
Analysis of Energy and Performance of Code
Transformations for PGAS-based Data Access Patterns

Siddhartha Jana
University of Houston,

Texas
sidjana@cs.uh.edu

Joseph Schuchart
Technische Universität

Dresden
joseph.schuchart@tu-

dresden.de

Barbara Chapman
University of Houston,

Texas
chapman@cs.uh.edu

ABSTRACT
One of the factors associated with the usability of distributed
programming models in exascale machines is the energy and
power cost associated with data movement across large-scale
systems. PGAS models provide the user with explicit inter-
faces to transfer data to remote processes. From an applica-
tion programmer’s perspective, a number of factors impact
the semantics and performance of communication-intensive
kernels. Many of these directly impact the behavior of the
underlying PGAS library. Examples include: the comple-
tion semantics of the data transfer constructs, the number
of explicit library-calls used to perform such transfers, the
size of data transferred during each call, the contiguity of the
data buffers within the memory, the count and the manage-
ment overhead associated with handling in-progress trans-
fers, and the registration status of the buffers with the NIC.

In this paper, we discuss a number of transformations on
RDMA-based data access patterns that have the potential
of significantly reducing the energy dissipation during the
execution of application kernels. Such transformations are
mostly accompanied by a significant reduction in the trans-
fer latencies. We present an empirical study of this im-
pact by analyzing the energy consumption of two major
sub-components of the system - the CPU and the memory.
Since performance is a major criteria for PGAS program-
ming models, we use the energy-delay product as a metric
to justify the feasibility of these transformations.

We hope that this work motivates the incorporation of energy-
based metrics within fine tuning PGAS implementations.

Categories and Subject Descriptors
D.1.3 [Software]: PROGRAMMING TECHNIQUES—Con-
current Programming – Distributed Programming

General Terms
Performance

Keywords
Energy efficiency, DVFS, Remote data transfers, PGAS Code
Transformations, Data Access Patterns

1. INTRODUCTION
One of the primary challenges on the pathway to Exas-
cale Computing is the 20 MW power consumption envelope
established by the U.S. Department of Energy’s Exascale
Initiative Steering Committee [18]. The direct outcome of
this has been a rising concern about the energy and power
consumption of large-scale applications that rely on various
communication libraries for efficient data movement in dis-
tributed systems. From our past study[10], we have learned
that communication semantics provided by PGAS models
have the potential of exploiting a number of energy sav-
ing opportunities while servicing data transfers across dis-
tributed systems. This is aided by their flexibility of decou-
pling synchronization costs from the actual transfer of the
data-payload.

This work is an extension of our previous experience in
studying the impact of one-sided communication in PGAS
models[10]. We had learned that managing small-sized data
transfers on RDMA-capable networks is more energy effi-
cient than handling large bulk transfers. Most research ef-
forts study the impact of data movement with respect to the
size of the transfer. However, we believe that besides the size
of the data payload, the data transfer patterns within appli-
cations play a major role in determining the impact. In this
paper, we discuss a number of such patterns and perform
an empirical analysis of the maximum possible savings that
may be obtained while choosing one access pattern over the
other. These motivate the need for static or dynamic trans-
formations of communication techniques applicable across
various levels of the software stack. We evaluate some well
known techniques like aggregating contents of source buffers
of multiple remote write operations, using non-blocking data
transfer semantics, using pinned-down buffers, and manag-
ing the size of data payload packed within each transfer.
We present empirical results that indicate that the savings
(in terms of performance and energy) obtained through such
techniques varies significantly and there is plenty of opportu-
nity for system programmers to tune energy-efficient PGAS
implementations.

To summarize, the main contributions of this paper are:

• We discuss a number of factors characterizing data ac-

cess patterns that have the potential of impacting the
energy signatures of PGAS applications

• We discuss multiple transformations on data access
patterns that have the potential of significantly im-
pacting energy savings without negatively affecting the
performance.

• We present empirical evidence of the feasibility of such
transformations by analyzing the impact of these trans-
formations in terms of the reduction in CPU energy
consumption, DRAM energy consumption, communication
latency, and the energy-delay product.

We layout our study as follows. Section 2 provides a dis-
cussion on past related work. In Section 3, we discuss the
various characteristics within PGAS communication kernels
that have an impact on the energy and latency cost of ap-
plications. In Section 4, we define a data access pattern in
terms of some basic elements and list a small subset of such
patterns. This discussion is followed by a some examples of
transformations that have the potential of energy savings.
Our experimental setup for the analysis of these transfor-
mations is described in Section 5. Following this, we back
the claim of potential energy savings by present empirical re-
sults to back the claim of significance numbers are presented
in Section 6.

We hope that this work motivates the incorporation“energy-
based” metrics while fine tuning PGAS implementations.

2. RELATED WORK
Proposals like Thrifty[19] have been put forth to direct large-
scale research towards redesigning the complete computing
stack. The goal of such efforts is directed towards building
power-aware Exascale platforms.

Past efforts towards understanding and managing the power
consumption trends of applications have been significant.
One of the static based approaches for managing power
consumption by processes is for the compiler to evaluate
a program and determine sections within the code where
the energy consumption profile changes. This knowledge
in the form of power management hints can then be con-
veyed to the runtime to adjust the voltage/frequency scal-
ing of applications [1]. Korthikanti and Agha [12] study
the power consumption behavior of shared memory archi-
tectures while handling applications with different problem
sizes. Li et al. [14] use DCT and DVFS techniques to study
the opportunities of reducing power consumption of hybrid
MPI-OpenMP applications. The focus of our work has been
to perform a fine-grained study of OpenSHMEM commu-
nication interfaces which are responsible for remote memory
accesses.

