
Affine Loop Optimization Based on Modulo Unrolling in
Chapel

Aroon Sharma, Darren Smith,
Joshua Koehler, Rajeev Barua

Dept. of Electrical and Computer Engineering
University of Maryland, College Park

{asharma4|darrenks|jskoeh9|barua}@umd.edu

Michael Ferguson
Laboratory for Telecommunication Sciences

College Park, MD
mferguson@ltsnet.net

ABSTRACT
This paper presents modulo unrolling without unrolling (mod-
ulo unrolling WU), a method for message aggregation for
parallel loops in message passing programs that use affine ar-
ray accesses in Chapel, a Partitioned Global Address Space
(PGAS) parallel programming language. Messages incur a
non-trivial run time overhead, a significant component of
which is independent of the size of the message. Therefore,
aggregating messages improves performance. Our optimiza-
tion for message aggregation is based on a technique known
as modulo unrolling, pioneered by Barua [3], whose purpose
was to ensure a statically predictable single tile number for
each memory reference for tiled architectures, such as the
MIT Raw Machine [18]. Modulo unrolling WU applies to
data that is distributed in a cyclic or block-cyclic manner. In
this paper, we adapt the aforementioned modulo unrolling
technique to the difficult problem of efficiently compiling
PGAS languages to message passing architectures. When
applied to loops and data distributed cyclically or block-
cyclically, modulo unrolling WU can decide when to aggre-
gate messages thereby reducing the overall message count
and runtime for a particular loop. Compared to other meth-
ods, modulo unrolling WU greatly simplifies the complex
problem of automatic code generation of message passing
code. It also results in substantial performance improve-
ment compared to the non-optimized Chapel compiler.

To implement this optimization in Chapel, we modify the
leader and follower iterators in the Cyclic and Block Cyclic
data distribution modules. Results were collected that com-
pare the performance of Chapel programs optimized with
modulo unrolling WU and Chapel programs using the ex-
isting Chapel data distributions. Data collected on a ten-
locale cluster show that on average, modulo unrolling WU
used with Chapel’s Cyclic distribution results in 64 percent
fewer messages and a 36 percent decrease in runtime for our
suite of benchmarks. Similarly, modulo unrolling WU used
with Chapel’s Block Cyclic distribution results in 72 percent
fewer messages and a 53 percent decrease in runtime.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PGAS 2014 October 7-10, 2014, Eugene, Oregon USA
Copyright 2014 ACM X-XXXXX-XX-X/XX/XX ...$15.00.

1. INTRODUCTION
Compilation of programs for distributed memory archi-

tectures using message passing is a vital task with poten-
tial for speedups over existing techniques. The Partitioned
Global Address Space (PGAS) parallel programming model
automates the production of message passing code from a
shared memory programming model and exposes locality of
reference information to the programmer, thereby improving
programmability and allowing for compile-time performance
optimizations. In particular, programs compiled to message
passing hardware can improve in performance by aggregat-
ing messages and eliminating dynamic locality checks for
affine array accesses in the PGAS model.

Message passing code generation is a difficult task for an
optimizing compiler targeting a distributed memory archi-
tecture. These architectures are comprised of independent
units of computation called locales. Each locale has its own
set of processors, cores, memory, and address space. For pro-
grams executed on these architectures, data is distributed
across various locales of the system, and the compiler needs
to reason about locality in order to determine whether a
program data access is remote (requiring a message to an-
other locale to request a data element) or local (requiring
no message and accessing the data element on the locale’s
own memory). Only a compiler with sufficient knowledge
about locality can compile a program in this way with good
communication performance.

Without aggregation, each remote data memory access
results in a message with some non-trivial run time over-
head, which can drastically slow down a program’s execu-
tion time. This overhead is caused by latency on the in-
terconnection network and locality checks for each data ele-
ment. Accessing multiple remote data elements individually
results in this run time overhead being incurred multiple
times, whereas if they are transferred in bulk the overhead
is only incurred once. Therefore, aggregating messages im-
proves performance of message passing codes. In order to
transfer remote data elements in bulk, the compiler must be
sure that all elements in question reside on the same remote
locale before the message is sent.

The vast majority of loops in scientific programs access
data using affine array accesses. An affine array access is one
whose indices are linear combinations of the loop’s induction
variables. For example, for a loop with induction variables i
and j, accesses A[i, j] and A[2i−3, j+1] are affine, but A[i2]
is not. Loops using affine array accesses are special because
they exhibit regular and predictable access patterns within
a data distribution. Compilers can use this information to

decide when message aggregation can take place.
Existing methods for message passing code generation such

as [10, 22] all have the following steps:

• Loop distribution The loop iteration space for each
nested loop is divided into portions to be executed
on each locale (message passing node), called iteration
space tiles.

