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Abstract—This paper introduces an effort to incorporate
reconfigurable logic (FPGA) components into the Partitioned
Global Address Space model. For this purpose, we have imple-
mented a heterogeneous implementation of GASNet that supports
distributed applications with software and hardware components
and easy migration of kernels from software to hardware. We
present a use case and preliminary performance numbers.

I. MOTIVATION

Field-Programmable Gate Arrays (FPGAs) are a valuable
tool to accelerate High-Performance Computing (HPC) sys-
tems. Since virtually any digital circuit can be implemented on
an FPGA, it is possible to freely design pipelines and dataflows
tailored to any computation problem. This degree of freedom
is balanced with comparably low maximum clock speeds
in contrast to CPUs and GPUs. Nevertheless, the available
design flexibility means that FPGAs can outcompete CPUs
and GPUs on a number of computations. Furthermore, they
can do so using less energy per computation. The possibility
to completely reconfigure an FPGA in milliseconds to a few
seconds means that they can be productively used in common
time- and resource-shared computing clusters.

Despite these advantages, very few HPC systems employ
FPGAs. The major reason for this is that, from the perspective
of a software programmer, they appear to be much harder
to program than CPUs and GPUs. The first problem is that
applying the classical Von-Neumann programming model to
FPGAs does not make sense because doing so would constrain
their major asset, the ability to combine logic and memory into
arbitrary, customized dataflows.

Secondly, these dataflows have to be described in very low-
level Hardware Description Languages (HDLs) like VHDL
and Verilog that are somewhat mismatched to the synthesis
problem for historical reasons; while several improved HDL
idioms have been introduced recently, FPGA and tool vendors
have proven to be very conservative in introducing support for
them.

Third and last, there is no unified standard to interface with
a host of different FPGA devices and platforms. In contrast,
GPUs have been made accessible to a large user community
by the OpenCL[1] and CUDA[2] APIs.

There is evidence of progress on the first and second
problems with the introduction of High-Level Synthesis (HLS)
tools, which allow the conversion of C or C++ code into digital
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circuits; the success of these efforts is highly dependent on the
kind of code to be translated.

The work introduced in this paper focuses on the third
problem, the productive integration of FPGA components
into HPC systems through a standard interface. Our paper
is structured as follows: Section II explains our basic phi-
losophy for implementing CPU/FPGA heterogeneity. Section
III briefly discusses related work. Our hardware and software
components are introduced in Sections IV and V. Section VI
demonstrates our design flow on an application example. We
conclude in Section VII and present an outlook to upcoming
work in Section VIII.

II. UNIFIED PROGRAMMING MODEL

In our opinion, a unified programming model and API
for all components in a heterogeneous system, as shown in
Figure 1, is beneficial to keeping applications both maintain-
able and scalable. In this approach, the same API is used
by both application processes running on host CPUs as well
as on embedded CPUs located on the FPGA. The latter can
be either soft processors implemented in the logic fabric or
hardwired cores (like the ARM processors integrated into
some recent FPGA families). Furthermore, custom hardware
components will use a similar “API” by using the same set of
configuration parameters to control synchronization and data
communication. Instead of FPGA components being utilized



in the co-processor model, hardware and software components
are treated as equal interacting processes.

A significant benefit of a common API is the easy migration
of performance-critical application kernels to hardware. An al-
gorithm can be implemented, verified and profiled completely
in software, taking advantage of the sophisticated development
and debugging tools available in this domain. When profiling
has identified the code sections taking up the most execution
time, these can be converted into custom hardware cores and
seamlessly integrated into the original software component
architecture.

Previous work has successfully demonstrated this approach
using the Message Passing Interface [3]. Our current work
implements the same approach for the Partitioned Global
Address Space model. Besides its established productivity and
scalability benefits, PGAS is a good model for the disparate
memory architectures found in a heterogeneous system.

