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Abstract
While Hadoop holds the current Sort Benchmark record, previ-
ous research has shown that MPI-based solutions can deliver sim-
ilar performance. However, most existing MPI-based designs rely
on two-sided communication semantics. The emerging Partitioned
Global Address Space (PGAS) programming model presents a
flexible way to express parallelism for data-intensive applications.
However, not all portions of the data analytics applications are
amenable to conversion using PGAS models. In this study, we pro-
pose a novel design of the out-of-core, k-way parallel sort algorithm
that takes advantage of the features of both MPI and OpenSHMEM
PGAS models. To the best of our knowledge, this is the first de-
sign of any data intensive computing application using Hybrid MPI
+ PGAS models. Our experimental evaluation indicates that our
proposed framework outperforms existing MPI-based design by up
to 45% at 8,192 processes. It also achieves 7X improvement over
Hadoop-based sort using the same amount of resources at 1,024
cores.

Keywords Out-of-Core Sort, MPI, PGAS, Hybrid

1. Introduction
With the amount of data doubling every two years [2], the design of
algorithms that can efficiently handle massive data sets is gaining
prominence. Several frameworks like Hadoop [1] have been pro-
posed over the years to provide scalable processing of large data
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sets, using commodity hardware. There has been a substantial in-
crease in the number of high performance computing (HPC) sites
around the world applying big data technologies and methods to
their problems. A surprising two thirds of high performance com-
puting (HPC) sites are now performing big data analysis as part of
their workloads, as per the IDC briefing at SC’13 [3].

Sorting is one of the most common algorithms found in mod-
ern data analytics codes. Similar to the TOP500 [31] rankings in
HPC, “Sort Benchmark” [19] ranks various frameworks available
for large scale data analytics using a set of pre-specified bench-
marks. In the 2013 Sort Benchmark rankings, the Hadoop frame-
work tops the list with a sort rate of 1.42 TB/min. In our previ-
ous work [26], we proposed a new framework that uses a k-way
parallel sorting algorithm backed by asynchronous data-delivery
mechanism for efficient out-of-core sorting while maintaining high
throughput on general-purpose, production HPC hardware. The
framework interleaves stages of the sort while continuing to stream
input data from a global file system, with the data delivery imple-
mented using two-sided MPI. This framework was able to achieve
a sort rate of 1.24 TB/min.

Earlier studies have shown that the two-sided method of data
delivery presents inherent overheads like request matching and
limited computation-communication overlap [21]. Although MPI
offers one-sided communication semantics, they have not been
widely adopted due to their complexity and lack of efficient im-
plementations on many systems. On the other hand, realizations of
the emerging Partitioned Global Address Space (PGAS) program-
ming models, such as OpenSHMEM [20], present a flexible way for
data intensive applications to express parallelism using one-sided
communication semantics and a global view of data. They provide
shared memory abstractions, expose locality information and de-
fine a light-weight, one-sided communication API that makes it
easy to express irregular data movements while ensuring perfor-
mance [5].

Hybrid MPI + PGAS models are gaining popularity as they en-
able developers to take advantage of the PGAS models in their
MPI applications, without having to rewrite the complete applica-
tion [7, 16, 23]. Such models enable the flexibility of implementing
application sub-kernels using either MPI or PGAS models, based
on the communication characteristics. The Exascale roadmap de-
fines hybrid model as the ‘practical’ way of programming Exascale



systems [9]. Unified communication runtimes, like MVAPICH2-
X [18], are enabling efficient use of these hybrid models by consol-
idating resources used by two different runtimes, thereby provid-
ing performance, scalability, and efficient resource utilization. They
also prevent codes using two different models ending in deadlocks,
due to the unified runtime design [15].

In this paper, we take advantage of the global address space
abstraction and one-sided communication primitives provided by
the OpenSHMEM PGAS model to minimize the communication
overheads, with efficient computation-communication overlap in
the out-of-core Sort. To the best of our knowledge, this is the
first such design of a data intensive computing application using
hybrid MPI + PGAS programming model. We also propose and
implement extensions to OpenSHMEM, such as non-blocking put,
and non-blocking put-with-notify as part of this study. We make the
following key contributions as part of this paper:

1. Identify major bottlenecks in the existing MPI-based design of
out-of-core, k-way parallel Sort

2. Present the challenges involved in redesigning the data distri-
bution and compute framework using the OpenSHMEM PGAS
model

3. Propose extensions to the OpenSHMEM communication API
in order to efficiently take advantage of the PGAS model

4. Design a scalable and high performance framework for out-of-
core, k-way parallel Sort using hybrid MPI + OpenSHMEM
models

5. Provide an in-depth analysis of performance and scalability of
the proposed design

Our experimental evaluations indicate that our proposed hybrid
design is able to outperform the existing design by up to 45% at
8,192 processes. Performance comparison with Hadoop, using the
same amount of resources, indicates 7X improvement in sort rate.
Further, our scalability experiments indicate that the hybrid design
demonstrates good strong and weak scalability characteristics. This
study also discusses the cost-efficiency of the proposed design.

The rest of the paper is organized as follows. Section 2 provides
a high level overview of parallel sorting, the OpenSHMEM PGAS
model, and the MVAPICH2-X unified communication runtime. In
Section 3, we discuss the existing MPI-based framework for out-of-
core, k-way parallel Sort and its bottlenecks. In Section 4, we dis-
cuss the design challenges and present the hybrid MPI + OpenSH-
MEM design. Section 5 presents the performance evaluations and
analysis of the proposed hybrid design. In Section 6, we discuss
and compare the design choices for implementing the one-sided
communication using OpenSHMEM or MPI, and also discuss the
performance results of Hadoop framework. Finally, we present our
future work and conclude in Section 8.