• Data distribution The data space for each array is
distributed according to the directive of the program-
mer (usually as block, cyclic, or block-cyclic distribu-
tions.)

• Footprint calculation For each iteration space tile,
the portion of data it accesses for each array reference
is calculated as a formula on the symbolic iteration
space bounds. This is called the data footprint of that
array access.

• Message aggregation calculation For each array
access, its data footprint is separately intersected with
each possible locale’s data tile to derive symbolic ex-
pressions for the portion of the data footprint on that
locale’s data tile. This portion of the data tile for lo-
cales other than the current locale needs to be commu-
nicated remotely from each remote data tile’s locale to
the current loop tile’s locale. Since the entire remote
portion is calculated exactly, sending it in a single ag-
gregated message becomes possible.

Unfortunately, of the steps above, the message aggrega-
tion calculation is by far the most complex. Loop distri-
bution and data distribution are straightforward. Footprint
calculation is of moderate complexity using matrix formula-
tions or the polyhedral model. However, it is the message
aggregation calculation that defies easy mathematical char-
acterization for the general case of affine accesses. Instead
some very complex research methods [9, 22] have been de-
vised that make many simplifying assumptions on the types
of affine accesses supported, and yet remain so complex that
they are rarely implemented in production compilers.

Although the steps above are primarily for traditional
methods of parallel code generation, polyhedral methods
don’t fare much better. Polyhedral methods have powerful
mathematical formulations for loop transformation discov-
ery, automatic parallelization, and parallelism coarsening.
However message aggregation calculation is still needed but
not modeled well in polyhedral models, leading to less capa-
ble ad-hoc methods for it.

It is our belief that message aggregation using tiling is not
used in production quality compilers today because of the
complexity of message aggregation calculations, described
above. What is needed is a simple, robust, and widely ap-
plicable method for message aggregation that leads to im-
provements in performance.

This paper presents modulo unrolling without unrolling
(WU), a loop optimization for message passing code gener-
ation based on a technique called modulo unrolling, whose
advantage is that it makes the message aggregation calcula-
tion above far simpler. Using modulo unrolling WU, the lo-
cality of any affine array access can be deduced if the data is
distributed in a cyclic or block-cyclic fashion. The optimiza-
tion can be performed by a compiler to aggregate messages
and reduce a program’s execution time and communication.

Modulo unrolling in its original form, pioneered by [3], was
meant to target tiled architectures such as the MIT Raw
machine. Its purpose for tiled architectures was to allow
the use of the compiler-routed static network for accessing
array data in unrolled loops. It was not meant for message
passing architectures, nor was it used to perform message
aggregation. It has since been modified to apply to message
passing machines in this work.

Modulo unrolling WU works as follows. It its basic form,
it unrolls each affine loop by a factor equal to the num-
ber of locales of the machine being utilized by the program.
If the arrays used in the loop are distributed cyclically or
block-cyclically, each array access is guaranteed to reside on
a single locale across all iterations of the loop. Using this in-
formation, the compiler can then aggregate all remote array
accesses that reside on a remote locale into a single message
before the loop. If remote array elements are written to
during the loop, a single message is required to store these
elements back to each remote locale after the loop runs.

We build on the modulo unrolling method to solve the very
difficult problem of message aggregation for message pass-
ing machines inside PGAS languages. In the PGAS model,
a system’s memory is abstracted to a single global address
space regardless of the hardware architecture and is then
logically divided per locale and thread of execution. By do-
ing so, locality of reference can easily be exploited no matter
how the system architecture is organized.

Our evaluation is for Chapel, an explicitly parallel pro-
gramming language developed by Cray Inc. that falls under
the PGAS memory model. The Chapel compiler is an open
source project used by many in industry and academic set-
tings. The language contains many high level features such
as zippered iteration, leader and follower iterator semantics,
and array slicing that greatly simplify the implementation of
modulo unrolling WU into the language. In particular, we
implement modulo unrolling WU in Chapel not as a tradi-
tional compiler pass or loop transformation, but as a portion
of the Cyclic and Block Cyclic data distribution modules.
This allows us to express the optimization directly using the
Chapel language. It also gives us the ability to reason about
the number of locales being used to run the program. The
number of locales is generally unknown at compile time, but
the Chapel language exposes this information to the pro-
grammer via built-in constructs such as the Locales array
and numLocales constant.