Based on its straightforward and efficient concept of Active
Messages, we have picked GASNet [4] as the specific API to
adapt to reconfigurable hardware. In the following sections,
we present Toronto Heterogeneous GASNet (THeGASNet),
our own implementation of the GASNet Core API. We have
previously introduced an early version of our GAScore re-
mote memory access core [5] that supports intra- and inter-
FPGA communication between on-chip-memories. This paper
presents the following new contributions:

• An updated GAScore version that supports burst access to
external memory through a standard embedded bus (AXI)

• Support for Strided and Vectored Active Message types
to support complex remote memory transfers

• A complete software/hardware GASNet framework that
supports portability and interoperability of applications
using the THeGASNet Core API on x86-64, ARMv7 and
Xilinx MicroBlaze processors.

III. RELATED WORK

The approach of having a similar, migration-conducive
API for software and hardware components has been suc-
cessfully used by Saldana et al.[3]. TMD-MPI is a library
that implements a subset of the MPI standard to enable
message passing between FPGA and CPU components. It has
successfully demonstrated a common communication model
for the simulation of molecular dynamics. Our work is inspired
by and still partially based on TMD-MPI infrastructure. TMD-
MPI’s downsides are the ones incumbent to any message-
passing system: The need for low-level transfer management,
two-sided communication and its scalability limits, the ineffi-
ciencies of indirect communication to remote memories and,
finally, the impediments to dynamic memory accesses and the
use of linked data structures.

Hthreads [6] is a hybrid shared-memory programming
model that focuses on implementing FPGA hardware in the
form of real-time operating system threads, with most of the
properties of software, but adding real concurrency. Hthreads
focuses on components sharing buses with each other in single-
chip processor systems, and lacks a scalable programming
model for multi-node systems.

On the PGAS side, SHMEM+ [7] is an extended version
of the established SHMEM library that uses the concept of
multilevel PGAS as defined by its authors: Every processing
node has multiple levels of main memory, e.g. CPU main
memory as well as an FPGA accelerator’s main memory,
which are accessed differently by SHMEM+. For node-to-node
transfers GASNet is used, for transfers to a local or remote
FPGA a vendor-specific interface has to be accessed by the
local CPU.

El-Ghazawi et al.[8] examine two different approaches to
use FPGAs with Unified Parallel C: In the library approach,
a core library of FPGA bitstreams for specific functionalities
exists. Function cores can be explicitly loaded into the FPGA.
An asynchronous function call transfers data for processing
into the FPGA, a later completion wait transfers the processed
data back into CPU-accessible memory. The second approach
uses a C-to-RTL synthesis of selected portions of the UPC
code: A parser identifies upc forall-statements that can be well
parallelized in hardware and splits their compilation off to
Impulse-C[9]; corresponding data transfers to and from the
FPGA are inserted into the CPU code.

Our common concern with the two PGAS solutions is
that they leave the CPU(s) in charge of all communication
management, while the FPGA remains in a classic, passive
accelerator role. Truly efficient one-sided communication as
embraced by PGAS is therefore not available hardware-to-
hardware, and FPGA capabilities might be underutilized.

Finally, RAMP Blue [10] is a massive multiprocessor
platform, with the intent of supporting multiprocessor research
through use of soft processors on FPGAs. Like our work, it
also uses MicroBlaze processors connected through a FIFO-
based network scalable across multiple FPGAs and FPGA
boards. It uses the NAS Parallel Benchmarks[11] based on
UPC for performance testing. To enable this, Berkeley UPC
and the underlying GASNet were ported to the MicroBlaze
platform and the FIFO-based conduits. While the successful
porting of the full GASNet library is an impressive feat,
there is no intent to extend the software implementation to
hardware accelerators; the MicroBlaze itself is a stand-in for
future multiprocessor cores. In contrast, our work focuses
on a low-footprint GASNet Core library for the MicroBlaze
that can communicate across platforms; the intent is that the
MicroBlaze serves as an intermediate stage of the application
design process and is later replaced by hardware accelerators
that can communicate in the same way.

IV. THEGASNET HARDWARE COMPONENTS

THeGASNet enables hardware processing units on FPGAs
to act and communicate like GASNet software nodes. For this
purpose, it needs to provide FPGA infrastructure that

• enables networking between GASNet hardware and soft-
ware nodes on different devices

• provides Remote Direct Memory Access (RDMA), the
capability to read from and write to shared memory
segments on a different node

• facilitates the transmission and reception of GASNet
Active Messages by a computation core.