There has been a great deal of research in managing the
energy consumption of applications. Most of these efforts
target energy-based optimizations for applications running
in a shared memory environment. The maximum impact
on the energy savings in such platforms are goverened by
the avoidance of penalty due to cache misses and memory-
intensive operations. For example, Rahman et al.[17] pro-
pose reducing power consumption in scientific applications

by decreasing the number of active threads and fine-tuning
cache blocking and loop unrolling factors to achieve efficient
execution. Research efforts show that power bottlenecks are
common in case of “disagreements” between the application
activity and the system power consumption and quite often
the source of inefficiency can be tracked down to the use of
power-hungry busy-waits[2, 3, 5].

Barreda et al.[4] discuss work on a Framework for aposteriori
detection of power-sinks in the form of discrepancies between
the application activity and the CPU C-states. Choi et al.[7]
explore opportunities of using DVFS in case of memory in-
tensive phases of applications. Their approach relies on pre-
diction of this intensity by dynamically measuring the ratio
of off-chip versus on-chip accesses.

The work closest to our focus are those by Vishnu et al[21],
Kandemir et al.[11] and Venkatesh et al.[20]. Kandemir et
al.[11] discuss static based techniques like traditional data
flow analysis and polyhedral algebra to detect redundant
communications and unwanted synchronizations in HPF-like
languages. Vishnu et al.[21] exploit voltage frequency scal-
ing and interrupt-based methods to achieve energy savings
during remote memory operations. They implement this
technique in ARMCI[16]. The energy savings discussed in
this work only target individual data transfer operations.
Venkatesh et al.[20] discuss techniques of energy measure-
ment of MPI-based data transfers using Intel’s RAPL scheme.
Energy readings of point-to-point and collective operations
are discussed. However, these efforts do not take into ac-
count the impact of multiple factors across the hardware
and software stack. As we discuss in this paper, the cost of
an independent data transfer constuct is dependent on its se-
mantics and the data access pattern in participates it. The
following sections discuss a number of similar factors and
present analysis of empirical results that are significantly
impacted by them.

3. DESIGN FACTORS IMPACTING ENERGY
PROFILES OF PGAS COMMUNICATION
KERNELS

This section describes some application-level design factors
that have the potential of impacting the energy signatures
of communication-intensive kernels. While these factors are
controllable at the user-level, their use directly impacts the
behavior of the underlying communication library.

At a higher level, we categorize these on the basis of (I)
Properties of the communication kernel (II) Properties of
individual data transfers

3.1 Properties of the Communication Kernel

The total size of the payload being transferred. From
our past experience[10] and other research efforts[20, 21],
we have learned that the total size of data participating
in RDMA-based operations within a communication-kernel,
has a direct impact on the energy consumption of an applica-
tion1. Costs associated with handling non-contiguous data

1 It must be noted that the significance of the impact of
such a metric depends on the actual ratio of the number

buffers and multiple initiated remote transfers are bounded
by this factor. While the payload size associated with data
movement is important, the overhead associated with the
software stack that services the transfer of the payload is
equally significant. Therefore, one of the crucial factors that
needs to be considered while evaluating energy and perfor-
mance costs is the number of user buffers over which the
payload is distributed. This is described next.

The number of explicitly initiated data transfers. Due
to the importance of this metric, we compare all performance-
and energy-based parameters with respect to this count for
a given data-payload size. For the rest of the text, we refer
to this metric as “fragments”. This metric takes multiple
forms across the software stack:

At the application level: Given a fixed payload size, the
latency and energy cost may increase with the number
of explicitly initiated remote read/write operations.
The exact count of such operations coupled with the
actual number of bytes transferred per operation is
largely dependent on the design of the data structures
and access patterns used by the application program-
mer.

At the data transfer layer: The impact of this metric can
also be related to the completion semantics of RDMA
transfers. For example, in case of non-blocking remote
write operations, this metric can also be translated to
the number of outstanding in-progress PUTs as dic-
tated by the application design. In such cases, the
energy and latency costs are impacted not only by the
cost for servicing the actual transfers, but also that for
managing multiple communication handlers.

At the raw bytes transfer layer: The maximum number
of bytes that can be transferred at a time through the
physical layer is dictated by the constraints imposed
by the NIC. Thus it is common for large bulk transfers
to be divided into smaller chunks at this layer as well.

3.2 Properties of the Individual Data Trans-
fers

The data-transfer completion semantics. Most modern
interconnects support non-blocking transfers of data between
the local and remote memories. The latency due to such re-
mote transfers may therefore be overlapped by the available
computation. This ensures efficient use of CPU cycles that
would otherwise be wasted while polling for the completion
status of otherwise blocking transfers. However, the use of
non-blocking transfers comes with the price of: (a) having to
manage multiple communication handlers, and (b) the count
of the number of in-progress transfers. This management of
large number of such transfers might lead to an increase in
the participation of the CPU, thereby increasing the energy
consumption.

of local compute-based operations to those servicing remote
transfers. This dependence on the “intensity” of a commu-
nication kernel is in alignment with similar empirical and
energy model studies for shared-memory systems[6].

The contiguity of the data-buffers in memory. While
handling small to medium sized transfers, an application de-
veloper or the PGAS implementation itself may exploit the
peak bandwidth of the underlying interconnect by merging
multiple non-contiguous source buffers into a single contigu-
ous chunk before sending the contents across the network.
This tactic is well-established among PGAS implementa-
tions which support strided, indexed, or vectorized trans-
fers[16]. However, one has to be wary of the latency and the
energy cost associated with such mechanisms due to (a) the
impact of local memcpy()s which are CPU and DRAM in-
tensive, and (b) the maximum achievable bandwidth of the
underlying interconnect. The benefits therefore depend on
the extent of hardware support and the amount of compu-
tation available for overlapping the latency associated with
bulk transfers.

The registration status of the source buffers with an
RDMA-capable NIC. PGAS implementations built on top
of OS-bypass mechanisms require the virtual-to-physical ad-
dress mapping to be pinned down. This pinned region is
registered with the NIC to enable RDMA-based accesses.
If the application programmer uses a source buffer that is
not pinned to the memory, a PGAS implementation typi-
cally performs a local copy of the contents of the buffer to
a portion of a pre-registered memory2. As shown in further
sections, such local memory copies are CPU and DRAM
intensive and their cost is proportional to the size of the
copied contents. Therefore, the status of registration of the
user buffer has the potential of directly impacting the energy
profiles of kernels.

