx2, ...) :
1
Memory Descriptors : NI

1
CTX DEFAULT CT :
|
CTX 1 CT||!
1

CTX 2 CT ! PTL

1 ACK
CTX 3 CcT| |
1

Portal Table Data _ | Data Heap
LE Seg. Seg.
data
Heap I
heap =

Figure 1: Portals 4 implementation of communication contexts, showing Portals objects. Contexts are backed by a counting event (CT) at the
sender, which is associated with a memory descriptor (MD). Upon completion of a one-sided operation, the sender’s counter is incremented

by an acknowledgement generated by receiver’s Network Interface (NI).

while (!work_completed()) {
int dest_pe = next_round_robin_pe/();
long my_Jjob = shmem_ long_fadd(
&job_counter, JOB_SIZE, dest_pe);

/* Check if work at dest_pe is done */
if (my_job > JOB_SIZE+«JOBS_PER_PE) {
mark_done (dest_pe);
continue;

}

for (i = 0; i < JOB_SIZE; i++)
buf[i] = compute_point (my_job + 1i);

shmem_putmem (&mandel_data[my_jobl],
buf, JOB_SIZE, dest_pe);

Listing 3: Mandelbrot set benchmark pseudo-code.

Portals-IB implementation generates two communication threads,
we limit our multithreaded experiments to 11 cores and pin these
threads to the 12*" core. For single-threaded experiments, we limit
our experiments to 6 PEs per node to avoid measuring oversub-
scription overheads.

5.1 Mandelbrot Set Benchmark

Simplified pseudo-code for the Mandelbrot set benchmark is shown
in Listing 3. This benchmark is capable of running in multi-threaded
mode, and the expected usage is to run one process per node with
one thread per processor core. Each thread independently runs the
algorithm shown in Listing 3.

Domain decomposition is used to distribute the grid of calculated
points evenly across PEs. On top of that decomposition, a sim-
ple distributed load-balancing algorithm is implemented. Load-
balancing is necessary because the Mandelbrot set point calcula-
tion times vary significantly between points. The implementation
of the distributed load-balancing algorithm is shown in Listing 3.
The outer loop communicates with all PEs in a round-robin man-
ner, to avoid hotspots. As a part of the load balancing algorithm, the
benchmark first fetches a chunk of work by issuing atomic fetch-
and-add to a remote counter. For each point in the fetched chunk of
work, the local thread computes whether that point is in the Man-
delbrot set. After the computation is complete, the results are sent

PE O (3 threads

PE 0 (3 threads:

baseline separate context per thread

Figure 2: Mandelbrot timing diagram comparison with no-contexts
(left) and with one context per thread (right).

to the PE that issued the work.

Multiple threads that run at the same time interfere with each other.
Consider what happens when all threads make SHMEM calls us-
ing the same global resources (i.e. the no-contexts case). Because
there are no individual contexts (i.e. separate Portals counters) for
each thread, all ongoing communication in all threads must be com-
pleted before each thread can be certain its own communication
has completed. This has potential to cause serious performance
issues which become more severe with an increasing number of
threads. An example using three threads interfering with each other
is shown on the left in Figure 2. Assigning a separate context to
each thread solves this problem because it enables each thread to
independently complete communication operations, as shown on
the right of Figure 2.

Using one context per thread eliminates inter-thread interference in
the SHMEM library; contexts can also provide additional opportu-
nities to improve performance within each thread by overlapping
communication with computation. The default case that uses one
context per thread is shown on the left of Figure 3. In this example,
one of the threads in PE 0 requests work from PE 1 using fetch-
and-add, does the computation, and then returns the results back to
PE 1. After the results are sent back to PE 1, it is ready to request
more work from PE 2 and the process repeats. There is an oppor-

o
m
N
o
m
o
o
m
[y

E2 PEO E1

fadd

compute

putmem

__}__________‘A_______________

fadd o
compute
putmem =
— I
~— ack :
I
I
baseline

non-blocking putmem

|

I

|

|

I

|
fadd_nbié=——"

| putmem_/n/b/ oL

:A:,j — J

pipelined

Figure 3: Mandelbrot timing diagram comparison of computation/communication overlap scenarios.

tunity here to overlap the putmem and fetch-and-add by using the
nonblocking version of the putmem. The nonblocking approach
shown in the middle of Figure 3 improves performance, but there is
yet more opportunity to overlap the communication with the com-
putation phase.