The following sections describe the provided components in
more detail.
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A. NetIf on-chip network

GASNet components use a packet on-chip network based
on FIFO connections called Fast Simplex Links (FSLs) and
routers called NetIfs. This network infrastructure has been
established by previous work on message-passing [3].

Fast Simplex Links are a FIFO implementation that is
architecture-specific to the FPGA vendor Xilinx. Each FSL has
a width of at least 32 data bits and a control bit to designate
header data. Bandwidth can be increased by using data widths
of higher powers of two, with data width conversion enabled by
straightforward packet converters. For the default depth of 16
data words, FSLs can be efficiently implemented in basic logic
blocks with very low resource use. There are asynchronous
FSL variants that can use different clock domains on different
ends at the cost of extra latency. By employing these asyn-
chronous FIFOs, each single component can be tuned to run
at its optimum speed.

A packet consists of a single-word header specifying the
source and destination GASNet nodes and the packet size,
followed by the payload data. Each hardware block comprising
a GASNet node or an off-chip connection is connected to its
own NetIf, which connects to all other NetIfs on the chip.
Because of the low resource footprint of FSLs, systems with
up to ten NetIf components can be fully connected, allowing
for straightforward, low-latency routing. Routing tables can be
re-programmed into an FPGA bitstream without re-running the
time-intensive design implementation process.

Off-chip connections to other FPGAs or to host PCs
encapsulate the NetIf packets in their proprietary formats,
so that transparent GASNet node-to-node communication is
possible through multiple devices and PCs.

B. GAScore remote DMA engine

The central component of on-chip GASNet support is a
remote DMA engine called GAScore (Global Address Space
core) 2. GAScore manages the GASNet communication of an
embedded processor or a custom hardware core by receiving
and transmitting Core API Active Messages encapsulated in
NetIf packets. A GAScore instance has three ports:

• A duplex FSL connection to a NetIF. GAScore acts as a
host that can receive NetIf packets addressed to its node
ID and send packets to any other GASNet node.

• A master burst connection to an AXI bus. AXI is the
standard parallel bus of ARM systems and recent Xilinx
FPGA embedded systems. GAScore usually shares an
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AXI connection to a memory with the embedded pro-
cessor or custom processing core.

• Two duplex FSL connections to the processor or custom
core. The processor or custom core can request GAScore
to send an Active Message to another node. GAScore can
notify the processor or custom core of a received Active
Message and trigger the execution of a handler function.

A GAScore instance fulfills two largely concurrent functions,
which are initially described here working together with an
embedded processor:

1) Transmission of Active Messages: The processor can
initiate an Active Message by sending a multi-word re-
quest including configuration parameters to the GAScore
through a FIFO. The written parameters closely reflect the
function arguments that a software call to a GASNet Core
API function uses. As a consequence, a software GASNet
implementation on an embedded processor only needs to
be a thin software layer that turns function arguments into
words written to the FIFO.
If the request is for a memory-to-memory data transfer
(Active Message type Long), GAScore will retrieve the
corresponding data directly from memory, attach it to
the function parameters to form a NetIf packet, and
send the packet off to its destination GASNet node.
GAScore will signal transmission of the data back to the
processor and therefore enable the processor to modify
the corresponding memory again when necessary.

2) Reception of Active Messages: GAScore will process
incoming messages by writing any payload data to the
memory location(s) specified by the Active Message
arguments. It will then write out the Active Message
parameters to the processor to allow software handling
of the message reception. The data arriving through the
FIFO will trigger an interrupt in the processor, and the
transmitted arguments will be used to call the specified
handler function for the message1. Again, the FIFO data
is closely reflecting software function arguments, and
therefore the software GASNet overhead is minimal.

1As AM function calls result in a sequence of FIFO writes that need to
be monolithic, interrupts are disabled at the beginning of an AM call and
re-enabled at its end. THeGASNet does not currently implement general no-
interrupt sections and handler-safe locks (current applications only use GNU
atomic accesses to single data words), but both could be provided without
expected complications for both the single-threaded MicroBlaze and the multi-
threaded x86-64 and ARM CPUs.