4. CODE TRANSFORMATIONS THAT IM-
PACT ENERGY CONSUMPTION

In order to evaluate the potential impact of code transfor-
mations of communication-intensive kernels, it is necessary
to first identify the remote data access patterns designed by
the application developer. In this section, we discuss some
access patterns and identify the type of transformations that
aim at eliminating the cost factors discussed in Section 3.

It must be noted that in real world applications, the fea-
sibility of such transformations would be constrained by a
number of other factors like data dependencies, algorithm
design, the memory model, the communication model, etc.
The discussions here and the empirical results in Section 6
are therefore aimed at aiding the reader in obtaining an op-
timistic estimate of the maximum possible energy savings
that can be expected.

4.1 Data Access Patterns
In order to study the energy behavior of data access pat-
terns within a communication kernel, we needed to iden-
tify a set of design elements, based on which any one-sided
communication-intensive pattern may be architected. These
“design elements” correspond to basic operations over which
a remote transfer may be built upon.

2Dynamic registration of memory is a very expensive oper-
ation [15, 22] and is therefore typically avoided

4.1.1 Basic Elements
RDMA Write constructs (or PUTs) in PGAS models may
be built upon the following basic operations:

P (x): This corresponds to the initiation of a one-sided Write
transfer of x bytes of data from the source buffer on
the active sender’s node to a remote buffer on the pas-
sive receiver’s memory. A call to this function does
not guarantee completion of the data transfer. For
an RDMA-capable interconnect solution that bypasses
the kernel, this operation is equivalent to the trans-
fer of contents from a pinned portion of the sender’s
memory to that of the receiver’s memory. This pinning
of memory with the OS corresponds to the registration
of the memory location with the NIC. This simple op-
eration simply corresponds. From the point of view of
an OpenSHMEM developer, this corresponds to a call
to shmem putmem() where both the sender and the
receiver addresses point to a portion on the globally
accessible memory.

Q: This corresponds to a verification operation which guar-
antees completion of a previously posted PUT opera-
tion (P). In terms of OpenSHMEM terminology, this
corresponds to a call to shmem quiet() that returns
once the the data contents of all previously posted
PUTs are copied into the destination buffer at the re-
ceiver process.

M : A call to memcpy() that copies the content of the source
buffer into a local buffer that is pre-registered with the
NIC, thereby enabling RDMA operations on it.

A: A call to shmem swap corresponds to an atomic opera-
tion that may be used by an active process to signal
the completion of a transfer to a target process.

4.1.2 Examples

Active Sender Process

Passive Receiver Process

Non-blocking Remote Write Operation

Quiet operation - guarantees remote completion

Memory copy from source buffer to pinned-down memory

PE 0

PE 1

PE 0 PE 1 PE 0 PE 1 PE 0 PE 1 PE 0 PE 1 PE 0 PE 1

...MPQMPQ ...MPMPQ ...PQPQ ...PPQ ...MMPQAMM

Atomic operation - signals passive process about transfer completion

Polling

Figure 1: Line Diagrams of data access patterns

We discuss some examples of data access patterns that were
designed as a combination of the basic elements discussed

above34. Figure 1 illustrates these patterns, the impact of
which, are discussed later in Section 6:

...MPQMPQ : This benchmark represents the worst case
which is a combination of all the expensive factors de-
scribed above. Each PUT operation is preceded by a
memcpy() and is followed by the quiet operation.

...MPMPQ : Having every non-blocking PUT be preceded
by a memory copy operation of the contents of the
source buffer to a registered buffer takes into account
the impact of using registered source buffers. After all
the memory copies and the PUTs, this pattern ends
with a single quiet operation, thereby guaranteeing
completion of the data transfer.

...PQPQ : Having every PUT be immediately followed by a
quiet takes into account the impact of multiple block-
ing remote PUTs.

...PPQ : Having multiple consecutive PUTs followed by a
single quiet takes into account the overhead of main-
taining multiple handlers for non-blocking PUTs and
of waiting for their remote completion.

...MMPQAMM : To study the impact of the overhead due
to aggregation of discrete user buffers, a number of
factors need to be taken into consideration. These in-
clude: the cost of using multiple memcpy()s at the
sender’s side to copy data from the user-buffer into a
pinned-down source buffer, the cost of actual transfer
of the buffer contents to the remote process (using a
single PUT), the cost of checking for remote comple-
tion of the transfer by the sender (a single quiet), the
cost of signaling the completion of the transfer to the
receiver process (a single atomic operation), the cost
due to polling for the completion-signal by the receiver,
and the cost at the receiver’s side to copy back the
contents from the destination buffer back to the final
destination user buffers (using multiple memcpy()s).
It must be noted that unlike the above patterns where
the number of PUTs is equal to the number of user
buffers, this pattern contains a single PUT following
as many memory copy operations as the number of
user buffers.

4.2 Transformations of Data Access Patterns
Figure 2 illustrates the set of microbenchmarks that were
evaluated and the relation between them. The edges con-
necting the nodes of the graph depict different code trans-
formations, the impact of which are discussed in Section 6.

3A note on the nomenclature used: A repetition of a sub-
string in each pattern name corresponds to a discrete user
buffer. e.g. Each ‘MP ’ in ...MPMPQ corresponds to op-
erations over a different fragment at successive addresses in
the heap. The actual count of this repetition i.e. the num-
ber of fragments, corresponds to the number of disjoint user
buffers over which the access pattern operates.
4A note on the design of the microbenchmarks: Obtaining
steady energy readings require running the synthetic mi-
crobenchmarks for large number of iterations. To avoid a
data access pattern from falling prey to caching effects from
past runs, it is essential to clear the contents of the cache
before the start of each iteration.