A pipelined version of the Mandelbrot set benchmark shown on
the right of Figure 3 achieves the best performance by overlap-
ping communication and computation. To enable this overlap, each
thread uses two separate contexts. In the first pipeline stage the
benchmark issues a nonblocking fetch-and-add to the next round
PE (as opposed to the current PE). This fetch-and-add is completed
later in the next round by the second stage, but by that time the ex-
pectation is that the response to the fetch-and-add is already avail-
able. This response is then used to identify the chunk of work that
needs to be computed. At the end of the second stage, the PE sends
the computed results using a nonblocking putmem.

The pipelined implementation requires two contexts per thread
and two copies of the local compute buffer. The implementation
switches between the two contexts and the compute buffers at the
end of each iteration. Nonblocking fetch-and-add is completed us-
ing shmem_ctx_quiet(), which also completes the nonblocking put-
mem, thus freeing one of the local compute buffers to be reused.

Performance gains provided by each of the described optimizations
are shown in Figure 4. The x-axis shows the number of proces-
sor cores used on each node, which corresponds to the number of
threads in the threaded cases. In the non-threaded case that only
uses processes, the x-axis corresponds to the number of processes
on a single node. The y-axis shows the rate of calculating which
points belong to the Mandelbrot set. All experiments are run using
16 cluster nodes.

Adding one context per thread without any other code changes im-
proves performance by 13% for the case of running 11 threads per
node. If the nonblocking putmem interface is also used, the perfor-
mance improves by an additional 5%. Contexts also enable compu-
tation and communication overlap by using pipelining. Pipelining
requires two contexts per thread and two local compute buffers, but
it provides over 25% performance improvement over the baseline
no-context case for 11 threads.

4.5 le8 ‘ ‘ ‘ i i
- @@ thread pipelined +ctx
§ 4.0r|a.-a thread non-block +ctx o
35 |®-m thread baseline +ctx : pa LA
* *—+ thread baseline o _,5;‘—‘
g 3.0r| ¢ ¢ process pipelined +ctx i,
‘UE" > > process baseline
£ 2.5+
e
o 2.0F
2
<
o 1.5
£
8 1.0
3
£ 0.5}
00 I I I I I I I I I

0 1 2 3 4 5 6 7 8 9 10 11
Cores Per Node (16 Nodes)

Figure 4: Strong scaling performance of Mandelbrot benchmark.

Contexts also provide improved scaling efficiency for the Mandel-
brot benchmark. Figure 5 shows that implementations using con-
texts scale much better than the baseline case without contexts,
because contexts provide thread separation inside the SHMEM li-
brary, and thus reduce interference between threads. There is po-
tential for even better scaling if the separation that contexts provide
is extended to layers underneath SHMEM; in our case to the Portals
4 over InfiniBand implementation.

Figures 4 and 5 also compare non-threaded implementations that
rely solely on processes. We were only able to scale up to 6 pro-
cesses per node because each SHMEM PE also requires its own
Portals progress thread, and sharing core resources between threads
would yield noisy results. This is also the reason why we only run
up to 11 threads per node, with the 12th core being dedicated to the
Portals progress thread. Surprisingly, the non-threaded implemen-
tation showed much poorer scaling than the threaded implemen-
tation. We are observing much higher than expected number of
instruction cache misses as we scale the non-threaded benchmarks,
but the exact cause for that is still under investigation.

1.0F O T o [
P
s
.-‘..ﬁ
0.9+ o
>
>
Q
$ 0.8F B
S
b7
o 0.7 Lo ®
£ @@ thread pipelined +ctx
g 0.6L12 A thread non-block +ctx
| |m -m thread baseline +ctx
*—+ thread baseline
0.5r ¢ ¢ process pipelined +ctx
> -> process baseline
0.4 n n n n n n i i i i i
0 1 2 3 4 5 6 7 8 9 10 11

Cores Per Node (16 Nodes)

Figure 5: Scaling efficiency of Mandelbrot benchmark.

shmem_barrier_all();

for (i = 0; 1 < num_pes; 1i++) {
int k1 = send_offset[i];
int k2; // target offset

shmem_ctx_int_get (ctx[0], &k2,
&recv_offset[me], 1, 1i);

shmem_ctx_int_put_nb(ctx[1l],
key_buff2+k2, key_buffl+kl,
send_count[i], 1i);
}
shmem_ctx_quiet (ctx[1]);
shmem_barrier_all();

Listing 4: Integer sort benchmark, key exchange loop snippet.

