Aaron Welch
Computer Science
Department
University of Houston
4800 Calhoun Rd.
Houston, Texas USA
dawelch@uh.edu

Oscar Hernandez
Computer Science and
Mathematics Division
Oak Ridge National
Laboratory

Oak Ridge, Tennessee USA

oscar@ornl.gov

Swaroop Pophale
Computer Science
Department
4800 Calhoun Rd.
Houston, Texas USA
spophale@uh.edu

Stephen Poole
Computer Science and
Mathematics Division
Oak Ridge National
Laboratory

Oak Ridge, Tennessee USA

spoole@ornl.gov

Extending the OpenSHMEM Memory Model to Support
User-Defined Spaces

Pavel Shamis
Computer Science and
Mathematics Division
Oak Ridge National
Laboratory
Oak Ridge, Tennessee USA

shamisp@ornl.gov

Barbara Chapman
Computer Science
Department
4800 Calhoun Rd.
Houston, Texas USA
chapman@uh.edu

ABSTRACT

OpenSHMEM is an open standard for SHMEM libraries.
With the standardisation process complete, the community
is looking towards extending the API for increasing program-
mer flexibility and extreme scalability. According to the
current OpenSHMEM specification (revision 1.1), allocation
of symmetric memory is collective across all PEs executing
the application. For better work sharing and memory utilisa-
tion, we are proposing the concepts of teams and spaces for
OpenSHMEM that together allow allocation of memory only
across user-specified teams. Through our implementation we
show that by using teams we can confine memory allocation
and usage to only the PEs that actually communicate via
symmetric memory. We provide our preliminary results that
demonstrate creating spaces for teams allows for less con-
sumption of memory resources than the current alternative.
We also examine the impact of our extensions on Scalable
Synthetic Compact Applications #3 (SSCA3), which is a
sensor processing and knowledge formation kernel involving
file I/O, and show that up to 30% of symmetric memory
allocation can be eliminated without affecting the correctness
of the benchmark.

1. INTRODUCTION

The OpenSHMEM library API follows the Partitioned Global
Address Space (PGAS) programming model to support com-
munication, synchronisation and other operations between
processing elements (PEs) executing C, C++, or Fortran
SPMD programs. Other useful operations provided by the

OpenSHMEM library include calls for collective operations
(symmetric memory allocation, broadcast, reduction, col-
lection and synchronisation), atomic memory operations,
distributed locks and data transfer ordering primitives (fence
and quiet). All functionality provided by the current 1.1
OpenSHMEM specification is identical to the original SGI
SHMEM library, which OpenSHMEM was based on.

OpenSHMEM provides collective calls for operations such
as symmetric memory allocation, synchronisation, and data
transfer operations. Most of these calls are collective over
a subset of PEs that are defined by an active set which is
defined by a triplet of parameters within each collective call.

As of OpenSHMEM Specification 1.1, allocation of symmetric
memory using library calls such as shmalloc or shpalloc has
the following limitations:

1. All PEs must participate in the call.

2. All PEs have the data object allocation even if they
may not use it.

3. Implicit synchronisation at the end involving all PEs.

The above limitations can amount to a significant waste of
time and space if only a fraction of the total number of PEs
use a particular symmetric data object. It also means that
shmalloc may not be called inside functions or methods that
are not called by all PEs at the same point in execution.

Historically, there have been two primary elements of a partic-
ular communication operation in OpenSHMEM - the target
PE (or multiple PEs in the case of collectives) and where
the memory of interest is located. While these have been
separate components in past iterations of the specification,
they have both suffered from the same kinds of constraints
imposed by the emphasis on a global view. However, while



the former issue is resolved by offering ways to work with
well defined subsets of the same operating set, the latter issue
demands instead widening the scope of the current Open-
SHMEM memory model to include any number of additional
and disparate memory regions.

The most critical piece at the centre of all OpenSHMEM com-
munication is memory and how it is handled. As such, it is
important to carefully consider what features and constraints
may be best suited for supporting memory management in
OpenSHMEM applications. To facilitate a fine-grained work
distribution, the requirement for the involvement of other
potentially unrelated PEs in symmetric memory allocation
must be removed.

Our main contribution is in changes to the current memory
model of OpenSHMEM to add memory context to teams
called spaces and to provide a simple concise API for this
to the OpenSHMEM specification. The main advantage of
spaces is that memory allocation does not need to be col-
lective across all PEs but only by the PEs included in a
particular team, which makes it a scalable alternative by
eliminating synchronisation across all PEs. Spaces enable
PEs in a team to communicate via symmetric variables allo-
cated only by the PEs in the team and can be looked at as a
mechanism for allocation of data objects that are symmetric
only with respect to the team.

Providing spaces to teams of OpenSHMEM PEs is also a way
of providing isolation for different work-sharing teams. This
is a step towards making the OpenSHMEM memory model
compatible with other libraries. Use of spaces may allow
memory allocation within other libraries for communication
using OpenSHMEM without the risk of interfering with user
applications.

Going ahead, building the concept of teams with associated
spaces may simplify debugging memory related errors; since
spaces are associated with specific teams of PEs, errors that
occur within particular spaces benefit from the more nar-
rowly defined scope that the teams associated with them
provide. This also means that problems within the context
of one team/space are relatively isolated from the rest of the
application, minimising their impact as well. Other signifi-
cant implications could be in multi-threading environments
where teams could be groups of threads [22]. This could
allow for a more natural way of providing the extra context
that such threading models require, but is out of the scope
of this paper and so is left for future work.

Heterogenous computing using accelerators is another venue
which maps well with our concept of teams and spaces. Keep-
ing in context the amount of memory available for the CPU
and the accelerators and the types of computations that
are off-loaded to the accelerators, applications could provide
fine-tuned memory allocations that enable efficient implemen-
tation of the OpenSHMEM specification on hybrid platforms.