MPQMPQ

PQPQ MPMPQ

PPQ

MMPQAMM

Eliminating cost by using non-blocking semantics

Eliminating cost by using pre-pinned source buffers

Eliminating cost by aggregating source buffers

Eliminating cost by reduction of data payloads

Figure 2: Different transformations of remote data access
Patterns that have the potential impacting the energy pro-
files of communication-intensive application kernels.

We study the impact of four different OpenSHMEM code
transformations that take into account the factors discussed
in Section 3. Using the nomenclature above, we describe
these transformations below:

Impact of using pinned source buffers: The impact of
using unpinned source buffers and additional mem-
cpy() operations may be studied by using globally vis-
ible or symmetric user-buffers, i.e. MPQMPQ →
PQPQ and MPMPQ→ PPQ.

Impact of using non-blocking remote transfers: The pos-
sible cost-savings associated with converting blocking
remote write operations to non-blocking ones may be
studied by eliminating unnecessary calls to quiet after
each PUT, i.e., MPQMPQ→MPMPQ and PQPQ→
PPQ.

Cost of aggregating user-buffers: The impact of using
multiple memory copy operations to aggregate data
into pinned memory instead of explicitly issuing mul-
tiple PUTs may be evaluated through the transforma-
tion PPQ→MMPQAMM .

Cost of reducing the data-payload: While all the above
transformations are dependent on the characteristics of
the data access pattern within a communication ker-
nel, this transformation deals with the the size of the
data-payload as dictated by the input problem size.
The impact of the data-payload size can be analyzed
by studying the same test-case – MPQMPQ – with
different transfer-payload sizes.

Table 1: Characteristics of the power monitored node

Processor Intel Xeon CPU E5-2690
Microarchitecture Intel’s Sandy Bridge
Hyperthreading support Disabled
Main Main Memory 32 GB
Infiniband card Mellanox MT27500, ConnectX-3
Linux kernel version 2.6.32 x86 64

It must be noted that many other transformations and their
combinations such as MPQMPQ → MMPQAMM are
also possible. However, since our scope lies on studying
each of transformations independently, we do not discuss
such cases here. Their impact may be compounded over
more than one transformations listed above.

5. EXPERIMENTAL SETUP
5.1 Test-bed Characteristics
Our study was aimed at performing a fine-grained analysis of
the impact on two main components that are dictate the en-
ergy and power consumption of a single compute node - the
CPU and the memory. All experiments were conducted on
two dual-socket Intel Sandy Bridge nodes described in Ta-
ble 1. The two nodes are prototypes for an upcoming instal-
lation at the University of Technology Dresden, which are
instrumented for fine-grained accurate power measurement5.
Each node has instrumented voltage regulators (VRs) that
are sampled with a sampling frequency of 1 KHz for both
sockets and the four voltage lanes of the DIMMs on board.
With the help of an FPGA, a digital filter is applied to
smoothen the samples. Furthermore, a linear correction is
applied to the measurement data coming from the VRs in
order to ensure an accuracy of 3 %. Since the CPU and the
DRAM are the single two most import consumers of energy
on a node in a distributed system, we will focus on only
these two components in the evaluation of our experiments.
We limit our scope to the study of these two components.
For studies on large scale systems, the contribution of the
interconnect and the network topologies becomes crucial, as
highlighted by recent study[13].

5.2 Software Stack Characteristics
The empirical results presented in this paper were obtained
using synthetic OpenSHMEM microbenchmarks. They de-
sign of these benchmarks were based on the line diagrams
depicted in Figure 1. The impact of the PGAS-based opera-
tions listed in 4.1.1 were studied using OpenSHMEM’s con-
structs like shmem putmem() and shmem quiet() interfaces.
The OpenSHMEM implementation used was Mellanox Scal-
able SHMEM (ver-2.2) over OpenFabrics Byte Transport
Layer.

6. EMPIRICAL RESULTS
While one of the primary purposes of this paper is to dis-
cuss the impact of the transformations in access patterns,
it is essential to understand the behavior of the patterns
themselves. These are depicted in Figure 3. The figure

5More information about the High Definition Energy
Efficiency Monitoring (HDEEM) project is available
at http://tu-dresden.de/die_tu_dresden/zentrale_
einrichtungen/zih/forschung/projekte/hdeem

http://tu-dresden.de/die_tu_dresden/zentrale_einrichtungen/zih/forschung/projekte/hdeem
http://tu-dresden.de/die_tu_dresden/zentrale_einrichtungen/zih/forschung/projekte/hdeem

0.018
 0.05
 0.14
 0.37

 1
 2.7
 7.4
 20
 55

 1

 4

1

6

6

4

 2

5
6

1

0
2

4

4

0
9

6

 1
6

3
8

4

 6
5

5
3

6

2
6

2
1

4
4

Jo
u
le

s

Total number of fragments [Log-scale]

(I) Total CPU+DRAM Energy (J)

MPQMPQ
PQPQ

MPMPQ
PPQ

MMPQAMM

0.00091
0.0025
0.0067

0.018
 0.05
 0.14
 0.37

 1

 1

 4

1

6

6

4

 2

5
6

1

0
2

4

4

0
9

6

 1
6

3
8

4

 6
5

5
3

6

2
6

2
1

4
4

se
cs

Total number of fragments [Log-scale]

(II) Latency (secs)

MPQMPQ
PQPQ

MPMPQ
PPQ

MMPQAMM

4e+02

3e+03

2.2e+04

1.6e+05

1.2e+06

8.9e+06

6.6e+07

4.9e+08

 1

 4

1

6

6

4

 2

5
6

1

0
2

4

4

0
9

6

 1
6

3
8

4

 6
5

5
3

6

2
6

2
1

4
4

P
U

Ts
/s

e
c

Total number of fragments [Log-scale]

(III) Message Rate (PUTs/sec)

MPQMPQ
PQPQ

MPMPQ
PPQ

MMPQAMM

4.4e+05

1.2e+06

3.3e+06

8.9e+06

2.4e+07

6.6e+07

1.8e+08

4.9e+08

 1

 4

1

6

6

4

 2

5
6

1

0
2

4

4

0
9

6

 1
6

3
8

4

 6
5

5
3

6

2
6

2
1

4
4

B
y
te

s/
se

c
Total number of fragments [Log-scale]