2. Background
In this section we provide the necessary background material for
our work.
Parallel SampleSort: SampleSort [6] is one of the most popular
algorithms used for parallel sort. By sampling a subset of keys
from input, it selects P − 1 splitters from that set as the bound-
aries for each bucket and does a global all-to-all data exchange to
redistribute all the keys of every process to their correct bucket.
An additional local sort is applied to finalize the output array. The
challenge with SampleSort is that its performance is quite sensitive
to the sampling and selection of splitters, which can result in load
imbalance.
OpenSHMEM: SHMEM (SHared MEMory) [24] is a library-
based approach to realize the PGAS model and offers one-sided

point-to-point communication operations, along with collective
and synchronization primitives. SHMEM also offers primitives for
atomic operations, managing memory and locks. There are sev-
eral implementations of the SHMEM model, which are customized
for different platforms. OpenSHMEM [20] aims to create an open
specification to standardize the SHMEM model to achieve perfor-
mance, programmability and portability.
Hybrid MPI+PGAS Models: Hybrid MPI+PGAS models present
an easier way to express problems with irregular and data intensive
communication characteristics. It brings the best of both message
passing and distributed memory programming. Several studies [7,
14, 16, 23] have been done in the past which explored the use of
hybrid MPI+PGAS models for wide variety of applications and
benchmarks such as MILC [30], IMPACT-T [22], Barnes Hut [7],
Graph500 [29], and NAS benchmarks [4]. These studies claim
significant performance improvement, making use of the concept
of global view of data and one-sided communication.
MVAPICH2-X Unified Communication Runtime: Even though
the concept of hybrid programming is encouraging, the use of mul-
tiple runtimes (one for MPI and one for PGAS model) limits the
performance [14]. MVAPICH2-X [18] provides a unified commu-
nication runtime for MPI and PGAS (OpenSHMEM and UPC)
models on InfiniBand clusters. It enables developers to port parts of
large MPI applications that are suited for the PGAS programming
model. This minimizes the development overheads that have been a
substantial deterrent in porting MPI applications to PGAS models.
The unified runtime also delivers superior performance compared
to using separate MPI and PGAS libraries by optimizing use of
network and memory resources [14, 15].
Apache Hadoop: The MapReduce model has been widely used to
perform data intensive operations. Apache Hadoop [1] is a popular
open-source implementation of MapReduce programming model
and Hadoop Distributed File System (HDFS) is the underlying
file system of Hadoop. The Hadoop framework allows for the dis-
tributed processing of large data sets across clusters of computers
using simple programming models. It is designed to scale up from
single servers to thousands of machines, each offering local com-
putation and storage.

3. Existing MPI-Based Design and its Limitations
In this section, we describe the existing MPI-based design of Sort
application, and uncover major bottlenecks. We first describe the
overall algorithm, and then describe the details.

3.1 Overview of Existing MPI-based Design
In the Sort framework, the processes are divided into two distinct
work groups — the read group and the sort group. The
read group is a set of processes dedicated to reading input data
from the global parallel file system and delivering this data in a
‘streaming’ manner to sort group processes. Since the data sets
are larger than the combined main memories of both groups, the
input M records are chunked into q chunks. In read stage, the
read group processes sequentially read the data from the global
filesystem and transfer this data to the sort group processes. The
sort group processes determine the splits for SampleSort, based on
the sampling of the initial few chunks and buckets (i.e., writing
the records for each split into local disk) the incoming records into
these bins, stored on the local filesystem on each node. Once all
the q chunks have been read in, each node will have q buckets
stored on the local filesystem. Finally, the bucketed data is sorted
and is written back to the global filesystem. During the write stage,
the flow of information is mostly reversed, with the sort group
processes reading the q local files, one at a time, synchronized
across all processes, sorting them globally, and then writing the



final sorted data back to the global filesystem, as multiple files [25,
26].

Figure 1 presents the system architecture for the existing MPI
based design. The parallel job is launched such that each node has
multiple processes (equal to the number of CPU cores) per node.
The read group and sort group processes form two MPI communi-
cators, READ COMM and SORT COMM, respectively. Because of the
difference in workloads and system characteristics, only one reader
process per reader host is placed in READ COMM. In sort hosts,
one process is dedicated for receiving the data from reader hosts.
These receiver processes along with the sender processes in reader
hosts form a third communicator — XFER COMM. In addition to
the three primary communicators defined so far, there exists a fam-
ily of binning communicators which form a subset of SORT COMM.
These Nbin communicators, defined as BIN COMM, are built using
one process from each sort host, in a vertical manner. These Nbin
BIN COMM groups are used to overlap the process of bucketing lo-
cal data and saving to temporary storage with the receipt of new
input data.