Beside the Active Message types Short (No memory payload)
and Long (with memory payload), GAScore also supports:

• Medium messages: In the software domain, these mes-
sages are used to transport data to a temporary buffer
so that no destination address needs to be specified; we
are using the same type to enable transporting data to
a hardware core directly without copying to memory.
When a Medium message arrives, all payload data is
sent through the FIFO that also receives the handler call
arguments

• LongStrided messages: Long messages which can as-
semble and distribute non-contiguous data in a two-
dimensional layout by specifying a chunk length and
stride

• LongVectored messages: Long messages which can as-
semble and distribute non-contiguous data according to
explicit size and address specifications

It can be argued that strided/vectored messages are not
necessary in the Core API for software and RDMA intercon-
nect solutions, as the functionality can be implemented with
Medium type messages and data scattering implemented in the
software or hardware handler functionality. However, as our
hardware model has a strict separation of concerns (remote
memory operations in GAScore, application and handler tasks
in embedded CPU or hardware core) and such an approach
would put part of the repetitive data handling tasks back into
the computation core’s hands, we think the establishment of the
two non-standard Active Message types is the cleaner solution.

C. Programmable Active Message Sequencer

As the FIFOs connecting the processor to the GAScore are
a hardware interface, the CPU can be substituted with a custom
processing core as long as the core can reproduce the necessary
communication with the GAScore. This can obviously be
custom-designed for any processing core, however it likely
involves a lot of redundant functionality between otherwise
dissimilar computation cores.

To save core designers this repetitive task, we have
designed a small application-specific processor, called Pro-
grammable Active Message Sequencer (PAMS), that is geared
towards receiving and generating Active Message parameters
and controlling custom core operation. As it is targeted towards
a small set of specific functions, it has a much smaller resource
footprint and lower latency to react to events than a complete
universal processor would.

PAMS functionality includes:

• Setting control signals for the custom hardware or waiting
for signals from the hardware

• Waiting for a certain number of specific Active Messages
or a certain amount of data to arrive

• Taking the time of message arrival or core completion
• Sending messages off at specific timer values

Based on these features, PAMS code can easily and efficiently
implement higher-level functionality like barriers as well as
GASNet Reply-type functions to enable remote reads. In
principle, PAMS code can implement all the essential parts
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of the GASNet Extended API, although we have not provided
this yet.

An important feature is the capability to re-program each
PAMS by sending a specific Active Message of type Medium
that includes the new code as data payload. This gives great
flexibility both for design and debugging purposes and for
complex, dynamically changing computation problems. Note
that this re-programmability currently only applies to the
binary code run by the PAMS itself, not to reconfiguration of
the computation core hardware. This is, however, quite feasible
as future work.

D. FPGA system overview

Figure 4 demonstrates the different hardware options en-
abled by the presented components. GAScore can be connected
either to embedded CPUs or to custom hardware cores, and
both elements can either share on-chip SRAM or, for much
larger datasets, an off-chip DRAM accessed through a memory
controller. Contrary to this depiction, in most cases all these
different combinations will likely not be used concurrently,
but rather at different design stages as illustrated in Figure 1
and Section VI. However, the common GASNet interface used
in all cases enables all these different combinations to work
together. On the borders of the FPGA, we can also see Off-
Chip Communication Controllers (OCCC) being connected to
the NetIF network. These represent different possibilities to
either connect FPGAs together or interface to a host processor,
e.g. an x86-64 processor via PCIe or a hardwired ARM core
via AXI.

V. THEGASNET SOFTWARE IMPLEMENTATION

A. Compatibility considerations

Building a heterogeneous extension to an existing API,
we were faced with the choice to either extend the existing
GASNet code base or to implement our own version of the
API. We have chosen to do the latter for the following reasons:



• Extending the existing GASNet would have drawn much
of our limited resources to compatibility and maintenance
work.