(IV) Bandwidth (bytes/sec)

MPQMPQ
PQPQ

MPMPQ
PPQ

MMPQAMM

Figure 3: Impact of use of various data access patterns on the CPU+DRAM energy and the achievable latency for a remote
PUT operation w.r.t. number of explicitly initiated transfers : Total Data-payload size = 0.5MB

depicts the energy costs, latency, message rate and band-
width of a transfer of a 0.5MB transfer using different num-
ber of PUT opeperations, each of which corresponds to a
discrete user-buffer (#Fragments on x-axis). We observe
that most of the access patterns discussed before can be
paired in terms of their closeness to their raw energy and
latency values. MPQMPQ and PQPQ have the highest
energy and latency cost. This is accompanied with a lower
bandwidth and message rate. This trend can be attributed
to the penalty associated with polling-based operations and
additional memory management necessary to ensure remote
completion of the transfers. MPMPQ and PPQ have read-
ings close to each other, but are cheaper than MPQMPQ
and PQPQ because of the absence of the blocking seman-
tics. When the number of PUTs is beyond 256, aggregation
of data buffers (MMPQAMM) lead to the minimal energy
consumption and latency. Another point to note is that for
most of the patterns, the message-rate becomes limited be-
yond for less than 8KB per PUT (i.e. #Fragments = 64),
and is accompanied with a steady drop in the bandwidth of
the transfer. While these raw values provide an overview of
the behavior of the data patterns, they do not give an indi-
cation of the potential savings due to the factors discussed
in Section 3. A detailed study using the transformations
discussed in Section 4 is presented next.

In this section, we discuss the impact of various transfor-
mations of data access patterns, as discussed in Section 3.
These are supplemented with empirical results depicted in
Figures 4, 5, and 6. These figures illustrate the impact of
the transformations on various cost metrics.

In our case, the cost “metrics” studied are:

• Energy consumption by the CPU

• Energy consumption by the DRAM

• Latency of the transfer

• EDP or Energy Delay Product6

The “impact” of each cost metric is calculated in terms of
the percent reduction in one of the above metrics. If a trans-
formation T is applied on a data access pattern Cinitial such
that: T (Cinitial) → Cfinal, then the impact of T in terms
of percent reduction in a cost-metric M may be calculated
as:

I =
M(Cinitial)−M(Cfinal)

M(Cinitial)
∗ 100

For all of these experiments, the graphs depict the values of
various metrics as measured at the compute node servicing
the active sender processes responsible for initiating the re-
mote write operations. We restrict our discussion to study
the behavior of this process and not the passive receiver
process.

6While CMOS circuits have the ability to trade perfor-
mance for energy savings, it becomes challenging to opti-
mize of both simultaneously. The EDP, first proposed by
Horowitz[8, 9], takes into account both the energy and the
time costs in an implementation-neutral manner. For cases,
where energy and performance have equal importance, this
metric can be calculated as a product of the energy con-
sumed and the time taken. For more complicated cases,
where performance is given a higher priority, the weight of
the “delay” factor is increased by squaring or cubing it[13].

 -20

 -15

 -10

 -5

 0

 5

 10

 15

 20

 25

 1

 4

1
6

6
4

 2

5
6

1

0
2

4

4

0
9

6

 1
6

3
8

4

 6
5

5
3

6

2
6

2
1

4
4

E
n
e
rg

y
 R

e
d
u
ct

io
n
 (

%
)

Total number of fragments [Log-scale]

(I) CPU Energy Reduction (%)

Blocking PUTs : MPQMPQ->PQPQ

Non-Blocking PUTs : MPMPQ->PPQ

 -20

 -10

 0

 10

 20

 30

 40

 50

 1

 4

1
6

6
4

 2

5
6

1

0
2

4

4

0
9

6

 1
6

3
8

4

 6
5

5
3

6

2
6

2
1

4
4

E
n
e
rg

y
 R

e
d
u
ct

io
n
 (

%
)

Total number of fragments [Log-scale]

(II) DRAM Energy Reduction (%)

Blocking PUTs : MPQMPQ->PQPQ

Non-Blocking PUTs : MPMPQ->PPQ

 -20

 -10

 0

 10

 20

 30

 40

 1

 4

1
6

6
4

 2

5
6

1

0
2

4

4

0
9

6

 1
6

3
8

4

 6
5

5
3

6

2
6

2
1

4
4

La
te

n
cy

 R
e
d
u
ct

io
n
 (

%
)

Total number of fragments [Log-scale]

(III) Reduction in Latency (%)

Blocking PUTs : MPQMPQ->PQPQ

Non-Blocking PUTs : MPMPQ->PPQ

 -20

 -10

 0

 10

 20

 30

 40

 1

 4

1
6

6
4

 2

5
6

1

0
2

4

4

0
9

6

 1
6

3
8

4

 6
5

5
3

6

2
6

2
1

4
4

E
n
e
rg

y-
D

e
la

y
 P

ro
d
u
ct

 R
e
d
u
ct

io
n
 (

%
)

Total number of fragments [Log-scale]

(IV) Reduction in Energy-Delay Product (%)

Blocking PUTs : MPQMPQ->PQPQ

Non-Blocking PUTs : MPMPQ->PPQ

Figure 4: Impact of using pinned data buffers : Data-payload size = 0.5MB

It must be noted that the energy consumption of a passive
process that’s polling at a barrier, waiting for the comple-
tion of a transfer, cannot be ignored while performing large
scale studies of distributed applications. In fact, our past
study[10] indicates that the energy consumption increases
proportionally with the time and its scale is very high. How-
ever, since the polling activity corresponds to a constant
power consumption, it can be safely ignored in the following
discussions that focus on the impact due to the remote data
access patterns.