The rest of the paper is organised as follows. Section [3]
describes existing programming models and libraries that
have evolved to incorporate non-collective memory allocation
for remote memory operations. For better understanding
of the OpenSHMEM environment we provide background

information in Section 2] and describe the design of the API
in Section @ In Section [§] we evaluate the proposed frame-
work using micro-benchmarks and the SSCA3 kernel. In
Section [6] we summarise our approach and highlight its key
contributions as well as its drawbacks and look at the possible
avenues of future development.

2. BACKGROUND

There are two categories of variables that can be used in
an OpenSHMEM program, namely, symmetric and non-
symmetric or local data. In OpenSHMEM, communication
is possible only via symmetric data objects. Since the Open-
SHMEM library provides bindings for the C, C++ and For-
tran languages, certain variable classes within each language
are defined as symmetric. The library implementation has
to ensure that these variables are accessible to other PEs
executing the same OpenSHMEM application.

By definition, symmetric data consists of variables that are
allocated by the OpenSHMEM library (using special memory
allocation calls) or defined as global or static in C/C++ or
in common or save blocks in Fortran |2]. These variables
have the same name, size, type, and offset address on all
PEs. The library calls shmalloc (C/C++) and shpalloc (For-
tran) allocate symmetric data objects on the symmetric heap,
which is remotely accessible by every other PE. Symmetric
data allocation is a collective process and the OpenSHMEM
specification requires that it occurs at the same point in the
execution path of all PEs with identical size values. The
code in Listing [1] illustrates the different symmetric variable
categories in a C program using OpenSHMEM.

1 int aglobal;

2

/*symmetric variablesx/

void main( ){

4 int *x;

5 int me, npes, y;/xlocal variablesx/

6 static int astatic;/«symmetric
variablex/

7 start_pes (0) ;

8 /*xdynamic allocation of symmetric

9 data objectx*/

10 x = (int *)shmalloc(sizeof(int));

12 shmem_int_put(&astatic, x, 1,

13 (me+1)%npes) ;

14 P

15 shmem_int_get(&y, &aglobal, 1,
16 (me+1)%npes) ;

18 shfree (x);

20 return O0;

Listing 1: Variable Categories in OpenSHMEM

In line of Listing the variable aglobal is a global variable
and hence symmetric. At line[7]the OpenSHMEM library is
initialised and all OpenSHMEM processes must execute this
call. The variable astatic declared in line |§| is also symmetric
as per the OpenSHMEM specification. A symmetric variable
x is allocated in line[10] using the dynamic memory allocation
call shmalloc. Conceptually, the symmetric variable x is allot-
ted the requested amount of memory at the same memory



offset on the symmetric heap for each PE. This mechanism
facilitates fast remote address calculation at the source PE as
the remote symmetric variable’s address can be computed by
adding the base address of the symmetric heap on the target
PE and the local offset corresponding to the same symmetric
variable. This is managed internally by the OpenSHMEM
library implementation. An OpenSHMEM library implemen-
tation may choose to have symmetric variables at the same
address to speed up target destination address calculation.
Symmetric variables may contain different values on all PEs.

Non-symmetric or local data is available to individual PEs
only and is not visible to or directly accessible by a remote
PE. Some OpenSHMEM library routines like shmem_put and
shmem_get may use local variables as the source and the
destination respectively.

3. RELATED WORK

Communication mechanisms for subgroups of processes have
been explored by other programming models and libraries.
The Message Passing Interface-2 (MPI-2) specification al-
lows for remote memory access (RMA) within a group of
MPI processes represented by a communicator through the
mechanism of window creation [1]. This is a collective call
executed by all processes in the group of the communicator
and the window object can be used by these processes to
perform RMA operations.

An initialisation operation allows each process in an intra-
communicator group to collectively specify a particular win-
dow in its memory. When each process specifies this window
of existing memory, it exposes it to RMA accesses by re-
mote processes specified by the communicator. Once such
a window is created it returns an opaque object that repre-
sents the group of processes that own and may access the
set of windows along with the attributes of each window.
Additionally, improvements to one-sided communication in
MPI-3 have made it possible to implement OpenSHMEM
in MPI [12]. With MPI’s strong history behind groups and
communicators, this makes it particularly relevant when con-
sidering the design qualities of memory management across
subsets of processes.

Co-array Fortran (CAF) 2.0 [14], which evolved and then
diversified from co-array features in Fortran 2008, allows
for dynamic allocation/deallocation of co-arrays and other
shared data and local variables within subroutines. They also
introduced the concept of CAF teams as a way to facilitate
sub-grouping of CAF images. CAF 2.0 allows team based
declaration and allocation of co-arrays within a procedure.
This allows for asymmetric allocation of co-arrays and re-
moves the need for global synchronisation across all CAF
images, thus providing an isolated domain for team members
to communicate and synchronise [26].

Unified Parallel C (UPC) [3] also allows for dynamic al-
location of shared memory, and the function can either
be collective or not. Functions like upc_global_alloc and
upc_alloc |25] [7] are not required to be called by all threads.
If upc_global_alloc is called by multiple threads, all threads
making the call get different allocations, while upc_alloc re-
turns a pointer to shared space where the space has affinity
to the calling thread. In contrast, upc_all_alloc provides a

mechanism for collective allocation of shared space. The
arguments passed to this function must be identical on all
threads. At the end of its use, shared memory allocated via
upc_all_alloc must be deallocated by calling upc_all_free.