Although our method is implemented in Chapel, we de-
scribe it using pseudocode in Section 6, showing how it can
be adapted to any PGAS language. However, for other lan-
guages the implementation may differ. For example, if the
language does not use leader and follower iterator semantics
to implement parallel for loops, the changes to those Chapel
modules that we present here will have to be implemented
elsewhere in the other PGAS language where forall loop
functionality is implemented.

The rest of this paper is organized as follows. Section
2 describes three Chapel data distributions: Block, Cyclic,
and Block Cyclic. Section 3 discusses related work. A brief
background on modulo unrolling for tiled architectures [3]
is presented in Section 4. Section 5 illustrates how message
aggregation is applied to parallel affine loops using mod-
ulo unrolling with an example. Section 6 describes modulo
unrolling without unrolling (WU), our method of commu-
nication optimization. Section 7 explains how we adapted

1" 2" 3" 4" 5" 6" 7" 8"

1"
2"
3"

4"
5"

6"

7"
8"

i"

j"

Locale"0"

Locale"1"

Locale"2"

Locale"3"

Figure 1: Chapel Block distribution.

Locale'0'

Locale'1'

Locale'2'

Locale'3'

1' 2' 3' 4' 5' 6' 7' 8'

1'
2'
3'

4'
5'

6'

7'
8'

i'

j'

Figure 2: Chapel Cyclic distribution.

modulo unrolling WU into the Chapel programming lan-
guage. Section 8 presents our results. Finally, Section 9
describes our future work.

2. CHAPEL’S DATA DISTRIBUTIONS
Figures 1 - 3 illustrate the Chapel data distributions that

we explored in this work: Block, Cyclic, and Block Cyclic.
Each figure shows how a two-dimensional 8 x 8 array can
be distributed in Chapel using each distribution. Figure 1
illustrates the Block distribution. Elements of the array are
mapped to locales evenly in a dense manner. In Figure 2,
the Cyclic distribution, elements of the array are mapped
in a round-robin manner across locales. Finally, in Figure
3 the Block Cyclic distribution is shown. Here, a number
of elements specified by a block size parameter is allocated
to consecutive array indices in a round-robin fashion. In
Figure 3, the distribution takes in a 2 x 2 block size param-
eter. Further details about Block, Cyclic, and Block Cyclic
distributions in Chapel are described in [17].

The choice of data distribution to use for a program boils
down to computation and communication efficiency. Differ-
ent programs and architectures may require different data
distributions. It has been shown that finding an optimal
data distribution for parallel processing applications is an

1" 2" 3" 4" 5" 6" 7" 8"

1"
2"
3"

4"
5"

6"

7"
8"

i"

j"

Locale"0"

Locale"1"

Locale"2"

Locale"3"

Figure 3: Chapel Block Cyclic distribution with a 2
x 2 block size parameter.

NP-complete problem, even for one- or two-dimensional ar-
rays [13]. Certain program data access patterns will result
in fewer communication calls if the data is distributed in a
particular way. For example, many loops in stencil programs
that contain nearest neighbor computation will have better
communication performance if the data is distributed using
a Block distribution. This occurs because on a given loop
iteration, the elements accessed are near each other in the
array and therefore are more likely to reside on the same
locale block. Accessing elements on the same block does not
require a remote data access and can be done faster. How-
ever, programs that access array elements far away from
each other will have better communication performance if
data is distributed using a Cyclic distribution. Here, a Block
distribution is almost guaranteed to have poor performance
because the farther away accessed elements are, the more
likely they reside on different locales.

A programmer may choose a particular data distribution
for reasons unknown to the compiler. These reasons may
not even take communication behavior into account. For ex-
ample, Cyclic and Block Cyclic distributions provide better
load balancing of data across locales than a Block distribu-
tion when array sizes may be changed dynamically because
in Cyclic and Block Cyclic distributions, the locales of exist-
ing array elements do not change when new array elements
are added at the end of the array. In many applications,
data redistribution may be needed if elements of a data set
are inserted or deleted at the end of the array. In particular,
algorithms to redistribute data using a new block size exist
for the Block Cyclic distribution [14, 19]. If an application
uses a dynamic data set with elements that are appended, a
Cyclic or Block Cyclic distribution is superior to Block be-
cause new elements are added to the locale that follows the
cyclic or block-cyclic pattern. For Block, the entire data set
would need to be redistributed every time a new element is
appended, which can be expensive.

The compiler should attempt to perform optimizations
based on the data distribution that the programmer speci-
fied. Our optimization is meant to be applied whenever the
programmer specifies a Cyclic or Block Cyclic distribution.
It is not applied when the programmer specifies a Block dis-
tribution.