6.1 Impact of Using Pinned Buffers
From Figure 4, we observe that there is a definite reduction
in energy consumption by the CPU and the DRAM while
using NIC-registered user buffers instead of non-registered
ones. However, the benefit of this transformation reduces
with a rise in the number of discrete data buffers, i.e. with
a rise in the number of PUT operations.

Influence of other cost factors:. We see that there exists
a variation in the impact based on the blocking semantics
of the PUT operations. The plots in the figure depict these
two possible outcomes as “Blocking PUTs: MPQMPQ →
PQPQ” and “Non-Blocking PUTs: MPMPQ → PPQ”.
Some observations include:

With Blocking PUTs: We observe that the impact on
(or, the percent reduction in) the the CPU energy con-
sumption and the latency is as high as 20% in case

of bulk transfers. This is not surprising, as this type
of transformation results in elimination of unwanted
memory copy operations, which directly benefit the
energy cost and the latency. This elimination of bulk
memory copy operations leads to DRAM energy sav-
ings as high as 40%. The impact of this transforma-
tion however drops to less than 5% in terms of CPU
energy and almost zero in case of latency. This down-
ward trend is observable especially when the num-
ber of PUTs increases beyond 512 (i.e. buffer size
< 1KB per PUT). This point corresponds to the mes-
sage rate limit (Figure 3) as well as the relatively neg-
ligible CPU energy costs of small memory copies. Nev-
ertheless, since the size of the memory footprint of the
user buffers remains constant across all data points,
the DRAM energy savings do not drop below 20%.

With Non-Blocking PUTs: Similar to the case with block-
ing PUTs, we observe that the reduction in CPU en-
ergy consumption, latency, and the energy-delay prod-
uct is higher for large bulk buffers (fragment count <
512, buffer size < 1KB per PUT). The drop in the
energy savings for smaller buffers may be attributed
to both the negligible savings while eliminating small
memory copy operations and, the rise in the overhead
of managing large number of in-progress PUTs. Be-
yond 16K PUTs, this transformation leads to CPU
energy savings as low as 5%. One of the primary ob-
servations with regards to the DRAM energy consump-
tion is the overall lesser impact of this transformation
on blocking PUTs when compared with non-blocking

 0

 20

 40

 60

 80

 100

 1

 4

1
6

6
4

 2

5
6

1

0
2

4

4

0
9

6

 1
6

3
8

4

 6
5

5
3

6

2
6

2
1

4
4

E
n
e
rg

y
 R

e
d
u
ct

io
n
 (

%
)

Total number of fragments [Log-scale]

(I) CPU Energy Reduction (%)

Unpinned Source : MPQMPQ->MPMPQ

Pinned Source : PQPQ->PPQ

 -40

 -20

 0

 20

 40

 60

 80

 100

 1

 4

1
6

6
4

 2

5
6

1

0
2

4

4

0
9

6

 1
6

3
8

4

 6
5

5
3

6

2
6

2
1

4
4

E
n
e
rg

y
 R

e
d
u
ct

io
n
 (

%
)

Total number of fragments [Log-scale]

(II) DRAM Energy Reduction (%)

Unpinned Source : MPQMPQ->MPMPQ

Pinned Source : PQPQ->PPQ

 0

 20

 40

 60

 80

 100

 1

 4

1
6

6
4

 2

5
6

1

0
2

4

4

0
9

6

 1
6

3
8

4

 6
5

5
3

6

2
6

2
1

4
4

La
te

n
cy

 R
e
d
u
ct

io
n
 (

%
)

Total number of fragments [Log-scale]

(III) Reduction in Latency (%)

Unpinned Source : MPQMPQ->MPMPQ

Pinned Source : PQPQ->PPQ

 0

 20

 40

 60

 80

 100

 1

 4

1
6

6
4

 2

5
6

1

0
2

4

4

0
9

6

 1
6

3
8

4

 6
5

5
3

6

2
6

2
1

4
4

E
n
e
rg

y-
D

e
la

y
 P

ro
d
u
ct

 R
e
d
u
ct

io
n
 (

%
)

Total number of fragments [Log-scale]

(IV) Reduction in Energy-Delay Product (%)

Unpinned Source : MPQMPQ->MPMPQ

Pinned Source : PQPQ->PPQ

Figure 5: Impact of transforming multiple blocking operations to non-blocking

 -100

 -50

 0

 50

 100

 1

 4

1
6

6
4

 2

5
6

1

0
2

4

4

0
9

6

 1
6

3
8

4

 6
5

5
3

6

2
6

2
1

4
4

E
n
e
rg

y
 R

e
d
u
ct

io
n
 (

%
)

Total number of fragments [Log-scale]

(I) CPU Energy Reduction (%)

Pinned Source : PPQ->MMPQAMM

 -150

 -100

 -50

 0

 50

 100

 150

 1

 4

1
6

6
4

 2

5
6

1

0
2

4

4

0
9

6

 1
6

3
8

4

 6
5

5
3

6

2
6

2
1

4
4

E
n
e
rg

y
 R

e
d
u
ct

io
n
 (

%
)

Total number of fragments [Log-scale]

(II) DRAM Energy Reduction (%)

Pinned Source : PPQ->MMPQAMM

 -100

 -50

 0

 50

 100

 1

 4

1
6

6
4

 2

5
6

1

0
2

4

4

0
9

6

 1
6

3
8

4

 6
5

5
3

6

2
6

2
1

4
4

La
te

n
cy

 R
e
d
u
ct

io
n
 (

%
)

Total number of fragments [Log-scale]

(III) Reduction in Latency (%)

Pinned Source : PPQ->MMPQAMM
 -100

 -50

 0

 50

 100

 1

 4

1
6

6
4

 2

5
6

1

0
2

4

4

0
9

6

 1
6

3
8

4

 6
5

5
3

6

2
6

2
1

4
4

E
n
e
rg

y-
D

e
la

y
 P

ro
d
u
ct

 R
e
d
u
ct

io
n
 (

%
)

Total number of fragments [Log-scale]

(IV) Reduction in Energy-Delay Product (%)

Pinned Source : PPQ->MMPQAMM

Figure 6: Impact of aggregation of multiple data buffer

PUTs. An interesting observation is the oscillating
trend in DRAM energy savings. This was surpris-
ing because the total size of the data payload being
handled across all the data points remains constant
(0.5MB) and the primary source of DRAM energy sav-
ings in this transformation is the elimination of local
memory copy operations. We are currently investigat-
ing the reason for this trend.