5.2 Integer Sort Benchmark

The integer sort benchmark is a parallel bucket sort code from the
NAS Parallel Benchmark suite [1]. All runs were done using the
"C" workload class, which sorts 134 million integer keys over all
PEs. The benchmark has an all-to-all communication pattern where
each PE sends a bucket of keys to every other PE. However, before
sending the keys to each target PE, the sender must obtain the target
location from the target PE. The code snippet for this key exchange
loop is shown in Listing 4. The implementation in the listing uses
two contexts, one for the get and one for the nonblocking put. This
allows the nonblocking puts to happen in the background, as they
are not completed until the shmem_ctx_quiet() call after the loop.

Performance benefits from using contexts in this benchmark are
shown in Figure 6. The performance gains are expected to be higher
as the number of PEs increases due to the all-to-all nature of com-
munication. We ran the experiments on a 16 node cluster, with
multiple PEs per node for the 32 and 64 PE data points. Beyond 16
PEs our gains start to show diminishing returns because the bench-
mark performance becomes limited by PEs sharing the underlying
InfiniBand network adapter, and because of the suboptimal incast
communication schedule used in the IS benchmark’s implementa-
tion. However, we still observe a good performance increase of
35% for the 16 PE case.

6. DISCUSSION

A--A non-blocking + ctx
[| ®—e baseline : 1

10°

Mop/s total

2 L L L L L L
10 2 4 8 16 32 64

Number of PEs

Figure 6: Performance of integer sort benchmark.

As with all middlewares, OpenSHMEM must provide alignment
between the application and the underlying system, while meeting
portability and performance requirements. We next discuss several
tradeoffs and design decisions related to communication contexts
and analyze the impact of this new interface on both applications
and the underlying networking layer.

6.1 Design Choices

The default communication context. In Section 3 we in-
troduced the SHMEM_CTX_DEFAULT context, which is the default
context in which non-context operations (e.g. a call to the exist-
ing shmem_putmem() routine) are performed. Non-context quiet,
fence, and barrier operations were defined to impact only opera-
tions performed in the default context.

An alternative semantic for non-context quiet, fence, and barrier
operations is that operations performed on all contexts are syn-
chronized. This behavior could be useful to application develop-
ers by providing a convenient mechanism to complete or order all
outstanding communication operations. However, such a semantic
defeats the isolation property that we wish to provide for multi-
threaded SHMEM executions. Supporting operations that impact
all contexts would require the OpenSHMEM runtime system to
maintain an internal list of all contexts and perform the operation
on all contexts in this list. Accesses to the list would need to be
synchronized, as the list would be modified by context creation and
destruction operations. While efficient synchronization techniques
exist, the desire to eliminate such overheads motivated the choice
to isolate all non-context operations to the default context.

Dependence on threading package. The “+X” in hybrid
OpenSHMEM+X parallel programming provides an important con-
duit for innovation in node-level parallel programming models, run-
time systems, and architectures. Thus, we have endeavored to cre-
ate an interface that enables an OpenSHMEM runtime system im-
plementation that is independent of the particular node-level paral-
lel programming model in use. This is achieved by the addition of
an explicit shmem_ctx_t context object to the API. The context ob-
ject is provided by the calling thread in every point-to-point opera-
tion and all context-specific information is stored within the context

object, eliminating dependencies on Thread-Local Storage (TLS).

6.2 Implications to Network Stack

In a single-threaded SHMEM execution, every PE is provided with
a separate set of communication resources used to interface with
the network. These resources typically include transmit command
queues, event queues, and structures for processing incoming mes-
sages. In contrast to single-threaded executions, all threads in a
multithreaded SHMEM execution typically share the same set of
resources. This sharing can incur synchronization overheads and
encounter resource exhaustion overheads.