• To accommodate heterogeneity, it would be hard and most
likely beside the point to stay completely compatible.
Instead, we can concentrate on identifying the specific
needs of a multi-platform variant, and suggest these for
improvement efforts, specifically GASNet-EX [12].

• We were able to keep the footprint of our MicroBlaze
Core API implementation small enough to run credible
applications code just from on-chip memory, which sim-
plifies the processor system architecture.

A well-understood consequence of this approach is that it is
not a realistic possibility to adapt established and productively
used PGAS languages to our library in the near future. Instead,
we plan our own, heterogeneity-specific high-level library (see
Section VIII) which shares many of their properties. Our effort
is intended as a technology demonstration and not expected to
be adopted for use by the larger community.

B. Differences to the GASNet specification

Our software implementation of the GASNet Core API was
written with a focus on reaching compatibility and interoper-
ability between the following platforms:

• Hardware components using the GAScore FIFO interface
(and optionally PAMS)

• x86-64 compatible 64-bit processors, multi-threaded,
little-endian, running under 64-bit Linux

• ARMv7 compatible 32-bit processors, multi-threaded,
little-endian, running under 32-bit Linux

• Xilinx MicroBlaze 32-bit soft processors, single-threaded,
little-endian, running bare-metal applications

This included the goal to be able to compile the same C
application code, including the same THeGASNet header and
calling the same GASNet Core API functions, with gcc for all
CPU platforms (compiler flags and makefiles can differ)

As a result of these intentions, the following departures
from strict compatibility were necessary:

• GASNet API functions use the native pointer type
void* for both source and destination pointers, as well
as for the address and size information in the struct
gasnet_seginfo_t. As the different CPUs can have
native pointers of different sizes (32- or 64-bit), we have
defined a 64-bit integer type voidp64 that has to be used
in the segment info and destination address fields and can
be casted from and to native pointers as necessary.

• We introduced strided and vectored(scatter/gather) oper-
ations at the Active Message/Core API level. Although
they have only been suggested by Bonachea [13] as
put()/get() variations at the Extended API level, our
hardware model suggests specific Core API messages at
the GAScore level are necessary and useful.

• As x86-64 and ARM implementation use Linux, but the
MicroBlaze runs on a bare-metal runtime platform, spe-
cific calls to print and to use the system timers need to be
encapsulated in wrappers that are decoded differently for
each platform. While these platform-specific definitions

Fig. 5. Jacobi heat transfer stencil operation

Fig. 6. Node partitioning

are not strictly part of the GASNet API, they have been
included as part of our library for reasons of convenience.

• While not technically infeasible, we have decided not to
include a shared segment info table in each hardware
core for reasons of resource economy. Instead, when
communicating with software nodes that don’t have a
statically defined shared segment address (x86-64 and
ARM), hardware cores send an address offset which
is added to the shared segment base by the receiving
node. We are considering whether this might in fact be a
sensible approach all throughout the system, as adding the
offset at the destination does not incur a large performance
penalty, while table storage grows inconveniently for
large-scale systems.

VI. USE CASE

A. Stencil Computation: Jacobi Heat Transfer

The Jacobi method is an iterative solver for partial dif-
ferential equations. A practical application for this is to find
the steady-state heat distribution on a rectangular slab, e.g.
the surface of a chip. The surface can be partitioned into
a fine two-dimensional grid of cells. On each iteration, the
temperature of a cell is recalculated based on the temperature
of the four neighbouring cells to the left, top, bottom and right
(also see Figure 5):

T(t+1),x,y =
Tt,(x−1),y + Tt,x,(y−1) + Tt,x,(y+1) + Tt,(x+1),y

4

This memory access and computation pattern using spa-
tially local input data is called a stencil. It is not just common
to iterative equation solvers, but can also be found in many
other applications like image filtering. Cellular automata like
the popular programming assignment Conway’s Game of Life
[14] are a further example. While Game of Life can be
computed much more efficiently with hash-based methods, it



Fig. 7. Node-to-node communication between iterations

is a useful tool for debugging a stencil computation pattern as
it gives easily checkable visual output.