The reader process is threaded using OpenMP work-sharing
constructs on the reader hosts such that one thread per host is ded-
icated solely to reading new input files and storing the streaming
data in a FIFO queue. The companion transfer tasks on the same IO
host in READ COMM are in a constant spin loop checking for new
data to become available. The rank 0 process in READ COMM gath-
ers the amount of data available on each IO host, and assigns des-
tination ranks (receiver tasks in SORT COMM). This book-keeping
by rank 0 is for transferring the data to sort hosts, in a round-robin
manner, to the receiver tasks.
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Figure 4: Overview of the read stage identify-
ing principal asynchronous work division between
IO and sort hosts. The reader hosts use OpenMP
threading to cache data streamed from disk into a
fifo queue for subsequent transfer to sort hosts us-
ing the XFER_COMM MPI communicator. As data is
received by a dedicated core on each sort host, it
is subsequently transferred to tasks in SORT_COMM via
mapped shared memory segments.

tween read-tasks and transfer-tasks on the IO hosts.
To ensure that matching receives can be posted in ad-

vance, the receiving tasks in XFER_COMM simply cycle over
available ranks, each taking a turn posting a blocking Recv()

against any IO host. The data transfer mechanism between
a receiving task in XFER_COMM and a sort task in SORT_COMM

cannot be done using the same OpenMP shared-memory
constructs employed on the IO hosts as they are defined to be
in unique MPI threads. Instead, the approach adopted here
is to perform the interprocess communication using mapped
shared memory segments via the boost library. The re-
ceiving tasks in XFER_COMM write into this shared segment
directly as data arrives. In tandem, matching spin loops in
the currently active BIN_COMM check for the availability of
new data and copy into local bu↵ers so that the next round
of new data can be processed. The whole process is repeated
until the desired amount of input data has been delivered
to the sort hosts and processed by one or more BIN_COMM

groups and written to temporary local storage. After all the
data has been processed, the bucketed data is reread from
temporary storage, sorted, and written back to the global file
system. Note that this final step is also performed cyclicly
across one or more BIN_COMM groups in order to overlap the
read/sort/write process as much as possible across multiple
sort bucket boundaries. This process is illustrated in Fig-
ure 5.

4.3 Bucket Records
As we get records from the read group we wish to bin them

into q buckets and write them to the local disk. For this we
need q � 1 “splitters” that equally partition the N input
records into q equal chunks. We use a parallel selection al-
gorithm that is also part of out sorting routine. The splitters
for the local disk buckets are determined using samples from
the first M records for matters of e�ciency. For su�ciently
large datasets, with well shu✏ed data, this should not cause
any performance problems. As we load-balance across all
processes before writing to local disk, all processes should
have the same file size on local disk. Errors in splitter selec-
tion, will result in di↵erent sized buckets, but each bucket
is still guaranteed to be load-balanced across all processes.
We now describe our parallel selection algorithm followed by
the procedure for binning the incoming data based on these
splitters and overlapped write to local disks.

4.3.1 Selecting Splitters using Parallel Select
HyperQuickSort, HistogramSort, SampleSort and other

splitter based sorting algorithms all rely on e�cient deter-
mination of accurate splitters [21]. For HyperQuickSort, in
each stage, a single splitter is determined, usually by choos-
ing the median on any one task. However, this is not a re-
liable method and an error of ✏N in the rank of the splitter
can lead to the final load-imbalance on a task to be as large
as O((1 + ✏)log p n). In SampleSort, a set of p� 1 splitters is
generated by taking p evenly spaced samples in each locally
sorted array, sorting the p2 samples (using bitonic sort) and
taking the last element on each processor as a splitter. The
maximum load on any processor is guaranteed to be less
than 2n.

Algorithm 4.1 ParallelSelect

Input: Ar (locally sorted), n, N , R [0, ..., k � 1] (expected
global ranks), N✏ global rank tolerance, � 2 [20, 40].

Output: global splitters S ⇢ A with approximate global
ranks R [0, ..., k � 1]

1: Rstart  [0, ..., 0] . Start of range for sampling splitters
2: Rend  [n, ..., n] . End of range for sampling splitters
3: ns  [�/p, ..., �/p] . #of local samples (each splitter)
4: Nerr  N✏ + 1
5: while Nerr > N✏ do
6: Q0  Ar

⇥
rand

�
ns,

�
Rstart, Rend

��⇤

7: Q Sort(All Gather(Q̂0)) . O(k log p + k log k)
8: Rloc  Rank(Q, Ar) . O(k log n)
9: Rglb  All Reduce

�
Rloc

�
. O(k log p)

10: I[i] argminj |Rglb[j]�R[i]| 8i
11: Nerr  max

��Rglb �R [I]
��

12: Rstart  Rloc[I � 1]
13: Rend  Rloc[I + 1]

14: ns  � Rend�Rstart

Rglb[I+1]�Rglb[I�1]

15: end while
16: return S  Q[I]

In Algorithm 4.1, we use a technique also used in His-
togramSort. However, instead of computing p� 1 splitters,
which becomes costly for large p, we only compute k < p
splitters: a) Select � k samples from the entire data (across
all tasks) and collect these on all tasks. b) Sort samples and
determine ranks locally using binary search. c) Perform an

Figure 1. Architecture of Existing Out-of-Core Sort Framework
(Courtesy - [26])

Once the destination ranks are assigned, IO tasks issue asyn-
chronous MPI Isends with whatever data they have read so far
(not exceeding the receive buffer size), to the destination sort

nodes. The data size is indicated in a separate message, sent us-
ing MPI Bsend. The receiver tasks on sort nodes receive data
in a round-robin manner, which is orchestrated by sending mes-
sages between receive tasks. That is, when a receiver task receives
the message (token) from a neighboring receive task, it posts an
MPI Recv to read the length of incoming data, and then passes
the token to the other neighboring task. The token will be updated
with amount of incoming data. After passing the token, the receiver
task posts another MPI Recv to receive the actual data. The token
is also used for identifying when to stop posting receives. At any
point, the token indicates the total amount of data that has been
received. If this equals to the total amount of expected data, no
further receives are posted. The end of read stage is informed to all
receiver tasks by using a special value for token.