X10 [6] introduced features that were motivated by high-
productivity, high-performance parallel programming for
non-uniform cluster systems. Places and activities are two
such concepts. Places in X10 are a virtual collection of resi-
dent non-migrating data objects, while activities operate on
the resident/local data [19]. Every X10 activity runs in a
place. Objects and activities are bound to a particular place,
but places may migrate across physical locations. This is
motivated by affinity and load balance considerations. Com-
munication using remote data is different than the other
PGAS programming languages. In X10, an activity may
read/write remote variables only by spawning an activity
at the remote place. This allows for different activities to
perform accesses to remote variables. Unless it is explic-
itly enforced by the programmer, inter-place data accesses
have weak ordering semantics (to eliminate synchronisation
overhead).

Chapel [4] has the concept of domains and locales [5] that
represent ways to map data and units of the target system
architecture respectively. Chapel’s PGAS memory model
allows tasks executing within a given locale to access lexi-
cally visible variables whether they are allocated locally or
on a remote locale. Locales also facilitate the creation of
global-view, distributed arrays. Chapel defines domains to
drive loops and to declare and operate on arrays. This is
done through a domain map. In the absence of a domain
map, an array’s elements are mapped to the current locale.
Domain maps can target a single local locale (layout) or
multiple locales to store distributed index sets and arrays
(distributions).

Global Address Space Programming Interface (GASPI) [11] is
an API specification for PGAS applications. GASPI defines
groups as subsets of processes/ranks, and collective opera-
tions are restricted to the ranks forming the group. Segments
are defined for RMA and can be allocated in hierarchical
memory regions. Segments are globally accessible from every
thread of every GASPI process and represent the partitions
of the global address space [8]. Within a segment, memory
addresses are specified by the triple consisting of the rank,
segment identifier, and offset.

PGAS as well as the message passing paradigm has explored
the challenges of allocation, placement and access to data by
subgroups of processes. Although the approaches discussed
use different ways to express subgrouping and memory acces-
sibility, the main objective is to provide a better and more
flexible memory abstraction for subsets of processes. There
is an obvious need for these concepts in the current Open-
SHMEM specification and we hope to provide a solution in
terms of the new features and a minimalistic API to use these
features. We look at all the advantages and disadvantages of
the concepts and their implementations provided by other
PGAS languages/libraries and MPI to design our proposal
for teams and spaces for OpenSHMEM.



4. DESIGN

To address the concerns raised in Section [I] we are proposing
additions to the current OpenSHMEM programming model,
with a special focus on diversifying the memory model to
include symmetric memory regions that exist only with re-
spect to a particular team through the use of spaces. This
represents a big change in the memory model of the Open-
SHMEM library. Figure [I| shows the conceptual memory
model when using the OpenSHMEM library (as defined by
Specification 1.1 and earlier). The new model depicted in
Figure [2] visually demonstrates how allocation with spaces
allows for the creation and use of memory that is symmetric
only with respect to particular teams.

PEO PE1 PE N-1

Global and Static Global and Static Global and Static
Variables Variables Variables

Symmetric Heap Symmetric Heap Symmetric Heap

Remotely Accessible Symmetric
Data Objects

Local Variables Local Variables Local Variables

Private Data
Obijects

N—

Figure 1: Memory Model as per OpenSHMEM Specification
1.1[2)

PEO PE1 PE N-1

Global and Static Global and Static Global and Static
Variables Variables Variables

Symmetric Heap Symmetric Heap Symmetric Heap

{ { Variable: Y
h Space

[ Variable: V|
Space

Remotely Accessible Symmetric
Data Objects

Local Variables Local Variables Local Variables

Private Data
Obijects

~—

Figure 2: New Memory Model with Spaces

Prototypes of these extensions were implemented in the
OpenSHMEM reference implementation [17] using Universal
Common Communication Substrate (UCCS) [15] as seen
in [20].

4.1 Teams

We introduced the teams extension in [16] and now expand
the concept by providing teams within teams, explicit in-
dexing of members of a team and providing a team split
functionality. Traditional active sets in OpenSHMEM were
implicitly defined as part of collective calls and did not con-
ceptually live outside of individual calls. Contrary to this,
teams are defined externally and are reusable objects. In an

abstract sense, teams are simply a way to select a subset of
PEs to operate with respect to.

4.1.1 Design of Teams

Creation of teams is performed through separate calls that
specify which PEs to include in the definition, and return
an opaque handle to the team that can be passed through
to later functions that will use it. All teams are created
from others as subsets of the PEs in their parent. There are
two predefined teams available throughout an OpenSHMEM
application’s execution. SHMEMX_WORLD_TEAM is
a team which includes all PEs available to the OpenSHMEM
application in the system. If the criteria for team creation
can not be met or will not result in the successful selection of
any PEs, then the predefined SHMEMX NULL_TEAM
is returned instead.

Upon creation, all valid members of a team are given new PE
index values from 0 to n — 1 with respect to the new team.
The creation process is not collective; it is a completely local
operation. However, all PEs included in the selection must
create the team before being able to successfully complete
any collective calls on that team. It is not necessary to ensure
that only the PEs in the definition of a team attempt to
create it - membership in a team can and should be queried
through the use of an API call on that team.

Different types of teams can be created by calling creation
functions specific to that type, while all subsequent opera-
tions employ a shared syntax for all types. We focus on two
such kinds of functions in this paper - strided sets and the
creation of axial splits. The design of other types of teams is
beyond the scope of this paper and is considered in future
work.