Stencil computations are great for parallelization because
of their data locality. A larger grid can easily be split up into
subgrids (see Figure 6) to compute on separate nodes. It is not
embarrassingly parallel in the technical sense, because after
each operation neighbour data has to be exchanged between
nodes (Figure 7), but the computation-to-communication ratio
is high and scales well (the communication grows only with a
square root of the problem size, while the computation grows
linearly).

As results in Section VII suggest, this application might
not be a candidate for large FPGA speedups. However, we
think it is a good use case for demonstrating software and
hardware THeGASNet implementations because of its regular
but non-trivial communication pattern.

B. Test platform

Our test platform for heterogeneous applications, Maple-
Honey (see Figure 8), is a combination of four PC workstations
and four Virtex-6 FPGAs on a single BEE4 multi-FPGA board.
The PCs each have an Intel Core i5-4440 quadcore processor
with 6MB L2 cache, running at 3.1Ghz, and 8GB of DDR3
RAM. The PCs are fully connected through a Gigabit Ethernet
switch. The BEE4 FPGA board holds four Xilinx Virtex-6-
LX550T FPGAs, each with two 8GB DDR3 memory channels.
The FPGAs are connected in a ring topology with a 400MB/s
low-latency parallel bus, enabling an inter-FPGA bandwidth
equivalent to a duplex 32-bit FSL connection at 100MHz. Each
FPGA is connected to one of the PCs by a 4-lane Gen 1 PCIe
connection, yielding a net bandwidth of 800MB per direction.

Figure 9 illustrates the internal layout of an FPGA with a
THeGASNet configuration. The internal NetIf network con-
nects the external PCIe and FPGA ring interfaces as well
as up to eight GASNet nodes with each other. These nodes
can be either MicroBlaze processors with an attached GAS-
core, or custom processing cores with a GAScore. Up to
four nodes share a memory channel, whereby the memory
controller logically divides the DRAM module up into four
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separate memories; direct shared use of the same memory
section between separate GASNet nodes would not be easily
reconcilable with the Active Message model.

In our current benchmarks we are only using four GASNet
nodes, so that only two nodes share a memory module. The
whole FPGA board therefore hosts 16 GASNet nodes.

C. Implementation Step I: PC code

To design and debug the basic Jacobi application, we
wrote code using THeGASNet Core API calls for the x86-
64 platform. We are using a 32-bit fixed-point resolution for
each temperature marker. Since the stencil application can not
be easily implemented in place, i.e. by overwriting old values
with new ones, we are using a double-buffering approach
for the computation: Each alternating iteration reads from the
previously written results, and overwrites the read input of the
previous iteration.

After each iteration, GASNet Long messages write the
data in the outermost cells of the local partition to the



appropriate fields in the neighbouring partitions (see Figure
7 again). Through handler functions, a node keeps track of the
amount of data it has received from neighbouring partitions.
If all the expected data has been received, the node continues
its computation. Through this “soft barrier” nodes can stay
synchronous without the need for global barrier calls.

As a problem size for the four-workstation software imple-
mentation, we have determined a square field of 44760*44760
cells, requiring almost 16GB of storage for the double buffer-
ing approach at 4 bytes of storage per cell value (Note that
each buffer also has to store an “aura” of width one in all four
directions as input values for the outermost local cells; these
are the data fields that will be filled up by Active Messages
from other nodes). Each workstation has therefore a storage
requirement of 4GB.

The application is benchmarked by doing five runs of 100
iterations and then averaging the time per iteration. Through
benchmarking we have determined that the optimal number of
GASNet nodes per workstation is four, making optimal use of
the four (non-hyperthreaded) processor cores. The data field is
therefore sliced up into 16 GASNet nodes of 11220*11220
cells. The application is started on each workstation with
command-line parameters for the complete field size, and uses
GASNet information to determine the local partitions, yielding
very flexible application code.

D. Implementation Step II: MicroBlaze code

In the spirit of THeGASNet, C application code compiled
for the PC should compile without complication for the Mi-
croBlaze. In fact only one adjustment was necessary: The space
for the shared segment information table was dynamically
reserved on the PC, while the MicroBlaze version statically
allocates it on the stack; dynamic allocation on simple embed-
ded systems is generally avoided.