3.2 Major Overheads/Bottlenecks in Current Design
The major overheads in the existing Sort framework are as listed
below:

Poor resource Utilization and Lack of Overlap: As discussed
earlier, one CPU core on each sort node is dedicated for the receiver
tasks. This limits the compute resources available for the sort com-
putation. Because of multiple BIN COMMs, it is expected that there
will be overlap between the receiver task and the computation at
sort tasks. However, profiling results using HPC Toolkit [13] in-
dicate that nearly 28% of execution time of the sort task is spent
waiting for the receive task, as shown in Table 1. This indicates
non-optimal overlap and results in wasted CPU cycles on all the
cores.

Table 1. Percentage of Time Spent during Read Stage
Operation Percentage (%)
Computation (Local Sort/Bucketing) 56.2
WaitForActivation 28.5
Final Barrier 15.3

One-sided routines using Remote Direct Memory Access (RD-
MA) can be employed to reduce these overheads and offload the
communication to the Network Interface Controller (NIC), while
freeing all the cores for computations.
Book-keeping and Synchronization Overheads: Yet another
overhead is the book-keeping required at rank 0 of READ COMM.
All processes in READ COMM continuously participate in MPI Gather
for identifying the amount of read data at each process. Then rank
0 assigns destination ranks to each of these and distributes them
using MPI Scatter. The book-keeping overhead and the suc-
cessive collective communication limit the overall read bandwidth
from global filesystem.

4. Design and Implementation
In this section, we first present the challenges of redesigning dif-
ferent components of the framework, and then present the detailed
design.

4.1 Design Challenges
Read Task Coordination with Reduced Synchronization: As
outlined in Section 3.2, in the existing implementation, read tasks
use collective communication to determine the amount of data read
by each read task and to identify the destination sort tasks. These
overheads can be reduced by using one-sided communications.
However, it is a challenge to establish coordination using one-sided
communication operations over global shared memory.
Read Task-Write Task Synchronization and Overlap: Transfer-
ring the input data in multiple segments provides overlap between



read tasks and sort tasks. However, a light-weight mechanism is
needed for the read tasks to identify destination buffers, without
interfering the sort tasks, that are busy computing.
One-sided Semantics and Detecting Remote Completion: The
two-sided semantics inherently provide a notification to the receiv-
ing sort task, when the data is available. When one-sided commu-
nication is used, an additional mechanism is required for the sort
tasks to identify the completion of incoming transfers. Similarly, a
mechanism is required for the read task to know when the remote
buffer is free to write into. Expensive schemes such as remote mem-
ory polling (which are common in shared memory programming)
shall be avoided, as it increases network traffic and is detrimental
to performance.

4.2 Proposed Hybrid Design Architecture
Figure 2 shows the modified architecture that we propose for the
hybrid MPI + OpenSHMEM based design of out-of-core Sort.
The use of global memory model and one-sided communication
removes the need for dedicated receive processes, thereby adding
more compute power to the sort group. We introduce multiple
data staging buffers between the read group processes and the
sort group processes to enable overlap between data movement
and the sort computation. The coordination among the read group
and selection of destination sort processes for data transfer is
established using an atomic counter based design. We first present
an overview of the logical global memory management and then go
into the details of different components of the framework later in
this section.

Atomic counter 
based destination 

selection

SORT Comm

READ Comm

XFER Comm

I/O Nodes

Sort Nodes

t1 t0

buffers

t1 t0

buffers

t1 t0

buffers

Global 
File System

t2

t2

t2

t3

t3

t3

Read 
Loop

Transfer 
Loop

Figure 2. Architecture of the Proposed Hybrid MPI+PGAS Out-
of-Core Sort Framework

Figure 3 depicts the overview of application stack for the de-
sign of Sort based on the hybrid MPI+OpenSHMEM model. The
Sort application makes MPI and OpenSHMEM communication
calls which are served by the underlying MVAPICH2-X [18] uni-
fied communication runtime. The application uses InfiniBand as
the communication network and Lustre as the underlying global
filesystem. Design details for the hybrid sort is described in detail
in the following sections.

4.3 Detailed Design
Global View of Memory and Management: As discussed in Sec-
tion 2, each process in the PGAS model exposes specific amount
of memory that any process can access (read/write). Such global

Hybrid (MPI+OpenSHMEM) 
Out-of-Core Sort Application 

InfiniBand Network

MVAPICH2-X Unified Communication Runtime

MPI Interface OpenSHMEM Interface

MPI calls OpenSHMEM calls

Lustre File System

Figure 3. Hybrid MPI+OpenSHMEM Application Stack

view of data can be utilized for efficient data transfer mechanisms.
Figure 4 depicts the organization of global memory allocated at all
processes, for the hybrid Sort application.

The memory region that each process exposes is split into multi-
ple buffer chunks. These buffers are used for data transfer. In addi-
tion, a statusbuffer region is also maintained in the shared heap
region to maintain the status of each data buffer chunk.