Strided teams are defined similarly to active sets in Open-
SHMEM 1.1, except that here the stride may be any generic
value instead of being logarithmic (base 2). The axial splits
are unique in that they produce multiple teams describing
portions of the larger parent, rather than just one describing
all desired PEs. These work by defining how to arrange the
parent’s PEs in a dimensional space so that it may be split
up along each axis, using the calling PE as the origin. This
effectively allows developers to operate on particular rows or
columns of a computational space. There are three functions
for accomplishing this - two, three, and n-dimensional splits.
The former two are simply instances of the n-dimensional
split created for convenience, the latter of which results in
the creation of n teams each consisting of all PEs along one
of the n dimensions (again, using the current PE’s position
in the dimensional space as the origin of the split). While
the presence of the n-dimensional split technically obviates
the need for the other two functions, it can be slightly more
difficult to understand and use, while the other convenience
functions provide a quick and easy interface that will be
enough to satisfy most use cases. Since all new extensions
are required to use the shmemax namespace, we design our
proposed API accordingly. Table[T]lists the proposed creation
functions.

The code shown in Listing shows the grouping created with
a 2-D axial split, which is represented visually in Figure [3
Here, each PE receives two teams as a result of the call -



Create a  shmemx_create_strided_team(long
strided PE_start, long PE_stride, long PE_size,
team. shmemx_team parent, shmemx_team
*subteam);
Create a  shmemx_team_2d_split(long xrange,
2-D split. long yrange, shmemx team parent,
shmemx_team *xaxis, shmemx_team
*yaxis);
Create a  shmemx team_3d_split(long xrange, long
3-D split.  yrange, long zrange, shmemx_team parent,
shmemx_team *xaxis, shmemx_team *yaxis,
shmemx_team *zaxis);
Create a  shmemx_team_axial split(long dimen-
n-D split.  sions, long *range, shmemx team parent,

shmemx_team **axes);

Table 1: Team Creation API

one corresponding to the row it is on (teams t1-t4), and one
corresponding to its column (teams t5-t8).

i shmemx_team blue_team , yellow_team:;

> shmemx_team_2d_split (4, 4,
SHMEMX WORLD_TEAM, &blue_team ,
&yellow_team ) ;

Listing 2: 2-D Axial Split

tl 0 1 2 3

t3 8 9 10 11
t4 12 13 14 15

Figure 3: Visual Representation of 2-D Axial Split in List-

ing 2

Query functions are provided for use with teams. These new
API calls are listed in Table[2] The most important of these
is shmema_team_translate_index(), which translates the index
of a PE in a source team to a destination team. If there is
no valid translation, it returns a negative value (error). This
can be used to get a PE’s own id within a team as well as
determine membership in a team, both of which can be seen
demonstrated in Listing Additionally, shmema_team._size()
returns the size of a team. When finished with a team, it can
be destroyed via the shmema_destroy_team() call. This call
is also not collective, but is required for all PEs that created
it. In addition to these new functions, all point to point and
collective calls can be used with teams, and be made to make
use of the indexing provided by them.

4.1.2  Prototype Implementation

The SHMEMX WORLD_TEAM has a lifetime of the entire
OpenSHMEM application, hence a new team may be created
from the world team at any point. Since PE ids within this
team are globally consistent across all processes, a new team
simply needs to have a mechanism for reindexing PE ids
with respect to itself to ids in this world view. These ids can

Find the index in  shmemx_ team_translate_index(int
dst for PE in src. PE, shmemx_team src,
shmemx_team dst);
Get the size of a  shmemx_team_size(shmemx_team
team. team);
Destroy a team.  shmemx_destroy_team(shmemx_team
team);

Table 2: Team Query and Destruction API

be calculated in a deterministic fashion with a translation
function, obviating the need to store more information than
a few input values to this function, and recalculating these
translations when necessary. Thus, storage requirements for
a team are constant for a particular type, incurring only
minimal memory overhead.

For strided teams, this is especially easy - for a start id of
a and a stride of s, a PE in the team with an index of =
has a world index value of y = sx + a. Handling of the
axial splits does not require a new translation function, as
the results of an n-dimensional split can be produced by
simply finding the appropriate deltas between adjacent PEs
along a given dimension and using those to create n strided
teams. This otherwise internal translation function is exposed
through the shmemz_team_translate_indez() function, with
the added requirement that the destination team may need
to be searched when not equivalent to the world team. The
code in Listing [3]illustrates the use of the proposed features:

1 int main(int argc, char sxargv) {
2 int me, team_index;

3 shmemx_team strided , *axis;

1

me = shmem_my_pe () ;
6 /% creates a team containing x/

7 /x PEs 1, 4, 7, ..., 82 */

8 shmemx_create_strided_team (1, 3, 27,

9 SHMEMX WORLD_TEAM,
10 &strided);

11 team_index =
shmemx_team_translate_index (me,
SHMEMX WORLD_TEAM, strided);

13 if (team_index > 0) {

14 long range[3] = {3, 3, 3}

15 shmemx_team_barrier (strided , pSync);
16

17 if (team_index == 0)

18 printf(”strided team completed

barrier!\n”);

20 shmemx_team_axial_split (3,

21 range , strided , &axis);

22 for (i = 0; i < 3; i++) {

23 team_index =
shmemx_team_translate_index (me,
SHMEMX WORLD.TEAM, axis [i]) ;

24 for (J =0; j <
shmemx_team_size (axis[i]) ;
j++)

2 /*xadd 1 to symm_var on all x/
26 /*PEs along axis 1 %/
2
2

27 shmem_int_add (symm_var, 1,
shmemx_team_translate_index

®



29 (J, axis[i],

SHMEMX WORLD.TEAM) ) ;

31 shmemx_destroy_team (axis[i]) ;

32 }

;7 shmemx_destroy_team (strided) ;

35 }

Listing 3: Creation and Use of OpenSHMEM Teams

4.2 Spaces

Spaces are regions of memory allocated only by a chosen team
of PEs. They represent a shift in the underlying memory
model and assumptions about memory allocation and man-
agement from those found in OpenSHMEM 1.1. Past it-
erations of OpenSHMEM have relied on a single globally
accessible and symmetric heap for all dynamic memory man-
agement for communication operations. To make this less
expensive and involving for operations specific to only par-
ticular subsets of PEs and to increase the flexibility and
programmability of OpenSHMEM, spaces were designed to
create and provide access to memory exclusive to only those
subsets of PEs. The primary such use of this in this paper is
to generate additional symmetric heaps for use within the
PEs of particular teams of interest.