3. RELATED WORK
Compilation for distribution memory machines has two

main steps: loop optimizations and message passing code
generation. First, the compiler performs loop transforma-
tions and optimizations to uncover parallelism, improve the
granularity of parallelism, and improve cache performance.
These transformations include loop peeling, loop reversal,
and loop interchange. Chapel is an explicitly parallel lan-
guage, so uncovering parallelism is not needed. Other loop
optimizations to improve the granularity of parallelism and
improve cache performance are orthogonal to this paper.
The second step is message passing code generation, which
includes message aggregation.

Message passing code generation in the traditional model
is exceedingly complex, and practical robust implementa-
tions are hard to find. These methods [22, 9, 4, 15] require
not only footprint calculations for each tile but also the in-
tersection of footprints with data tiles. As described in detail
in Section 1, calculating such intersections is very complex,
which explains the complexity and simplifying limitations
of many existing methods. Such methods are rarely if ever
implemented in production compilers.

The polyhedral method is another branch of compiler op-
timization that seeks to speed up parallel programs on dis-
tributed memory architectures [10, 6, 8, 11, 12, 20]. Its
strength is that it can find sequences of transformations in
one step, without searching the entire space of transforma-
tions. However, the method at its core does not compute
information for message passing code generation. Message
passing code generation does not fit the polyhedral model,
so ad-hoc methods for code generation have been devised to
work on the output of the polyhedral model. However they
are no better than corresponding methods in the traditional
model, and suffer from many of the same difficulties.

Similar work to take advantage of communication aggre-
gation on distributed arrays has already been done in Chapel.
Whole array assignment is the process of assigning an en-
tire distributed array to another in one statement, where
both arrays are not guaranteed to be distributed in the
same way. Like distributed parallel loops in Chapel, whole
array assignment suffers from locality checks for every ar-
ray element, even when the locality of certain elements is
known in advance. In [16], aggregation is applied to improve
the communication performance of whole array assignments
for Chapel’s Block and Cyclic distributions. However, [16]
does not address communication aggregation that is possi-
ble across general affine loops. Whole array assignment and
affine loops in Chapel are fundamentally related because ev-
ery whole array assignment can be written in terms of an
equivalent affine forall loop. Yet, the contrapositive state-
ment is not true: most affine loops can’t be modeled as whole
array assignments. Our method for communication aggre-
gation in parallel loops encompasses more complex affine
array accesses than those that are found in whole array as-
signments and addressed in [16]. Finally, our work applies
to Chapel’s Block Cyclic data distribution in addition to
Cyclic, whereas the work in [16] does not.

One of the contribution’s of [16] included two new strided
bulk communication primitives for Chapel developers as li-
brary calls, chpl_comm_gets and chpl_comm_puts. They
both rely on the GASNet networking layer, a portion of the
Chapel runtime. Our optimization uses these new communi-
cation primitives in our implementation directly to perform

bulk remote data transfer between locales. The methods in
[16] are already in the current release of the Chapel compiler.

Work has been done with the UPC compiler (another
PGAS language) by [7] to improve on its communication
performance. Unlike our work, which takes as its input a
distributed parallel affine loop, the work in [7] expects to
aggregate communication across an entire program. This
method targets fine-grained communication and uses tech-
niques such as redundancy elimination, split-phase commu-
nication, and communication coalescing (similar to message
aggregation) to reduce overall communication. In commu-
nication coalescing, small puts and gets throughout the pro-
gram are combined into larger messages by the compiler to
reduce the number of times the per-message startup over-
head is incurred. This work’s aggregation scheme is only
applicable to programs with many small, individual, and
independent remote array accesses. This method can’t be
used to improve communication performance across more
coarse-grained structures, such as distributed parallel loops.
Another major limitation to this work’s aggregation scheme
is that only contiguous data can be sent in bulk. To ag-
gregate data across an entire loop in a single message when
data is distributed cyclically, which is done in our work, it
must be possible to aggregate data elements that are far
apart in memory, separated by a fixed stride. In contrast,
our method can aggregate data distributed cyclically and
block-cyclically.

Another communication optimization targeting the X10
language [2] achieves message aggregation in distributed loops
by using a technique called scalar replacement with loop in-
variant code motion. Here, the compiler copies all remote
portions of a block-distributed array to each locale once be-
fore the loop. Then, each locale can access its own local
copy of the array during each loop iteration. While this
method does improve communication performance, it can
potentially communicate extraneous remote array portions
that the loop body never accesses. For large data sets, this
could overwhelm a locale’s memory. Modulo unrolling WU
communicates only the remote portions of the distributed
array that are used during the loop body.