Similar to the current MPI based design, only one process per
read host acts as the active read process while the other remain
passive. This choice is due to the fact that one process alone is
able to saturate the network bandwidth, as the message size is
large enough. However, the active read process shall be able to
use all the memory available on the node. To this end, the active
read process takes control of the communication buffers allocated
by all the other processes in the node, using the shmem ptr
functionality available in OpenSHMEM. This enables the active
read process to directly load and store data into this memory, even
though it is hosted by other processes. Due to the globally visible
memory at the sort processes, the read processes can also write
data directly to the destination sort process rather than requiring
dedicated receive processes, like in the existing framework.
Destination Selection using Atomic Counter: In the existing
framework, all the active read processes synchronize using an
MPI Gather operation to collect the amount of data each pro-
cess has read so far. Then the rank 0 among read processes as-
sign destination ranks based on the gathered data. This assignment
is dispersed to all the read hosts using an MPI Scatter op-
eration. These steps are repeated continuously until all the input
data have been transferred. In the proposed design, we avoid these
book-keeping overheads by using a global atomic counter. When
a readprocess has a data block ready to be transferred, it atomi-
cally increments the counter by one. Based on the counter value,
the reader task can determine its destination rank and the buffer
index at destination process, using the following equations. The
equations are formed such that the distribution of data among the
sortprocs is done in a round-robin manner in column major mode.
This is for enabling efficient bucketing of data, that happens among
the sort processes within a BIN COMM.

A sender task determines the destination process rank using the
following Equation 1.

dest rank = (numIoHosts ∗ numTasksPerHost)+

((counter/numSortHosts)%numTasksPerHost)+

(counter%numSortHosts) ∗ numTasksPerHost (1)

where, the numIoHosts, numSortHosts, numTasksPerHost indicate
number of reader hosts, number of sort hosts, and number of tasks
per host, respectively. This approach completely removes the col-



Logical Global Address Space
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Figure 4. Logical Global View of Data

lective synchronization used in the earlier framework. Similarly,
the buffer index at the destination process where the data needs to
be placed can be calculated using Equation 2.

buffer index =

(counter/(numSortHosts ∗ numTasksPerHost))%

(MAX READ BUFFERS/numTasksPerHost) (2)

where, MAX READ BUFFERS indicates the number of buffers allo-
cated per host. This parameter can be configured through environ-
mental parameters and shall be set based on the system and appli-
cation characteristics.
Remote Buffer Co-ordination using Atomic Compare-Swap:
The data delivery mechanism employed in the hybrid design is ex-
plained in Figure 5. Before writing the data to the remote side, the
read process needs to make sure that the remote buffer is empty,
and the sort process has finished processing the buffer. As dis-
cussed earlier in Section 4.1, remote memory polling mechanisms
shall not be used, as it will degrade the performance, and increase
network traffic. We use the atomic compare - swap routine to
ensure buffer availability. For each buffer, we associate a status
buffer (64bit) to keep track of the buffer status. The 64-bit length
is selected, since the atomic operation granularity offered by Mel-
lanox InfiniBand adapters is 64-bit. A value 1 in the status buffer
indicates buffer is full, and a 0 indicates buffer is empty.

When a read process is ready to transfer data, it does a
compare - swap operation on the remote buffer status, in
which the buffer status is compared with 1, and swaps it with
p+rank, if comparison is true. Here p denotes the total number
of processes, and rank denotes the rank of the read process. The
compare - swap operation returns the original value. Thus, a
return value of ‘0’ indicates that the buffer was free, and then the
read process can proceed with writing data to remote sort process.

If the return value of compare - swap operation is 1, then
it indicates that the sort process has not yet processed the buffer.
In this case, the read process will wait on polling a local memory
location, which is symmetric to the remote buffer status location.
Finally, when the sort process finishes processing of buffer, it iden-
tifies that the buffer status is p+rank, and it unblocks the waiting
read process by updating the symmetric buffer status location at
read process (identified using rank information). The entire data
delivery operation is depicted in Figure 5.
Data Delivery Using Non-blocking Put+Notify: The data write
operation (from read to sort process) also needs to be designed ef-
ficiently. The current OpenSHMEM standard supports only block-
ing put operations. These operations do not ensure completion,
and special synchronization operations can be used for waiting un-
til all the outstanding operations are complete. However, for ef-
ficient overlap, non-blocking operations, and synchronization op-
erations with per-operation granularity is desired. For example, if
a read process wants to reuse a buffer and if it calls synchro-
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Figure 5. Data Transfer using One-sided Communication

nization operation to complete all the outstanding put operations,
it will significantly limit the computation-communication overlap.
Thus, we propose non-blocking put-with-notify as a sim-
ple extension to OpenSHMEM. The operation will return a handle,
which can be used for checking operation completion. Such opera-
tions can be very handy in PGAS applications with irregular com-
munication characteristics, such as Graph500 [8, 12, 16]. We use
put-with-notify to write data to the destination buffer chunk
and notify the destination process by writing 1 to the corresponding
buffer chunk.
Data Reception in Sort Group: As indicated earlier, the input data
is written to the sort process in a round-robin manner. Thus, each
sort process can just poll the status buffer location corresponding
to the expected buffer location, for checking incoming data. This
avoids the need for polling multiple buffer locations, and avoids
cache pollution.