6.2 Impact of Using Non-Blocking Remote
Transfers:

From Figure 5, we observe that the impact of replacing
blocking transfers by non-blocking versions is significant in
terms of reduction in CPU energy, latency, and the energy-
delay product. As shown, the positive impact on the en-
ergy and the latency rises with an increase in the number
of discrete PUTs and hits a limit (80%) when this count
rises beyond 256. This can be attributed to the fact that
the benefits of launching multiple non-blocking transfers is
overshadowed by the cost of ensuring completion of these
transfers (during the quiet operation). The benefits on the
energy-delay product is significant. The 80% reduction in
CPU energy and latency corresponds to an improvement in
energy delay product by almost 95%. Slight variations in
this behavior exist, as discussed below.

Influence of other cost factors:. We see that there is very
little different between the impacts based on whether the
source data buffers are pre-registered or not. The plots in
the figure depict these two possible outcomes as “Unpinned
Source: MPQMPQ → MPMPQ” and “Pinned Source:
PQPQ→ PPQ”. Some observations include:

6.3 Impact of Aggregation of Buffers:
Unlike other data access patterns discussed in the text, a an
access pattern like MMPQAMM corresponds to an active
participation by both the sender and the receiver. Moreover
the RDMA-based data transfer is limited to a single PUT
operation. The cost associated with handling multiple user
buffers is dependent solely on the cost of local memory copy
operations.

Figure 6 depicts the impact of convering a pattern like PPQ
to MMPQAMM . The observations are described below.

For bulk transfers (#Fragments≤1024): At this phase,
a pattern like PPQ is characterized by few bulk PUTs
directly from the source buffer to that target. The
transformed pattern MMPQAMM is characterized
by bulk local memory copy operations first by the
sender, and later on by the receiver. The lattern pat-
tern significantly raises the CPU and DRAM energy
consumption. Moreover, this phase corresponds to the
peak bandwidth achievable using PPQ. Thus, we see a
negative impact on the energy metrics (25% to 125%)
and the latency (25%). This negative impact amor-
tizes any potential energy savings achievable through
the use of a single bulk blocking PUT.

For small transfers (#Fragments>1024): We observe
that the overall CPU and DRAM energy savings achieved

using this transformation increases with the count of
discrete source data buffers (fragmentation). Besides
the obvious elimination of the software overhead of
multiple PUTs and handling multiple in-progress trans-
fers in PPQ, the high energy savings may be attributed
due to this pattern’s limiting message-rate and drop-
ping bandwidth, as shown in Figure 3.

7. CONCLUSION
In this paper, we established the notion that the design of
data access patterns play a critical role in impacting the
energy profiles of communication-intensive PGAS applica-
tions. We investigated a number of factors that are dictated
by the programming model and algorithm design that affect
the energy cost of a process initiating a remote data trans-
fer. These include – the contiguity of the data buffers in the
memory, the total size of the payload being transferred, the
registration status of the source buffers, the completion se-
mantics of the data transfer operations, etc. For a fixed size
of data-payload that is remotely transferred by a process,
the extent of impact of these factors depend on the number
of explicitly initiated data transfer.

Some of the lessons learned include - (a) Energy savings
achieved by using pinned-down source buffers reduces with
a rise in the number of explicitly initiated PUT operations,
(b) Energy savings due to the use of non-blocking semantics
is higher for smaller sized transfers; such savings hit a limit
due to additional overhead due to management of multi-
ple outstanding remote transfers, (c) Aggregating bulk-sized
buffers into contiguous memory locations has a negative im-
pact on the energy savings, the latency and the energy-delay
product. Using multiple smaller transfers tend to benefit
significantly in terms of such savings. We discuss these by
evaluating multiple transformations on access patterns that
account for these factors.

In future we hope to study the feasibility of these energy
savings on real-world large-scale applications.

8. ACKNOWLEDGMENTS
This work has been supported through resources from the
High Definition Energy Efficiency Monitoring (HDEEM) re-
search project at the Center for Information Services and
High Performance Computing (ZIH) at the Technische Uni-
versität Dresden. Special thanks are due to Daniel Hacken-
berg, Daniel Molka, Robert Schöne, and Thomas Ilsche for
their help and guidance while using these resources.

9. REFERENCES
[1] N. Aboughazaleh, B. Childers, R. Melhem, and

M. Craven. Collaborative compiler-os power
management for time-sensitive applications. Technical
report, Department of Computer Science, University
of Pittsburgh, Department of Computer Science,
University of Pittsburgh, 2002.

[2] J. Aliaga, M. Dolz, A. Martin, R. Mayo, and
E. Quintana-Orti. Leveraging task-parallelism in
energy-efficient ILU preconditioners. In A. Auweter,
D. Kranzlmueller, A. Tahamtan, and A. Tjoa, editors,
ICT as Key Technology against Global Warming,
volume 7453 of Lecture Notes in Computer Science,
pages 55–63. Springer Berlin Heidelberg, 2012.

[3] P. Alonso, M. Dolz, F. Igual, R. Mayo, and
E. Quintana-Orti. Reducing energy consumption of
dense linear algebra operations on hybrid cpu-gpu
platforms. In Parallel and Distributed Processing with
Applications (ISPA), 2012 IEEE 10th International
Symposium on, pages 56–62, July 2012.

[4] M. Barreda, S. CatalÃ ↪an, M. Dolz, R. Mayo, and
E. Quintana-Orti. Automatic detection of power
bottlenecks in parallel scientific applications.
Computer Science - Research and Development,
29(3-4):221–229, 2014.