4. BACKGROUND ON MODULO UNROLLING
Modulo unrolling [3] is a static disambiguation method

used in tiled architectures that is applicable to loops with
affine array accesses. An affine function of a set of variables
is defined as a linear combination of those variables. An
affine array access is any array access where each dimension
of the array is accessed by an affine function of the loop
induction variables. For example, for loop index variables i
and j and array A, A[i + 2j + 3][2j] is an affine access, but
A[ij + 4][j2] and A[2i2 + 1][ij] are not.

Modulo unrolling works by unrolling the loop by a factor
equal to the number of memory banks on the architecture.
If the arrays accessed within the loop are distributed using
low-order interleaving (a Cyclic distribution), then after un-
rolling, each array access will be statically disambiguated, or
guaranteed to reside on a single bank for all iterations of the
loop. This is achieved with a modest increase of the code
size.

To understand modulo unrolling, refer to Figure 4. In
Figure 4a there is a code fragment consisting of a sequential
for loop with a single array access A[i]. The array A is dis-
tributed over four memory banks using a Cyclic distribution.

As is, the array A is not statically disambiguated because
accesses of A[i] go to different memory banks on different
iterations of the loop. The array access A[i] has bank access
patterns 0, 1, 2, 3, 0, 1, 2, 3, ... in successive loop iterations.

A naive approach to achieving static disambiguation is to
fully unroll the loop, as shown in Figure 4b. Here, the orig-
inal loop is unrolled by a factor of 100. Because each array
access is independent of the loop induction variable i, static
disambiguation is achieved trivially. Each array access re-
sides on a single memory bank. However, fully unrolling the
loop is not an ideal solution to achieving static disambigua-
tion because of the large increase in code size. This increase
in code size is bounded by the unroll factor, which may be
extremely large for loops iterating over large arrays. Fully
unrolling the loop may not even be possible for a loop bound
that is unknown at compile time.

A more practical approach to achieving static disambigua-
tion without a dramatic increase in code size is to unroll the
loop by a factor equal to the number of banks on the archi-
tecture. This is shown in Figure 4c and is known as modulo
unrolling. Since we have 4 memory banks in this example,
we unroll the loop by a factor of 4. Now every array reference
in the loop maps to a single memory bank on all iterations
of the loop. Specifically, A[i] refers to bank 0, A[i+ 1] refers
to bank 1, A[i + 2] refers to bank 2, and A[i + 3] refers to
bank 3. The work in [3] shows that an unroll factor pro-
viding this property always exists not only for the code in
Figure 4, but for the general case of any affine function in a
loop. The unroll factor may not always equal the number of
banks, but a suitable unroll factor can always be computed.

Modulo unrolling, as used in [3] provides static disam-
biguation and memory parallelism for tiled architectures.
That is, after unrolling, each array access can be done in
parallel because array accesses map to a different memory
banks.

5. INTUITION BEHIND MESSAGE AGGRE-
GATION WITH AN EXAMPLE

In Chapel, a program’s data access patterns and the pro-
grammer’s choice of data distribution greatly influence the
program’s runtime and communication behavior. This sec-
tion presents an example of a Chapel program with affine
array accesses that can benefit from message aggregation.
It also serves to present the intuition behind how modulo
unrolling WU will be used in message aggregation.

The intuition behind why modulo unrolling is helpful for
message aggregation in message passing machines is as fol-
lows. Message aggregation requires knowledge of precisely
which elements must be communicated between locales. Do-
ing so requires a statically disambiguated known locale for
every array access, even when that array access refers to a
varying address. For example, in a loop A[i] refers to differ-
ent memory addresses during each loop iteration. Modulo
unrolling ensures such a known, predictable locale number
for each varying array access. This enables such varying ac-
cesses to be aggregated and sent in a single message. We
explain our method of doing so in Sections 6 and 7.

Consider the Chapel code for the Jacobi-2D computation
shown in Figure 5, a common stencil operation that com-
putes elements of a two-dimensional array as an average of
that element’s four adjacent neighbors. We assume that
arrays A and Anew have already been distributed using a

Figure 4: Modulo unrolling example. (a) Original
sequential for loop. Array A is distributed using
a Cyclic distribution. Each array access maps to a
different memory bank on successive loop iterations.
(b) Fully unrolled loop. Trivially, each array access
maps to a single memory bank because each access
only occurs once. This loop dramatically increases
the code size for loops traversing through large data
sets. (c) Loop transformed using modulo unrolling.
The loop is unrolled by a factor equal to the number
of memory banks on the architecture. Now each ar-
ray access is guaranteed to map to a single memory
bank for all loop iterations and code size increases
only by the loop unroll factor.