Bucketing of received data into different bins is a collective op-
eration among the processes within a single BIN COMM. If every
process processes the data in one receive buffer chunk granular-
ity, then the total number of bucketing operations required can be
calculated in advance. However, processing multiple buffers dur-
ing each bucketing operation can reduce the total number of buck-
eting operations. This requires an extra collective synchronization
among the processes within a BIN COMM for checking termina-
tion condition. We employ a non-blocking MPI Iallreduce for
this check, so that maximum overlap is achieved. We evaluate
both these design alternatives in the performance evaluation sec-



tion. These schemes are denoted as Hybrid-SR (Simple Read) and
Hybrid-ER (Eager Read), respectively.
Custom Memory Allocator using Shared Heap: During the final
sort stage, data in each bucket is read from local disk, to construct
a vector of data records. These records are then sorted and written
to global file system. In the hybrid design, we reuse the OpenSH-
MEM shared heap for holding the data records. The data record
vector is constructed with a custom memory allocator, which uses
the OpenSHMEM shared heap region, and thereby avoiding extra
memory allocations.

5. Performance Evaluation
In this section, we present detailed evaluation and analysis of our
proposed hybrid design. We evaluate the data transfer time, overlap
of computation and communication, final sort time, and scalabil-
ity characteristics. We also present a performance evaluation with
Hadoop, using the same amount of resources.

5.1 Experimental Setup
We used TACC Stampede [28] for our experimental evaluations.
The compute nodes in Stampede are equipped with Intel Sandy-
Bridge series of processors using Xeon dual eight-core sockets, op-
erating at 2.70 GHz with 32 GB RAM. Each node is equipped with
MT4099 FDR ConnectX2 HCAs (54 Gbps data rate) with PCI-
Ex Gen3 interfaces. The operating system used is CentOS release
6.3, with kernel version 2.6.32-279.el6 and OpenFabrics version
1.5.4.1. The global filesystem in Stampede is Lustre v 2.1.3.

The algorithms and software developed to support the end-to-
end disk sorting procedure were all written in C++. The existing
MPI based Sort code used in this study is described in [26]. We
used MVAPICH2 v2.0b as the underlying MPI library for pure
MPI-based design. We used MVAPICH2-X Unified Communica-
tion Runtime for MPI+PGAS based on v2.0b for the hybrid de-
sign. The OpenSHMEM stack in MVAPICH2-X v2.0b is based on
OpenSHMEM v1.0e.

All of the performance evaluations are measured on the system
running in normal, production operation via batch job submission.
Since the global file systems are a shared resource, available to all
users for general purpose I/O in their applications, the I/O band-
width delivered to our sort procedure is not guaranteed to be con-
stant. Hence, we ran our experiments multiple times, and the low-
est numbers are reported for both existing and the proposed hybrid
designs. For all the experiments, we evaluate both hybrid ‘simple-
read’ and ‘eager-read’ designs. These are denoted as ‘Hybrid-SR’
and ‘Hybrid-ER’, respectively.

5.2 Evaluation of Different Phases of Sort Operation
As discussed in Section 3, there are two main stages in the over-
all sorting procedure: 1) global filesystem read and transfer, and
2) final sort and writing to global filesystem. We measure the in-
dividual execution times for each of these stages, for both existing
design and the proposed hybrid designs. These results are presented
in Figure 6.

Here, ‘Tx’ indicates the transfer stage and ‘FS’ indicates the
final sort stage. The value in parenthesis indicates the input size
that the experiment was run with: 1 TB, 2 TB, and 4 TB, for sys-
tem sizes 1,024, 2,048, and 4,096 processes, respectively. As it can
be observed from the figure, the hybrid design reduces the execu-
tion time of data transfer stage significantly. The execution time for
data transfer stage for 4 TB is 476, 303, and 298 seconds for Ex-
isting, Hybrid-SR, and Hybrid-ER designs, respectively. This indi-
cates an improvement of 37% over the existing design. It can be
noted that with increasing scale, the improvement increases. The
improvement is mainly because of the one-sided communication

and reduced overhead in case of hybrid design. Further, there is an
extra bin of sort tasks (which are used as dedicated receiver tasks
in existing design), which can also work on local sorting and buck-
eting.
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Figure 6. Split-up of Time Spent in Different Phases of Sort Op-
eration

The execution time for final sort stage for 4 TB data size is 313,
296, and 283 seconds, respectively. As indicated in Section 4, the
hybrid design does the data transfer in a uniformly distributed man-
ner, such that each sort task receives almost equal amount of data.
This is achieved by the use of atomic counter and sending the data
(using remote put) in uniform chunk size. This uniform data distri-
bution improves the load balancing among the sort tasks. Moreover,
as discussed in Section 4.3, the custom memory allocator design
using OpenSHMEM shared heap region evades the need for allo-
cating memory dynamically, during the final sort stage. All these
factors improve the performance of final sort stage.

5.3 Overlap Evaluation and Resource Utilization
In this experiment, we evaluate the extent of overlap of computa-
tion and communication. Here, the computation refers to the local
sorting and bucketing of the records into local file system. Overlap
is computed as the total time for computation divided by the overall
time. If the computation and communication are perfectly (100%)
overlapping, the value will be one. We measure the individual time
for local sorting, binning and bucketing and thus the compute time.
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Figure 7. Overlap Evaluation

We conducted this experiment for an input size of 1 TB of data
with varying scale – 1,024, 2,048, and 4,096 processes. The overlap
results are presented in Figure 7. The existing design achieves about
60% overlap, at 1,024 processes. But as we scale up, the overlap



percentage drops. At 2,048 processes, the overlap is about 20%. On
the other hand, both the hybrid designs achieve very good overlap,
nearly 95%, for all the different scales.