[5] M. Castillo, J. Fernandez, R. Mayo, E. Quintana-Orti,
and V. Roca. Analysis of strategies to save energy for
message-passing dense linear algebra kernels. In
Parallel, Distributed and Network-Based Processing
(PDP), 2012 20th Euromicro International Conference
on, pages 346–352, Feb 2012.

[6] J. W. Choi, D. Bedard, R. Fowler, and R. Vuduc. A
theoretical framework for algorithm-architecture
co-design. In Proc. IEEE Interational. Parallel and
Distributed Processing Symp. (IPDPS), Boston, MA,
USA, May 2013.

[7] K. Choi, R. Soma, and M. Pedram. Fine-grained
dynamic voltage and frequency scaling for precise
energy and performance tradeoff based on the ratio of
off-chip access to on-chip computation times.
Computer-Aided Design of Integrated Circuits and
Systems, IEEE Transactions on, 24(1):18–28, Jan
2005.

[8] R. Gonzalez and M. Horowitz. Energy dissipation in
general purpose microprocessors. Solid-State Circuits,
IEEE Journal of, 31(9):1277–1284, Sep 1996.

[9] M. Horowitz, T. Indermaur, and R. Gonzalez.
Low-power digital design. In Low Power Electronics,
1994. Digest of Technical Papers., IEEE Symposium,
pages 8–11, Oct 1994.

[10] S. Jana, O. Hernandez, S. Poole, C.-H. Hsu, and
B. Chapman. Analyzing the energy and power
consumption of remote memory accesses in the
openshmem model. In S. Poole, O. Hernandez, and
P. Shamis, editors, OpenSHMEM and Related
Technologies. Experiences, Implementations, and
Tools, volume 8356 of Lecture Notes in Computer
Science, pages 59–73. Springer International
Publishing, 2014.

[11] M. Kandemir, A. Choudhary, P. Banerjee,
J. Ramanujam, and N. Shenoy. Minimizing data and
synchronization costs in one-way communication.
Parallel and Distributed Systems, IEEE Transactions
on, 11(12):1232–1251, Dec 2000.

[12] V. A. Korthikanti and G. Agha. Towards optimizing
energy costs of algorithms for shared memory
architectures. Proceedings of the 22nd ACM
symposium on Parallelism in algorithms and
architectures - SPAA ’10, page 157, 2010.

[13] J. Laros, K. Pedretti, S. M. Kelly, W. Shu,
K. Ferreira, J. Dyke, and C. Vaughan. Energy-efficient
high performance computing. London: Springer, 2013.

[14] D. Li, B. R. de Supinski, M. Schulz, K. Cameron, and
D. S. Nikolopoulos. Hybrid MPI/OpenMP
power-aware computing. 2010 IEEE International
Symposium on Parallel & Distributed Processing

(IPDPS), pages 1–12, 2010.

[15] J. Liu, W. Huang, B. Abali, and D. K. Panda. High
performance vmm-bypass i/o in virtual machines. In
Proceedings of the Annual Conference on USENIX ’06
Annual Technical Conference, ATEC ’06, pages 3–3,
Berkeley, CA, USA, 2006. USENIX Association.

[16] J. Nieplocha and B. Carpenter. Armci: A portable
remote memory copy library for distributed array
libraries and compiler run-time systems. In J. Rolim,
F. Mueller, A. Zomaya, F. Ercal, S. Olariu,
B. Ravindran, J. Gustafsson, H. Takada, R. Olsson,
L. Kale, P. Beckman, M. Haines, H. ElGindy,
D. Caromel, S. Chaumette, G. Fox, Y. Pan, K. Li,
T. Yang, G. Chiola, G. Conte, L. Mancini, D. MÃl’ry,
B. Sanders, D. Bhatt, and V. Prasanna, editors,
Parallel and Distributed Processing, volume 1586 of
Lecture Notes in Computer Science, pages 533–546.
Springer Berlin Heidelberg, 1999.

[17] S. F. Rahman, J. Guo, and Q. Yi. Automated
empirical tuning of scientific codes for performance
and power consumption. In Proceedings of the 6th
International Conference on High Performance and
Embedded Architectures and Compilers, HiPEAC ’11,
pages 107–116, New York, NY, USA, 2011. ACM.

[18] J. Shalf, S. Dosanjh, and J. Morrison. Exascale
Computing Technology Challenges. pages 1–25, 2011.

[19] J. Torrellas, D. Quinlan, A. snavely, and W. Pinfold.
Thrifty: An exascale architecture for
energy-proportional computing.

[20] A. Venkatesh, K. Kandalla, and D. Panda. Evaluation
of energy characteristics of mpi communication
primitives with rapl. In Parallel and Distributed
Processing Symposium Workshops PhD Forum
(IPDPSW), 2013 IEEE 27th International, pages
938–945, May 2013.

[21] A. Vishnu, S. Song, A. Marquez, K. Barker,
D. Kerbyson, K. Cameron, and P. Balaji. Designing
energy efficient communication runtime systems: a
view from pgas models. The Journal of
Supercomputing, 63(3):691–709, 2013.

[22] J. Wu, P. Wyckoff, and D. K. Panda. Pvfs over
infiniband: Design and performance evaluation. In IN
THE 2003 INTERNATIONAL CONFERENCE ON
PARALLEL PROCESSING (ICPP) 03, pages
125–132, 2003.

	Introduction
	Related Work
	Design Factors Impacting Energy Profiles of PGAS Communication Kernels
	Properties of the Communication Kernel
	Properties of the Individual Data Transfers

	Code Transformations that Impact Energy Consumption
	Data Access Patterns
	Basic Elements
	Examples

	Transformations of Data Access Patterns

	Experimental Setup
	Test-bed Characteristics
	Software Stack Characteristics

	Empirical Results
	Impact of Using Pinned Buffers
	Impact of Using Non-Blocking Remote Transfers:
	Impact of Aggregation of Buffers:

	Conclusion
	Acknowledgments
	References