1 var n: int = 8;!
2 var LoopSpace = {2..n-1, 2..n-1};!
3!
4 //Jacobi relaxation pass!
5 forall (i,j) in LoopSpace {!
6 A_new[i,j] = (A[i+1, j] + A[i-1, j] + !
7 ! ! ! A[i, j+1] + A[i, j-1])/4.0;!
8 }!
9!
10 //update state of the system after the first!
11 //relaxation pass!
12 A[LoopSpace] = A_new[LoopSpace]; !

Figure 5: Chapel code for the Jacobi-2D computa-
tion over an 8 x 8 two dimensional array. Arrays
A and Anew are distributed with a Cyclic distribu-
tion and their declarations are not shown. During
each iteration of the loop, the current array element
Anew[i, j] gets the average of the four adjacent array
elements of A[i, j].

Locale'0'

Locale'1'

Locale'2'

Locale'3'

1' 2' 3' 4' 5' 6' 7' 8'

1'

2'

3'

4'

5'

6'

7'

8'

i'

j'
LoopSpace'

Locale 3

buf_north'='GET(A[2..7'
by'2,'1..6'by'2]);' Aggregated'elements'

brought'to'buf_north'in'

Locale'3'that'correspond'to'

affine'access'A[i,'jO1]''

Figure 6: Illustration of message aggregation for the
A[i, j − 1] affine array access of the Jacobi-2D relax-
ation computation with respect to locale 3. The re-
gion LoopSpace follows from Figure 5. The striped
squares are the elements of A that have been aggre-
gated. This same procedure occurs on each locale
for each affine array access that is deemed to be re-
mote for all iterations of the loop. For the whole 8 x
8 Jacobi-2D calculation, 144 remote gets containing
one element each are necessary without aggregation,
but only 16 remote gets containing nine elements
each are necessary with aggregation.

Cyclic distribution over four locales. On each iteration of the
loop, five array elements are accessed in an affine manner:
the current array element Anew[i, j] and its four adjacent
neighbors A[i + 1, j], A[i − 1, j], A[i, j + 1], and A[i, j − 1].
The computation will take place on the locale of Anew[i, j],
the element being written to. If arrays A and Anew are dis-
tributed with a Cyclic distribution as shown in Figure 2,
then it is guaranteed that A[i + 1, j], A[i− 1, j], A[i, j + 1],
and A[i, j−1] will not reside on the same locale as Anew[i, j]
for all iterations of the loop. Therefore, these remote
elements need to be transferred over to Anew[i, j]’s locale
in four separate messages during every loop iteration. For
large data sets, transferring four elements individually per
loop iteration drastically slows down the program because
the message overhead is incurred many times.

We observe that message aggregation of remote data el-
ements is possible over the entire loop for the Jacobi-2D
example. Aggregation will reduce the number of times the
message overhead is incurred during the loop. When the
data is distributed using a Cyclic distribution, all array ac-
cesses (including remote accesses) exhibit a predictable pat-
tern of locality.

Figure 6 illustrates this pattern in detail for loop itera-
tions that write to locale 3. During these iterations ((i, j) =
(2, 2), (i, j) = (4, 2), etc.), there are two remote accesses
from locale 1 and two remote accesses from locale 2. The re-
mote accesses from locale 1 correspond to the A[i, j+1], and

A[i, j − 1] affine array accesses in Figure 5. If we highlight
all the remote data elements corresponding to the A[i, j−1]
access that occur for loop iterations that write to locale 3,
we end up with the array slice A[2..7 by 2, 1..6 by 2], which
contains the striped elements in Figure 6. This array slice
can be communicated from locale 1 to a buffer on locale 3
before the loop executes in a single message. Then, during
the loop, all A[i, j−1] accesses can be replaced with accesses
to the local buffer on locale 3.

The previous paragraph showed how aggregation occurs
for the A[i, j − 1] affine array access on loop iterations that
write to locale 3. This same procedure applies to the other
three remote accesses for locale 3. In addition, this same pro-
cedure applies to loop iterations that write to the remaining
locales. Finally, we claim that this optimization can also be
applied to the Block Cyclic distribution, as the data access
pattern is the same for elements in the same position within
a block.