The hybrid design uses one sided communication operations
leveraging RDMA feature. Thus, there is no need for explicit re-
ceiver tasks in sort nodes, as compared to the two-sided model in
the existing design. These compute cores are utilized for sorting in
hybrid design, thereby increasing the compute power.

5.4 Overall Execution Time of Sort
Figure 8 presents the overall execution time for the sort operation,
for varying system sizes. For these experiments, we kept the input
size as 1 TB, and varied the system scale from 512 processes to
8,192 processes.
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Figure 8. Overall Execution Time of Sort

As it can be noted from the figure, the execution time decreases
with increasing system scale, since the input size is constant. The
results highlight the benefit of hybrid design as we increase the
scale. Both Hybrid-SR and Hybrid-ER designs perform better than
existing design, as we scale up. In all the cases, Hybrid-ER per-
forms slightly better than Hybrid-SR, as the number of binning it-
erations are lesser in case of former. At 8,192 processes, the total
execution times reported are 164, 92.55, and 90.36 seconds, for Ex-
isting, Hybrid-SR, and Hybrid-ER, respectively. This is nearly 45%
improvement in performance, as compared to the existing design.

5.5 Scalability Evaluation
We evaluate the weak and strong scaling characteristics of the
proposed hybrid designs in this section. The results are presented
in Figure 9. We report the aggregate sort rate (TB/min) for this
evaluation.

The weak scaling results are presented in Figure 9(a). In this
experiment, we kept a constant problem size per processor core as
Input Size=1 TB per 512 cores, and varied the number of processes
from 512 to 4,096. We doubled the input size with every step in
problem size. We observe that both hybrid designs achieve better
weak scaling results. Results at larger scale indicate that the hybrid
design imposes no overheads with increase in system size. Another
observation is that, as we scale up with increase in data size, the
Hybrid-ER performs slightly better than Hybrid-SR. Here, the in-
put data is aggressively being processed (binning/bucketing), and
thereby reducing the total number of binning/bucketing. At 4,096
cores, the aggregate sort rates observed are 0.25, 0.34, and 0.37
TB/min, respectively for Existing, Hybrid-SR and Hybrid-ER de-
signs. The Hybrid-ER performs nearly 33% better compared to the
existing design.

The strong scalability results are presented in Figure 9(b). Here,
we kept the problem size constant as 1 TB, and varied the system
scale from 1,024 to 8,192 processes. The results indicate that the

hybrid designs achieve better strong scalability characteristics. The
results indicate similar performance for both the hybrid designs.
At 8,192 processes, the sort rate reported are 0.36, 0.64, and 0.66
TB/min, respectively for Existing, Hybrid-SR, and Hybrid-ER de-
signs. Thus, the Hybrid designs boost up the sort rates by nearly
1.83X times.

5.6 Performance Comparison with Hadoop
As indicated in Section 1, Hadoop is one of the most widely used
data analytics framework for processing vast amounts of data. We
compare our proposed framework with Hadoop, with same amount
of resources, on the same experiment cluster. We used Apache
Hadoop [1] v1.2.1 for this experiment. After parameter tuning, we
choose 128 MB as HDFS block size (with replication factor = 3)
and 8 concurrent maps and 4 concurrent reduces on each compute
node. The input data was copied in a distributed manner from the
global filesystem to HDFS. Then, we chose the standard Hadoop
TeraSort to sort the data. Finally, the sorted data was written back
to the global filesystem in parallel. MapReduce and HDFS were
configured to use InfiniBand (IPoIB mode) network.
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Figure 10. Performance Comparison with Hadoop

The evaluation results are presented in Figure 10. We conducted
this experiment for 250 and 500 GB input size, with varying system
sizes of 512 and 1024 cores, respectively. As it can be noted from
the results, the Hadoop execution times are much higher. At 1024
cores, the total execution times reported are 1890, 306.34, 270.22,
and 269.52 seconds for Hadoop, Existing, Hybrid-SR, and Hybrid-
ER, respectively. This is nearly 7X improvement for hybrid design,
over Hadoop. The main reason here is because of the single local
disk (HDD) present in compute nodes in the experiment cluster.
Local disk throughput is one of the main factors affecting Hadoop
performance, and many of the Hadoop clusters use multiple hard
disks per node [10, 11]. However, not many large scientific clusters
(like TACC Stampede) provide support for multiple disks/node.
The authors believe that these evaluations are fair, given that these
evaluations use same amount of resources for Hadoop, MPI and
hybrid designs.

6. Discussion
In this section, we provide a general discussion on the different
choices for designing the Out-of-Core Sort framework. First, we
discuss about the choice between MPI+PGAS hybrid model versus
MPI-3 RMA. Further, we provide a detailed discussion about using
Hadoop for the Sorting framework and explore reasons for the
observed performance limitations.

6.1 PGAS and MPI-3 RMA
The one-sided communication semantics for MPI was introduced
in MPI-2.0, and have been significantly extended in the recently
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standardized MPI-3.0 [17]. Either PGAS programming models like
OpenSHMEM or MPI-3 RMA can be used for implementing the
one-sided communication proposed in the new design. However,
the one-sided communication model of OpenSHMEM is much eas-
ier than the semantics in MPI-3 RMA. Even though efficient imple-
mentations of MPI-3 and OpenSHMEM can achieve comparable
performance, OpenSHMEM offers better programmability [32].
Further, since the MPI-3 RMA standards are relatively recent, there
is a lack of efficient MPI-3 implementations.