4.2.1 Design of Spaces

The most obvious use of user-defined spaces would be to
mimic the global symmetric heap, but extend its design to
work with individual teams. Similar to how the traditional
global symmetric heap is designed, this results in equal por-
tions of the overall memory being located within each of the
members of the assigned team in the form of n individual
spaces across a team of size n. Together, these spaces and
the interface used to manipulate and incorporate them into
the rest of the API give the same illusion of a unified shared
memory region historically provided by the global symmetric
heap. To this end, we introduce a new call to create such
a space and assign a team to it. All allocation and freeing
of memory within the space is subject to the same rules as
the global symmetric heap traditionally has been, with the
only difference being that those rules apply strictly to the
members of the team assigned to it. The complete list of
proposed functions for spaces is listed in Table

Creating a space and assigning a team to it
can be accomplished through the wuse of the
shmemaz_create_symmetric_space() call. Assigning a
team to a space is a collective operation across all PEs in
the team. Once a team is assigned, the space is immediately
available for use upon return of the call. Furthermore,
memory allocated within a space is available to all PEs in
the team that was assigned to it, meaning that subteams
or other such groupings that also contain any of the same
PEs will likewise have access to the memory within for
those specific PEs. Additionally, destroying a space can
be accomplished with shmema_destroy_space() and is a
collective operation across the team originally assigned to it
and results in freeing all the allocated memory associated
with it. The space is guaranteed to be remotely accessible
until all pending communication using it is complete.

After a space is destroyed, use of any such memory or the
space itself is invalid and results in undefined behaviour.
Destruction of a space is an explicit operation - destroying a
team will not result in the destruction of any memory that
team may have had access to. This is partly a result of
the fact that other teams may still be using the space, as
well as to allow the user to control when a potentially costly
operation should occur, as destruction of a team is cheap but
destruction of a space may be expensive due to incomplete
operations and synchronisation. Memory can be allocated
and freed within a space using the shmemaz_malloc_space(),
shmema_realloc_space(), and shmemax_free_space() calls.

shmemx_create_symmetric_space(
shmemx_team team,
shmemx_space *space);
shmemx_malloc_space(size_t
size, shmemx_space space);

Creates a symmetric
space and assigns
team to it.
Allocate a symmetric
data object within
space.
Changes the size of
memory at ptr
within space.
Frees the memory at
ptr within space.
Destroys a space and
all memory allocated
in it.

shmemx realloc_space(void *ptr,
size_t size, shmemx_space space);

shmemx_free_space(void *

shmemx_space space);
shmemx_destroy_space(
shmemx space space):

ptr,

Table 3: Spaces API

4.2.2 Implementation using UCCS

We implemented the concepts of teams and spaces using the
OpenSHMEM reference implementation [17] using UCCS.
UCCS is a communication middleware which aims to pro-
vide a high performing low-level communication interface for
implementing parallel programming models. It is designed
to minimise software overheads and provide direct access to
network hardware capabilities without sacrificing productiv-
ity. It has already been integrated into the OpenSHMEM
reference implementation in [20].

The performance characteristics of different implementations
of spaces have the potential to vary quite widely. The primary
implementation characteristic of the chosen implementation
strategy is that of imitating the necessary steps for creation
of the original global symmetric heap. This requires the
creation of completely separate and independent memory
regions whose setups result in self sufficient management.
Some RDMA networks may require memory regions to be
registered and access keys to be generated and used before
remote access may be granted. The UCCS middleware ab-
stracts these networks into a single interface that may be
used to access them through the use of opaque registration
handles. However, these registration handles must still be
manually managed within OpenSHMEM in order to access
the associated memory.

While these regions that must be registered to the network
and the memory within spaces do not need to be directly re-
lated, it is far simpler to handle management in this manner
and issue memory regions in static chunks. Before communi-
cation with respect to the new space can be performed, these
registrations need to be shared with other PEs in the team



in addition to the location of the portions of memory specific
to each PE. However, remotely accessible memory is also
needed to communicate this information. For communicating
this information, a specialised bootstrapping procedure has
to be used to set up the new space without requiring the use
of any other pre-existing spaces.

The information about memory in a space ultimately needs
to belong to and be easily accessible from a particular as-
signed PE’s internal data structures. Information such as
registration handles needs to be separated from the space
structure itself, storing such information regarding any and
all remote spaces with the rest of the internal data about the
destination PE associated with the given remote space. This
was accomplished by simply storing the relevant information
for a given space in an array indexed by a unique space id.
Since different target PEs may have different numbers of re-
mote spaces that the local PE has access to, it was necessary
to carefully index space information in a meaningful way.
We did this by determining the first common index available
across these arrays for all remote PEs in the team assigned
to the given space. However, this could lead to undesired
fragmentation, so alternate strategies for reordering or find-
ing compatible indices that are less likely to conflict is worth
consideration for future work.

For bootstrapping the space and communicating the basic
information necessary for its use, the active messages feature
of UCCS was used for the early stages of setup to act in a
similar fashion to the out of band communication necessary
for initial bootstrapping of the library. This was combined
with a hypercube algorithm to span across all n members
of a team in logn steps, effectively performing an allgather
using active messages.