While dynamic specification of command-line parameters
(in this case, the data field size) is not possible for the bare-
metal MicroBlaze application, the main()-wrapper function
that is included when linking the application with THeGASNet
can pre-define the argc/argv fields based on compile-time
parameters.

As we have configured our FPGA design to include four
GASNet nodes with a MicroBlaze processor on each FPGA,
we end up with a system of 16 MicroBlaze processors. The
non-multithreaded MicroBlazes can only run one GASNet
node each, so that we end up with the same number of GASNet
nodes, and the same amount of data per node, as in the PC
system.

The system is benchmarked the same way as the PC
system. Obviously performance will be much weaker, as
we are replacing a system of powerful superscalar out-of-
order processors with the same number of simple in-order
embedded processors running at a fraction of the clock speed.
However, this is not the point of the code migration. By
running the identical application on the FPGA infrastructure,
we have opened the door to replacing the processors with
hardware computation cores, which just need to show the same
communication behaviour as the processors.

As a side note, it is perfectly possible, and has been tested,
to run a shared computation between PC and MicroBlaze
nodes. Obviously, homogeneous problem sharing like this
does not make a lot of practical sense as the MicroBlaze’s
lower speed is dominating system performance. The intended
interoperability works between PC and ARM nodes as well,
and is expected to do so between ARM and MicroBlaze.

E. Implementation Step III: Customized hardware computa-
tion cores

With the working communication infrastructure for the
application in place, a hardware core for the Jacobi stencil
computation was designed by us. The existing framework pre-
defines the following port layout for the core:

1) An AXI bus master port, which can burst-read and -write
data from the main memory shared with the GAScore.
The Jacobi core will read data from one buffer in main
memory, and write it back to the second buffer.

2) Duplex FSL connections to the GAScore to communicate
Active Message requests and receive handler information
about incoming messages. As we are inserting a PAMS
instance for the communication handling, the required
port reduces to simple control signals to synchronize
operation with the PAMS.

The actual implementation of the core is quite straight-
forward given the computation pattern. The core reads three
rows of input into local SRAM buffers with minimal access
latency. As this point, the three row buffers can be read out
in lockstep, yielding the stencil information for a new row of
results to be written back to the main memory. While the new
row is computed and written, a fourth row buffer can already
read the next row from main memory. After the first row of
results has been written, the second and third row, together
with the newly read fourth row can be used as input for the
stencil computation of the second row of results. The very first
input row can at this point be discarded, and the buffer can be
refilled with the fifth row of input data. This process repeats
until all the newly computed rows have been written.

As SRAM storage on the FPGA is scarce, a single stencil
core will not have enough storage capacity for four complete
rows. Therefore, the core will read part of each of the first
four rows as described before, and so on. The node’s data is
therefore actually processed in strips or columns as wide as
one row buffer is deep.

In a departure from the straightforward code migration
described so far, we have determined that the best way to run
the system is actually to include a 17th node running software
based on the following needs:

• The most convenient way to put the communication code
into the different PAMS is to send them the code from a
software node (the software node can also conveniently
generate the individual addressing pattern for each PAMS,
as the PAMS itself does not have an ALU to determine
these).

• Letting the PAMS send short messages to the software
node after finishing a task is the easiest way to take time
for the benchmarking.



TABLE I. RUNTIMES PER JACOBI HEAT TRANSFER ITERATION

Platform Time(secs)

Software - x86-64 4.32

Software - MicroBlaze 336.13

Hardware - Stencil core 5.83

• A software node is also the simplest way to put the initial
computation data into the FPGA system, and retrieve
the final data. This last point is as true when using the
MicroBlaze processors.

While arguably harming the perfect picture of straightforward
migration, this addition of a managing software node actually
emphasizes the fact that the system is easily configurable, mod-
ifiable, and accommodating in its interoperability of software
and hardware components.

VII. RESULT AND CONCLUSIONS

Based on the described benchmarking procedures and
problem size, we have determined average runtimes per it-
eration (from start of one computation to the start of the next
computation) as listed in Table I.