To substantiate our design decision of using OpenSHMEM for
one-sided communication, we review the complexities involved in
designing the out-of-core Sort application using MPI-3 RMA. Our
findings are listed here.

• For the MPI-3 based design, application developer has to create
three memory windows (for actual buffer regions, status buffer,
and the atomic counter). Application developer also needs to
keep the window handles for further data movement and any
synchronization operations. An alternative would be to use dy-
namic windows, attaching buffers onto the same window, but
this will increase complexity of managing the attached buffers.
In case of OpenSHMEM, these buffers can be simply allocated
from the shared heap. For any subsequent communication op-
erations, these buffers can be used, as if they were in local node
(similar to shared memory programming), and the OpenSH-
MEM runtime will translate into actual destination address.

• As discussed in Section 4, each reader process consists of I/O
reader threads and communication threads. Based on the file
system characteristics study, it is optimal to keep one I/O reader
thread per node [25]. Thus, we enable one reader process per
node in the proposed hybrid design. The active read process
can utilize the communication buffers allocated by all other
processes within the node, using OpenSHMEM shmem ptr
functionality. This enables the active read process to directly
load and store data into this memory, even though it is hosted
by other processes.
Similar designs can be done using MPI-3 shared window
(MPI WIN ALLOCATE SHARED). However, this requires
creation of a communicator on each of the read nodes, fol-
lowed by window creation on each of these nodes. Another
way to implement this is to create a window involving just the
active read process, and all the sort process. However, this also
requires a separate communicator creation. Thus creating the

communicators and separate windows, and maintaining them
adds additional complexities in case of MPI-3.

• In MPI-3 RMA, the displacement at remote memory region
needs to be specified for every data transfer (eg. MPI Put)
operation. In case of OpenSHMEM, displacement calculation
is taken care of by the OpenSHMEM runtime, and thus it im-
proves the programmability. Additionally, we propose simple
extensions for OpenSHMEM communication operations (such
as non-blocking put, and non-blocking put-with-notify), which
further improves the flexibility and programmability of Open-
SHMEM model.

6.2 Hadoop on Commodity Clusters
As indicated in Section 1, many of the HPC clusters are being used
for big data analytics workloads [3] using Hadoop MapReduce
frameworks. Even though MapReduce was proposed as a frame-
work for commodity clusters, many of the production clusters use
special configurations such as multiple storage disks per node, and
memory intensive nodes [11, 27]. Even the rank #1 system in ‘Sort
Benchmark’ uses twelve, 3 TB disks per node [10]. On the other
hand, frameworks such as the one proposed in this study, can run
on commodity clusters and with good performance; thus proving
to be more cost-efficient. The productivity aspect of PGAS models
is another factor, adding to cost-efficiency. The global view of data
and the shared memory abstractions in PGAS models improve the
productivity.

6.3 Benefits of Proposed Hybrid Design
The performance analysis reveals that the proposed hybrid MPI
+ OpenSHMEM framework improves over the existing design on
multiple angles. The use of one-sided communication removes re-
quest processing overheads and minimizes synchronization over-
heads at the sort processes. Collective synchronization among
reader processes is eliminated by using a global atomic counter to
coordinate data distribution. These collectively improve the overall
Performance of Data Delivery. We show this empirically as a re-
duction in the time spent by sort processes in data transfer stage,
in Section 5.2. The data movement is pipelined using a pool of
buffers at each sort process. The use of one-sided communica-
tion frees up the sort processes to continue computation while data
movement is in progress. This considerably improves the Overlap
of Computation and Communication, as shown in Section 5.3. The
use of one-sided communication and direct delivery of data to the



sort processes also removes the need for a dedicated receiver pro-
cess, improving the Effective Utilization of CPU Cores. Owing to
the improvements along these different dimensions, the proposed
framework is able to reduce the overall sort time by around 45%
compared to that using the existing framework, on 8,192 processes.

7. Verification of Sort Output
We verified the output of the sort operation obtained from the Hy-
brid design to ensure correctness. Since the hybrid design transfers
data in a uniform manner, the output file sizes are different for both
designs. Thus, for ensuring correctness, we merged the output files
into a single file, and compared the md5sum. The md5sum values
in both designs were identical.

8. Conclusion and Future Work

In this study, we identified various bottlenecks in the existing im-
plementation of k-way SampleSort and presented the challenges
involved in redesigning the data delivery using the OpenSHMEM
PGAS model. We proposed a scalable and high performance de-
sign of sort using hybrid MPI+OpenSHMEM models and proposed
simple extensions to OpenSHMEM communication. To the best of
our knowledge, this is the first such design of any data intensive
computing application using the Hybrid MPI+PGAS programming
models. Our performance evaluations reveal that the hybrid de-
sign improves the performance significantly. At 8,192 processes,
the sort execution time is reduced by 45% using the hybrid design
as compared to existing design. Performance comparisons with
Hadoop, using the same amount of resources (1,024 cores) indi-
cated an improvement of 7X times. Our scalability experiments in-
dicate that hybrid design demonstrates good strong and weak scal-
ing characteristics.

We plan to further enhance the proposed framework to make
use of the read hosts also for sorting and global write, as they
are idle during the write stage. We also plan to explore the use of
accelerator/coprocessors for efficient sorting.
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