In addition to the user portion of the space, we allocate a
small amount of extra memory within the same registered
region for use as a synchronisation array (pSync). This is
necessary in order to satisfy the requirements of symmetric
memory allocation, as it is required for each allocation to
perform a barrier at the end to ensure completion. All
allocations on a particular space will use this pSync for
performing synchronisation across the assigned team, but
this is neither exposed nor a general replacement for pSync
in user collectives.

It is not strictly necessary to include spaces as an extra
parametre to communication calls, as a particular data object
will only belong to a single space. However, omitting them
creates the possibility that if multiple spaces are associated
with a PE, then an access to a specific data object may lead
to a search across all such spaces to find which one the data
object belongs to. While this could be done efficiently, it may
not be necessary, and other methods to avoid this search are
left for future work.

The code shown in Listing [4] demonstrates the use of spaces
to allocate a symmetric data object specific to a particular
team.

i shmemx team team;
shmemx_space space;
shmemx_create_strided_team (from, to —

from, 2, SHMEMXWORLD TEAM, &team) ;

1 shmemx_create_symmetric_space (team,
&space) ;

5 void xbuf =
shmemx_malloc_space (data_size ,
space) ;

¢ shmemx_putmem_team (buf, buf, data_size,
1, team);

7 shmemx_destroy_space (space);

s shmemx_destroy_team (team) ;

Listing 4: Creation and Use of Spaces

5. EVALUATION

The evaluation of this implementation was conducted on an
SGI Altix XE1300 system located at the Oak Ridge National
Laboratory’s Extreme Scale System Center. The system
consists of 12 compute nodes, each with two Intel Xeon X5660
CPUs for a total of 12 CPU cores and 24 threads. Compute
nodes are interconnected with Mellanox’s ConnectX-2 QDR
HCA with one port. We installed the OpenSHMEM reference
implementation from [20] with the new extensions included,
using UCCS version 0.5. All tests were run with increasing
numbers of PEs up to 128.

5.1 Testing with Micro-benchmarks

We first evaluated our work with a couple of micro-benchmarks
to show the basic costs of creating and using spaces with
teams. As discussed before, to use spaces for communication
we need to first create them, communicate the relevant infor-
mation across all PEs in a team, and then allocate symmetric
data within the new space. Each of these tests were repeated
5000 times before recording the median values, and each
iteration allocated new memory without releasing any old
memory to ensure that the same memory locations didn’t
get used repeatedly.

Figure @ shows the time taken to communicate the different
parametres (registration handles, addresses, etc.) associated
with the new space. At first glance these numbers seem high
but there are two factors to consider: the first is that this is a
one time cost and multiple symmetric data object allocations
are possible from the same space, and second is that being
only an initial implementation, there is likely to be plenty of
room for improvement. This is effectively the only new cost
associated with allocating memory with spaces compared
to the global heap, as the shmema_malloc_space() function
works the same as shmalloc(), with the exception that the
synchronisation will only occur across a subset of processes.

Figure [f] shows the time required for allocating an integer in
the new space. At present we follow similar semantics as that
of shmalloc where all PEs in the team have to synchronise
before any PE returns from the call. If this requirement
is eliminated, better performance could be obtained. The
reason that only a single int is allocated is due to the fact
that the only difference in performance will come from the
smaller synchronisation cost; the number of PEs involved has
no impact on the performance of different allocation sizes.
For especially large allocations, this performance difference
will become less significant. We observe that a shmalloc
takes 15.69 micro-seconds for allocating an integer across
128 PEs. Fewer PEs allocating the symmetric data object
could translate to space savings as well as time savings, since



140

-
N
o

o
o

[=]
o

=]
o

Latency (usec) ,

=Y
o

/
/

03 3 8 16 32 64 128
. i . Number of PEs .
Figure 4: Time required by PEs to communicate spaces
information

N
o

only a fraction of the total number of PEs will be involved in
the synchronisation at the end. Using spaces for allocation
rather than rely on the global heap already implies some
amount of space savings dependent on the fraction of PEs
that no longer need to be involved. However, if the total
synchronisation time for all allocations on a space in addition
to the creation time for that space is less than the time
needed for synchronisation across all PEs for the equivalent
number of allocations from the global heap, then time savings
can be achieved as well.

Another aspect to note is that of any extra overhead incurred
by a given implementation of spaces. The implementation we
proposed does not have much overhead besides the need to
store registration handles and start addresses for the various
memory regions. The amount of memory required for this
is architecture dependent but typically very small. Other
implementation strategies may be more efficient in other
ways, but may require a slightly higher overhead.

20

shmemx_malloc_space() —
shmalloc() —

-
[3,]

Latencx (usec)
o

(3]

-

03 4 8 1632 64 128
. . . Number of PEs . L
Figure 5: Time required for allocation of an int within a

space.

5.2 Testing with SSCA #3

We now examine the potential impact of our extensions im-
plementation on space saving with the SSCA #3 kernel. This
High Productivity Computing Systems (HPCS) benchmark
developed in C by the University of Maryland is characteris-
tic of the computations, communication, and data I/O that
are found in many types of sensor processing applications
used in medicine, astronomy and reconnaissance monitor-
ing. SSCA #3 simulates a processing chain that consists

of representative computation and data I/O kernels applied
to synthetic scalable data, with verifiable results. Further
information about the benchmark is not publicly available
at this time. We developed an OpenSHMEM 1.1 compliant
SPMD version of the benchmark and modified it to use teams
and spaces. Our approach for modification was to eliminate
unnecessary symmetric memory allocation and where needed,
allocation of spaces only for PEs that required the symmetric
data object for communication by creating teams of such
PEs.