As expected, the MicroBlaze software performs much
worse than the PC software, especially as the current MicroB-
laze configuration does not use a data cache except a one-burst
buffer in the memory controller, and therefore incurs several
read bursts to external memory for each single cell.

Contrary to our expectations, the hardware solution actually
performed 35% worse than the PC software solution. While
we expect that both software and hardware solutions have
significant room for improvement (our current FPGA memory
controller prototype certainly has quite some optimization
potential), we do not expect either solution to pull significantly
ahead. Therefore, arguably the extra effort for writing a hard-
ware solution does not seem justified here.

Mostly, this is an indication of a poor choice of problem
to demonstrate FPGA performance benefits. The Jacobi heat
transfer algorithm has a fairly simple computation at its core,
and therefore seems to be bounded by memory performance.

Nevertheless, we hopefully made a convincing case for the
ease with which a PGAS application using GASNet can be
transformed to run on FPGA hardware. For our example, the
hardware core was hand-designed and -optimized in VHDL.
The current advances in High-Level Synthesis indicate that this
part of the design problem can be solved more productively
in the future. However, most current HLS tools focus on
generating the hardware code to solve an algorithm, and do
not focus on push-button solutions for a complete FPGA
design. As such, our infrastructure complements these efforts
in a promising way: HLS tools can produce the computation
core, while THeGASNet provides the framework in which to
execute the HLS-generated code.

VIII. FUTURE WORK

As is obvious from the previous sections, we are presenting
early results for our recently completed framework. Numerous
performance optimizations for memory accesses, network-
on-chip infrastructure and GAScore operations are planned.
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Fig. 10. Proposed PGAS software stack and code/binary generation

Furthermore, a richer set of benchmarks with a diverse set
of computation and communications patterns is necessary for
a complete evaluation. We aim to include applications that
show interesting heterogeneous characteristics so that CPU and
FPGA portions can complement each other.

A. PGAS C++ library for heterogeneous systems

Offering GASNet compatibility for FPGA components at
the API level is an important first step, but it does not
yet enable significantly higher programming productivity than
MPI. To provide that, a higher-level programming facility
in the form of a PGAS language or library needs to lever-
age the benefits that GASNet provides. For CPU platforms
many solutions like Global Arrays[15], Unified Parallel C[16],
Chapel[17] and X10[18] exist. Instead of adapting one of these
tools to our infrastructure, we plan to provide a PGAS C++
library for heterogeneous computation. It will inherit concepts
from the established PGAS languages and libraries to enable
complex data classes like multi-dimensional arrays, awareness
of locality and heterogeneity, configurable data distribution
and platform-dependent computation patterns. Many scientific
areas have developed Domain-Specific Languages (DSLs) for
better modeling of their specific problems, therefore we will
enable the library to work as a target runtime for DSL code
generation.

A typical toolchain for this concept is illustrated in Figure
10. Either a user-programmed C++ PGAS application or C++
code generated from DSL code will use our heterogeneous
C++ library, which employs GASNet as a remote commu-
nication layer. The whole application can be compiled to
run without custom hardware on host CPUs or on FPGA-
based CPUs, with GASNet/GAScore taking care of parallel
communication. Customized hardware cores can be manually
written or generated by the previously mentioned tools. Our
library can generate the necessary PAMS communication code



at compile-time. In addition, in the case of changes dependent
on control flow, the CPU binary can generate updated PAMS
code during runtime.

B. Partial reconfiguration of computation cores

As hinted at in Section IV-C, besides sending PAMS
binary code to a node by Active Message, it would also be
feasible to reconfigure the computation core hardware with
Active Message data through the FPGA’s capability for Partial
Reconfiguration of designated regions. This is simplified by
the observation that, as in our current MapleHoney implemen-
tation depicted in Figure 9, major infrastructures for memory
access, off-chip communication and on-chip network are either
completely static between designs or limited in variation (e.g.
different number of GASNet nodes/memory clients). Thus,
a limited number of base infrastructure bitstreams with re-
configurable computation regions could be re-programmed for
different tasks on-the-fly during a GASNet application run.
Obviously, this could be neatly integrated into the C++ library
discussed above.
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