SHMEM communication contexts are intended to provide a mech-
anism that enables threads to bring the same set of resources to bear
on communication as PEs; thus enabling multithreaded executions
to achieve the same level of communication performance as single-
threaded executions. In order to support this, the runtime system
must be able to back each context with an independent resource set.
While some networking layers fully support this resource mapping,
challenges still exist for many existing networking layers.

6.2.1 Resource Management in Portals 4

In the Portals 4 network programming interface, the Network In-
terface (NI) object provides the resource abstraction that is visi-
ble through the API. One option for supporting contexts is to open
multiple NIs, one per thread. This would require the Portals im-
plementation to define a special set of Portals interface names that
can be used to open the same interface multiple times by threads
in the same process. A benefit of this approach is that additional
resources — including Portals counters — would become available to
every thread. However, NIs are also addressable for the purposes
of communication and opening more NIs than SHMEM PEs in the
job introduces an addressing problem. By default, NIs are physi-
cally addressable using their node ID (NID) and process ID (PID).
The addressing problem can potentially be resolved by assigning
specific PIDs per node to act as receivers for messages destined to
a particular SHMEM PE on that node. Given such a mapping, a
Portals logical address mapping can be created that maps integer
PE ids to the designated NID and PID.

A Portals Memory Descriptor (MD) also represents a sender-side
resource that is provided in every communication operation. The
MD manages the sender-side buffers used in communication and
is also used to track the completion of individual communication
operations. Thus, the MD provides a good mechanism for indi-
vidually tracking the stream of operations corresponding to a given
context. However, Portals currently does not provide a mechanism
for indicating that an MD should interface with a separate set of
message injection resources in the underlying networking layer.

In order to indicate that MDs corresponding to communication con-
texts should be mapped to individual message injection ports in the
underlying network, a new MD attribute PTL_MD_INDEPENDENT
could be added. This attribute indicates to the Portals implemen-
tation that messages sent from the given MD represent a stream
of operations that is independent of operations performed on other
MDs. When possible, the Portals implementation should provide
this memory descriptor with a separate set of resources for issuing
communication operations.

The amount of available Portals resources, such as counters and
MDs, depends on the implementation and is returned to the user
during Portals library initialization. In our reference Portals-SHMEM

implementation there are 1024 counters and 1024 MDs available to
each PE. This sets the theoretical number of contexts per PE to
1024, however if these counters and MDs are also used for other
functionality, that would reduce the maximum possible number of
contexts. Any of the contexts can be used by any thread, and if the
context has been created with the SHMEM_THREAD_MULTIPLE
hint, multiple threads can share that context.

7. RELATED WORK

A SHMEM thread safety extension was proposed by ten Bruggen-
cate et al. [19]. This proposal captures existing thread safety exten-
sions that are provided by the Cray* SHMEM library. In addition,
it proposes several new extensions that integrate threading with the
SHMEM library, enabling each thread to generate an independent
stream of communication operations.

Thread safety adds the new shmem_init() function, which allows
the user to select the level of threading support that will be used
for the job (e.g. SHMEM_THREAD_MULTIPLE). In addition, it de-
fines the conventions and practices that must be followed in order
to achieve correct behavior when multithreaded PEs are used. Us-
ing contexts with multithreaded PEs requires thread safety, which
can be provided through this set of extensions.

Thread integration adds new functions to register threads with the
SHMEM library and synchronize the operations performed by in-
dividual threads. In addition, it provides several functions, such as
a thread barrier, that can be used to coordinate among the registered
threads in a PE. This proposal requires a much smaller change to
the OpenSHMEM API than contexts because it does not introduce
new versions of the communication routines. Because a context is
not specified in each operation, the proposed interface does not pro-
vide a means for threads to generate independent streams of com-
munication operations. In addition, it requires that the SHMEM
runtime system identify the calling thread in each communication
operation in order to associate the operation with a specific thread.
Such Thread-Local Storage (TLS) lookups are often expensive rel-
ative to the latency of a communication operation, and also require
that the SHMEM runtime system to be able to utilize the TLS sys-
tem provided by the threading package that will be used. In con-
trast, contexts are designed to be independent of the threading pack-
age; a reference to the context object is passed by the user in every
operation and any context-specific information can be stored within
this object.