In this example, we chose to perform message aggregation
with respect to the element that is written to during the
loop. However, this is not always the best choice for all
programs. To get better communication performance, we
would like to assign loop iterations to locales with the most
affine array accesses that are local. The result of this scheme
is that elements that are written to during the loop may
be the ones that are aggregated before the loop. If so, it is
necessary to write these elements from the local buffers back
to their remote locales. This is done in a single aggregate
message after the loop body has finished.1

If arrays A and Anew are instead distributed using Chapel’s
Block or Block Cyclic distributions as shown in Figure 1
and Figure 3 respectively, the program will only perform re-
mote data accesses on iterations of the loop where element
Anew[i, j] is on the boundary of a block. As the block size
increases, the number of remote data accesses for the Jacobi-
2D computation decreases. For the Jacobi-2D computation,
it is clear that distributing the data using Chapel’s Block
distribution is the best choice in terms of communication.
Executing the program using a Block distribution will re-
sult in fewer remote data accesses than when using a Block
Cyclic distribution. Similarly, executing the program using
a Block Cyclic distribution will result in fewer remote data
accesses than when using a Cyclic distribution.

It is important to note that the Block distribution is not
the best choice for all programs using affine array accesses.
Programs with strided access patterns that use a Block dis-
tribution will have poor communication performance be-
cause accessed array elements are more likely to reside out-
side of a block boundary. For these types of programs, a
Cyclic or Block Cyclic distribution will perform better. Sec-
tion 2 explained several reasons why the programmer may
have chosen a Cyclic or Block Cyclic distribution.

6. MESSAGE AGGREGATION LOOP OP-
TIMIZATION FOR PARALLEL AFFINE
LOOPS

This section describes our method to transform an affine
loop that computes on cyclically or block-cyclically distributed

1In Chapel, the programmer has some control over assigning
loop iterations to locales. Therefore, our optimizations uses
the programmer’s assignment of loop iterations to locales
when performing message aggregation.

1 forall i in s..e by n {!
2 //affine array expressions!
3 A1[a1*i+b1] = A2[a2*i+b2] + 3;!
4 }!

1 for k in 0..((lcm(B,n)/n)-1) {!
2 forall i in (s+k*n)..e by lcm(B,n) {!
3 //affine array expressions!
4 A1[a1*i+b1] = A2[a2*i+b2] + 3;!
5 } }!
!
!
1 for k in 0..((lcm(B,n)/n)-1) {!
2 for j in 0..N-1 {!
3 if(f(s+k*n+lcm(B,n)*j)/B mod N == $) {!
4 //fetch elements from affine array expressions!
5 ! //that are not owning expressions of the loop!
6 var buf1 = GET(A2[(s+k*n+lcm(B,n)*j)+b2..e+b2 by N*lcm(B,n)*a2]);!
7 var h = 0;!
8 forall i in (s+k*n+lcm(B,n)*j)..e by lcm(B,n)*N {!
9 //affine array expressions!
10 A1[a1*i+b1] = buf1[h] + 3;!
11 h++;!
12 }!
13 //write buffer elements back if written to during loop!
14 ! if(buf1_is_modified)!
15 ! SET(A2[(s+k*n+lcm(B,n)*j)+b2..e+b2 by N*lcm(B,n)*a2]) = buf1;!
16 } } }!
 !

(a)$

(b)$

(c)$

s$=$star+ng$loop$bound$
e$=$ending$loop$bound$
n$=$loop$stride$
B$=$block$size$
N$=$numberoflocales$
$$=$current$locale$iden+fier$

(d)$

Figure 7: Steps to transform a parallel affine loop
where the data is distributed cyclically or block-
cyclically into an equivalent loop that performs mes-
sage aggregation. (a) Original distributed parallel
loop with two affine array accesses. (b) Loop after
Block Cyclic transformation. After this step, the
affine array accesses in loops with data distributed
block-cyclically will be statically disambiguated. (c)
Loop after the owning expression calculation and
message aggregation steps. In line 6, remote array
elements are communicated to a local buffer before
the loop. The affine array access for A2 is replaced
with an access to the local buffer in line 10. In lines
14-15, elements in the local buffer are written back
to the remote locale if they are written to during
the loop. (d) Key of symbolic variables used in the
transformations in parts a-c.

data into an equivalent loop that performs message aggre-
gation. As described in Section 2, our method is not meant
for block distributed data. The proposed method is based
on modulo unrolling [3], described in Section 4. Here we
describe the method in pseudocode for simplicity and to
show that this method is applicable to languages other than
Chapel.