Number of OpenSHMEM OpenSHMEM with
PEs 1.1 (bytes) teams with spaces

(bytes)

2 24*S + ¢ 4*S

4 48*%S + ¢ 12*S

8 96*S + ¢ 28%S

16 192*%S + ¢ 60*S

32 384*S + ¢ 124*S

64 768*S + ¢ 252*S

128 1536*S + ¢ 508*S

Table 4: Comparing the symmetric memory

requirement for SSCA#3 benchmark where
S=sizeof(double) and c=sizeof(pSync) * 2

With our spaces approach we were able to identify and elim-
inate unnecessary use of symmetric variables. The Table E|
shows the symmetric memory required by the benchmark
when using OpenSHMEM 1.1 and when using teams with
spaces. We see an average saving of 30% of the symmetric
space. For OpenSHMEM applications that are required to
have a small memory footprint, using teams and spaces could
yield significant benefits.

6. CONCLUSIONS AND FUTURE WORK
In this paper we presented two extensions to the Open-
SHMEM specification that enable subsets of PEs and alloca-
tion of symmetric memory across these subsets, and provided
details for a prototype implementation. Implementing spaces
can be difficult, and the creation process can be potentially
expensive due to overheads that may be imposed by network
hardware and the information that needs to be exchanged
between interested PEs. The advantages of this approach
are that we remove the necessity of synchronising across all
PEs for every symmetric object allocation, only the PEs in-
volved in communication are required to allocate the memory
needed for it, and it also becomes possible to handle more
dynamic scenarios or interactions between OpenSHMEM
libraries. From the kernels we see that up to 30% of the
symmetric memory can be saved when we adopt the new
extensions. Additionally, providing an abstraction for sym-
metric memory allocation makes adapting to heterogeneous
architectures a simpler task for OpenSHMEM.

However, much work remains in order to achieve a more
robust implementation of spaces and achieve better perfor-



mance. In particular, management of registered memory so
as to store memory for many spaces within a limited number
of larger regions is a key point for future development. This is
important because the cost of this registration is significant,
and is generally better suited to a small number of large
regions rather than a large number of small regions. As such,
this level of management represents a critical step towards
a much higher level of efficiency with memory management
under the new model.

Additionally, better strategies for agreement protocols to
determine space ids for indexing can likewise lead to greater
efficiency and less risk of unnecessary storage overhead. What
may be related to this is also finding a procedure for quickly
and efficiently determining which space an address or data
object belongs to. Once some solutions to these issues are
discovered, it may also be worth investigating other types of
spaces besides the symmetric ones proposed here. Similarly,
new selection strategies for teams are also being looked into,
and may carry the potential to drastically increase the ex-
pressivity of the specification for its provided communication
operations.

A more long-term goal involves the complete reworking of
internal memory management strategies with the creation
of a new allocator for distributed and symmetric memory.
The symmetric memory allocator has traditionally been im-
plemented as multiple individual allocators for each PE that
deterministically generate the same allocations when called
with the same allocation parametres in the same order. This
has the benefit of being a local operation up to the bar-
rier synchronisation, but may also have the potential for
greater inefficiencies when faced with numerous instances of
such allocators for each disjoint memory region. A concept
that may prove useful in the creation of a new allocator
is that of region-based memory. Region-based memory as
seen in the works of Gay [10] and Tofte [24] offers an al-
ternative approach to memory management within cohesive
and contiguous blocks. This form of memory management
also provides for efficient allocation and deallocation of en-
tire regions at once [23], and has been demonstrated in the
Myrmics allocator |13]. Furthermore, it has already been
shown that this tactic can be applied successfully to PGAS
settings through the use of DRASync, an allocator designed
for region-based allocation and synchronisation [21].

Another critical piece of this problem is how to deal with
heterogeneity in future computing systems. Not only could
a new allocator and memory management strategies assist in
better supporting these types of systems, but could naturally
map very well to the asymmetry commonly found in them.
The PGAS concepts of OpenSHMEM could be adapted to
heterogeneity by using teams and spaces to reference and
manipulate these separate components with their respective
contexts preserved [9]. We may also be able to use some
insight gained from the Asynchronous Partitioned Global Ad-
dress Space model [18] in concordance with these extensions
to exploit regional locality in such future systems.

7. ACKNOWLEDGMENTS

This work is supported by the United States Department of
Defense and used resources of the Extreme Scale Systems
Center located at the Oak Ridge National Laboratory.

[4]

[5]

[6]

[7]

8

9

(10]

(11]

(12]

(13]

(14]

(15]

REFERENCES

MPI: A message-passing interface standard version 2.2.
OpenSHMEM specification.

W. W. Carlson, J. M. Draper, D. E. Culler, K. Yelick,
E. Brooks, and K. Warren. Introduction to UPC and
language specification. Center for Computing Sciences,
Institute for Defense Analyses, 1999.

B. Chamberlain, D. Callahan, and H. Zima. Parallel
programmability and the chapel language. Int. J. High
Perform. Comput. Appl., 21(3):291-312, Aug. 2007.

B. L. Chamberlain, C. Inc, B. L. Chamberlain, and

C. Inc. Chapel, 2013.

P. Charles, C. Grothoff, V. Saraswat, C. Donawa,

A. Kielstra, K. Ebcioglu, C. von Praun, and V. Sarkar.
X10: An object-oriented approach to non-uniform
cluster computing. In Proceedings of the 20th Annual
ACM SIGPLAN Conference on Object-oriented
Programming, Systems, Languages, and Applications,
OOPSLA ’05, pages 519-538, New York, NY, USA,
2005. ACM.