The Message Passing Interface (MPI) [9] utilizes communicators
and windows as communication contexts for two-sided and one-
sided communication, respectively. The MPI endpoints extension [6,
18] is intended to address similar challenges in the context of MPI
by providing additional ranks that can be assigned to threads. A sig-
nificant difference between endpoints and contexts is that endpoints
are individually addressable in MPI communication operations. In
contrast, contexts are a sender-side only construct in OpenSHMEM
and communication operations still target PEs, rather than individ-
ual contexts or threads within a PE.

When processes are used on every core, most networks provide
each process with a separate set of communication resources (e.g.
command queues); however, when threads are used, all threads
typically share the set of resources provided to the parent process.
Both OpenSHMEM contexts and MPI endpoints strive to address
this shortfall for hybrid programming by providing a high-level
construct that can be mapped to a lower-level resource set. Some
networking APIs provide an abstraction for this resource set, such

as UCCS Contexts [17] and IBM PAMI* endpoints [8].

Contexts also provide a means for aggregate tracking of outstand-
ing communication operations. This aspect of contexts is similar
to aggregate nonblocking communication handles in ARMCI [11]
and GasNet [4]; communication queues in GASPI [7]; and com-
munication contexts in PAMI Contexts [8].

8. CONCLUSION

The OpenSHMEM communication contexts extension provides a
mechanism for isolating individual streams of communication op-
erations. Contexts aim to improve communication-computation
overlap in conventional SHMEM executions and also to provide
isolation for threads in multithreaded SHMEM executions. In ad-
dition, contexts provide a mechanism that can be used by the Open-
SHMEM runtime system to map threads to individual sets of net-
work resources. It is believed that such mechanisms are key com-
ponents in the design of runtime systems that can efficiently support
multithreaded communication.

We presented an implementation of communication contexts using
the Portals 4 network programming interface and evaluated its per-
formance using a hybrid SHMEM+Threads Mandelbrot set bench-
mark and a single-threaded NAS integer sort benchmark. Through
the addition of contexts, we observed a 25% performance improve-
ment for Mandelbrot by eliminating thread interference and en-
abling pipelining, and a 35% performance improvement for IS by
enabling more effective overlap of communication and computa-
tion.

9. ACKNOWLEDGMENTS

We thank the members of the OpenSHMEM and Portals commu-
nities for many insightful discussions that helped us to refine the
OpenSHMEM communication contexts interface and its mapping
to the Portals network programming interface.

*Other names and brands may be claimed as the property of others.

10. REFERENCES

[1] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L.
Carter, L. Dagum, R. A. Fatoohi, P. O. Frederickson, T. A.
Lasinski, R. S. Schreiber, et al. The NAS parallel
benchmarks. International Journal of High Performance
Computing Applications, 5(3):63-73, 1991.

[2] R. Bariuso and A. Knies. Shmem user’s guide. Technical
Report SN-2516, Cray Research, Inc., 1994.

[3] B. W. Barrett, R. Brightwell, K. S. Hemmert, K. T. Pedretti,
K. B. Wheeler, and K. D. Underwood. Enhanced support for
OpenSHMEM communication in Portals. In Hot
Interconnects, pages 61-69. IEEE, 2011.

[4] D. Bonachea. GASNet specification, v1.1. Technical Report
UCB/CSD-02-1207, U.C. Berkeley, 2002.

[5] Cray Research, Inc. SHMEM Technical Note for C, 1994.
SG-2516 2.3.

[6] J. Dinan, R. E. Grant, P. Balaji, D. Goodell, D. Miller,

M. Snir, and R. Thakur. Enabling communication
concurrency through flexible MPI endpoints. 7o Appear in
Intl. J. High Performance Computing Applications
(IJHPCA), Dec. 2013.

[71 GASPI Consortium. GASPI: Global address space
programming interface specification of a PGAS API for
communication. Version 1.00, June 2013.

[8] S. Kumar, A. Mamidala, D. Faraj, B. Smith, M. Blocksome,
B. Cernohous, D. Miller, J. Parker, J. Ratterman,

P. Heidelberger, D. Chen, and B. Steinmacher-Burrow.
PAMI: A parallel active message interface for the Blue
Gene/Q supercomputer. In Proc. 26th Intl. Parallel
Distributed Processing Symposium, IPDPS *12, pages
763-773, May 2012.

[9]1 MPI Forum. MPI: A message-passing interface standard
version 3.0. Technical report, University of Tennessee,
Knoxville, Sept. 2012.

[10] NAS parallel benchmarks for OpenSHMEM, version 1.0a.
Online: http:
//bongo.cs.uh.edu/site/Downloads/Examples, Aug.
2014.

[11] J. Nieplocha and B. Carpenter. ARMCI: A portable remote
memory copy library for distributed array libraries and
compiler run-time systems. Lecture Notes in Computer
Science, 1586, 1999.

[12] OpenSHMEM Application Programming Interface, Version
1.1, June 2014.

[13] OpenSHMEM implementation using portals 4. Online:
http://code.google.com/p/portals-shmem/, Aug.
2014.

[14] S. W. Poole, O. Hernandez, and P. Shamis, editors.
OpenSHMEM and Related Technologies. Experiences,
Implementations, and Tools - First Workshop, OpenSHMEM
2014, Annapolis, MD, USA, March 4-6, 2014. Proceedings,
volume 8356 of Lecture Notes in Computer Science.
Springer, 2014.

[15] S. W. Poole, P. Shamis, A. Welch, S. Pophale, M. G.
Venkata, O. Hernandez, G. A. Koenig, T. Curtis, and C.-H.
Hsu. OpenSHMEM extensions and a vision for its future
direction. In Poole et al. [14], pages 149-162.

[16] Portals 4 open source implementation for InfiniBand. Online:
http://code.google.com/p/portals4d/, Aug. 2014.

[17] P. Shamis, M. Venkata, J. Kuehn, S. Poole, and R. Graham.
Universal common communication substrate (UCCS)
specification, version 0.1. Technical Report
ORNL/TM-2012/339, Oak Ridge National Laboratory, 2012.

[18] S. Sridharan, J. Dinan, and D. Kalamkar. Enabling efficient
multithreaded MPI communication through a library-based
implementation of MPI endpoints. In Proc. 26th Intl. Conf.
for High Performance Computing, Networking, Storage, and
Analysis, SC, Nov. 2014.

[19] M. ten Bruggencate, D. Roweth, and S. Oyanagi. Thread-safe
SHMEM extensions. In Poole et al. [14], pages 178-185.

[20] Wikipedia. Mandelbrot set — wikipedia, the free
encyclopedia. Online: http://en.wikipedia.org/w/
index.php?title=Mandelbrot_set, Aug. 2014

Intel and Xeon are trademarks of Intel Corporation in the U.S.
and/or other countries. Software and workloads used in perfor-
mance tests may have been optimized for performance only on Intel
microprocessors. Performance tests, such as SY Smark and Mobile-
Mark, are measured using specific computer systems, components,
software, operations and functions. Any change to any of those fac-
tors may cause the results to vary. You should consult other infor-
mation and performance tests to assist you in fully evaluating your
contemplated purchases, including the performance of that product
when combined with other products. For more information go to

http://www.intel.com/performance.

http://bongo.cs.uh.edu/site/Downloads/Examples
http://bongo.cs.uh.edu/site/Downloads/Examples
http://code.google.com/p/portals-shmem/
http://code.google.com/p/portals4/
http://en.wikipedia.org/w/index.php?title=Mandelbrot_set
http://en.wikipedia.org/w/index.php?title=Mandelbrot_set
http://www.intel.com/performance

	Introduction
	Background
	Portals 4 Network Programming Interface

	Communication Contexts
	Application Programming Interface
	Communication Operations
	Completion and Ordering of Operations
	PE Synchronization

	Example Code

	Implementation of Contexts
	Implementation on Portals 4
	Minimizing Sender-Side Resources

	Performance evaluation
	Mandelbrot Set Benchmark
	Integer Sort Benchmark

	Discussion
	Design Choices
	Implications to Network Stack
	Resource Management in Portals 4

	Related Work
	Conclusion
	Acknowledgments
	References