T. El-Ghazawi, W. Carlson, T. Sterling, and K. Yelick.
UPC: distributed shared memory programming,

volume 40. John Wiley & Sons, 2005.

S. Fraunhofer and F. Jiilich. GASPI-a partitioned
global address space programming interface. Facing the
Multicore-Challenge 111, page 135, 2013.

M. Garland, M. Kudlur, and Y. Zheng. Designing a
unified programming model for heterogeneous machines.
In Proceedings of the International Conference on High
Performance Computing, Networking, Storage and
Analysis, SC 12, pages 67:1-67:11, Los Alamitos, CA,
USA, 2012. IEEE Computer Society Press.

D. Gay and A. Aiken. Memory management with
explicit regions. In Proceedings of the ACM SIGPLAN
1998 Conference on Programming Language Design and
Implementation, PLDI '98, pages 313—-323, New York,
NY, USA, 1998. ACM.

D. Griinewald and C. Simmendinger. The GASPI API
specification and its implementation gpi 2.0. In 7th
International Conference on PGAS Programming
Models, volume 243, 2013.

J. R. Hammond, S. Ghosh, and B. M. Chapman.
Implementing openshmem using MPI-3 one-sided
communication. In OpenSHMEM and Related
Technologies. Experiences, Implementations, and Tools
- First Workshop, OpenSHMEM 201/, Annapolis, MD,
USA, March 4-6, 2014. Proceedings, pages 44-58, 2014.
S. Lyberis, P. Pratikakis, D. S. Nikolopoulos, M. Schulz,
T. Gamblin, and B. R. de Supinski. The myrmics
memory allocator: Hierarchical,message-passing
allocation for global address spaces. In Proceedings of
the 2012 International Symposium on Memory
Management, ISMM 12, pages 15-24, New York, NY,
USA, 2012. ACM.

J. Mellor-Crummey, L. Adhianto, W. N. Scherer, III,
and G. Jin. A new vision for coarray fortran. In
Proceedings of the Third Conference on Partitioned
Global Address Space Programing Models, PGAS 09,
pages 5:1-5:9, New York, NY, USA, 2009. ACM.

S. W. Poole, O. Hernandez, and P. Shamis, editors.
OpenSHMEM and Related Technologies. Experiences,
Implementations, and Tools - First Workshop,



[16]

[17]

18]

[19]

[20]

OpenSHMEM 2014, Annapolis, MD, USA, March 4-6,
2014. Proceedings, volume 8356 of Lecture Notes in
Computer Science. Springer, 2014.

S. W. Poole, P. Shamis, A. Welch, S. Pophale, M. G.
Venkata, O. Hernandez, G. A. Koenig, T. Curtis, and
C.-H. Hsu. Openshmem extensions and a vision for its
future direction. In OpenSHMEM’1/, pages 149-162,
2014.

S. S. Pophale. Src: Openshmem library development.
In Proceedings of the International Conference on
Supercomputing, ICS ’11, pages 374-374, New York,
NY, USA, 2011. ACM.

V. Saraswat, G. Almasi, G. Bikshandi, C. Cascaval,
D. Cunningham, D. Grove, S. Kodali, I. Peshansky,
and O. Tardieu. The asynchronous partitioned global
address space model. Technical report, Toronto,
Canada, June 2010.

V. A. Saraswat, V. Sarkar, and C. von Praun. X10:
concurrent programming for modern architectures. In
Proceedings of the 12th ACM SIGPLAN symposium on
Principles and practice of parallel programming, pages
271-271. ACM, 2007.

P. Shamis, M. Venkata, S. Poole, A. Welch, and

T. Curtis. Designing a high performance openshmem
implementation using universal common
communication substrate as a communication
middleware. In S. Poole, O. Hernandez, and P. Shamis,
editors, OpenSHMEM and Related Technologies.
Ezperiences, Implementations, and Tools, volume 8356

21]

(22]

23]

24]

(25]

[26]

of Lecture Notes in Computer Science, pages 1-13.
Springer International Publishing, 2014.

C. Symeonidou, P. Pratikakis, A. Bilas, and D. S.
Nikolopoulos. Drasync: Distributed region-based
memory allocation and synchronization. In Proceedings
of the 20th European MPI Users’ Group Meeting,
EuroMPI ’13, pages 49-54, New York, NY, USA, 2013.
ACM.

M. ten Bruggencate, D. Roweth, and S. Oyanagi.
Thread-safe SHMEM extensions. In OpenSHMEM and
Related Technologies. Experiences, Implementations,
and Tools - First Workshop, OpenSHMEM 2014,
Annapolis, MD, USA, March 4-6, 201. Proceedings,
pages 178-185, 2014.

M. Tofte, L. Birkedal, M. Elsman, and N. Hallenberg.
A retrospective on region-based memory management.
Higher Order Symbol. Comput., 17(3):245-265, Sept.
2004.

M. Tofte and J.-P. Talpin. Region-based memory
management. Inf. Comput., 132(2):109-176, Feb. 1997.
UPC Consortium. UPC language specifications, v1.2.
Tech Report LBNL-59208, Lawrence Berkeley National
Lab, 2005.

C. Yang, K. Murthy, and J. Mellor-Crummey.
Managing asynchronous operations in coarray fortran
2.0. In Parallel & Distributed Processing (IPDPS),
2013 IEEE 27th International Symposium on, pages
1321-1332. IEEE, 2013.



	Introduction
	Background
	Related Work
	Design
	Teams
	Design of Teams
	Prototype Implementation

	Spaces
	Design of Spaces
	Implementation using UCCS


	Evaluation
	Testing with Micro-benchmarks
	Testing with SSCA #3

	Conclusions and Future Work
	Acknowledgments
	References