6.1 Modulo Unrolling Without Unrolling
Modulo unrolling increases code size because it unrolls

loops by a factor equal to the number of locales (memory
banks) on the system. However, we have devised an adap-
tation called modulo unrolling WU for message passing ma-
chines that does not increase code size. To understand it,
consider that for parallel machines that use message passing,
static disambiguation can be achieved by using the locale
identifier without increasing the code size. Conceptually, an
affine loop written in source code on a message passing ma-
chine where data is distributed cyclically among four locales
such as:

forall i in 0..99 {

A[i] = B[i+2];

}

becomes statically disambiguated using this observation
as follows:

forall i in 0..99 by 4 {

A[i+$] = B[i+2+$];

}

where $ represents the locale identifier. The above is the
code that is run on each locale. This transformation is called
modulo unrolling without unrolling (modulo unrolling WU)
since, like modulo unrolling, it can be used for static disam-
biguation but on message passing machines instead of tiled
architectures. Here, no unrolling of the loop is necessary.

Figure 7 shows how a generalized affine loop, expressed
symbolically, can be transformed by our method in three
steps: the Block Cyclic transformation (Figure 7a→ Figure
7b), the owning expression calculation (described in Section
6.3), and the message aggregation (Figure 7b → Figure 7c).

As shown in Figure 7a, our method takes as its input a
parallel forall loop that contains a number of affine array ex-
pressions in its loop body. Non-affine expressions are allowed
in the loop body, but they are not optimized. The input loop
shown in Figure 7a is defined by three explicit parameters:
the starting loop bound s, the ending loop bound e, and
the loop stride n. The input loop also contains two implicit
parameters based on the data distribution. The number of
locales the data is distributed over is N , and the block size,
the number of consecutive array elements allocated to a sin-
gle locale, is B. All five parameters are elements of N. The
output of the optimization is an equivalent loop structure
that aggregates communication from all of the loop body’s
remote affine array accesses.

6.2 Block Cyclic Transformation
Modulo unrolling as described in [3] guarantees static dis-

ambiguation for data distributed cyclically but not for block-
cyclically distributed data. However, we can think of a Block
Cyclic distribution as B adjacent Cyclic distributions, each
with a cycle size that is greater than N . In order to achieve
static disambiguation for the Block Cyclic distribution, we
must transform input loops with B > 1 into an equivalent
loop with a loop step size that is a multiple of B.

Lines 1 and 2 of Figure 7b show this transformation. We
replace the loop step size on line 1 of Figure 7a with the least
common multiple of B and n in line 2 of Figure 7b. The in-
tuition behind this new step size is that two successive loop
iterations accessing the same position within a block will al-
ways be separated by a fixed stride length that is a multiple
of the block size. To maintain the original meaning of the
input loop, an outer for loop is added on line 1 of Figure 7b
to handle iterations within each block, and the starting loop
bound on line 2 is written in terms of the outer loop variable
k. After this transformation, all affine array accesses in the
loop with be statically disambiguated. This transformation
is a variant of the well-known strip mining transformation,
which has been used for many other purposes in the litera-
ture.

The Cyclic and Block Cyclic distributions are closely re-
lated. Any Cyclic distribution can be thought of as a Block
Cyclic distribution with B = 1. If we apply the transforma-
tion in Figure 7b to a loop with cyclically distributed data,
we will end up with the original input loop in Figure 7a,
which is already statically disambiguated after applying the

transformation described in Section 6.1.

6.3 Owning Expression Calculation
There may be many affine array accesses in the input loop,

each mapped to a single locale after static disambiguation.
For the best communication performance, we must deter-
mine the owning expression for the loop, which is the most
common affine array expression in the loop body. More for-
mally, the owning expression is an affine function f(i), where
i is the loop’s induction variable, that occurs statically the
most number of times in the loop body. We can then use
the owning expression to assign loop iterations to locales.
Note that there may be instances where affine array expres-
sions are found within control flow statements inside the
loop body. Here, we will not know how many times each
condiitonal block will execute at compile time. For these
cases, we can use static profiling methods described in [21]
to estimate the occurrences of affine array accesses within
conditional blocks in the loop body.

As an example of how the owning expression is computed
and used, consider that there are two affine array accesses
in Figure 7b: A1[a1i + b1] and A2[a2i + b2]. Each appears
once in the loop body, so either expression can be chosen
as the owning expression for the loop. For the remainder of
Figure 7, we assume that a1i + b1 is the owning expression.

Line 3 of Figure 7c shows symbolically how the owning
expression, which is an affine function of the loop induction
variable i, is used to ensure that loop iterations are assigned
to locales such that most of the affine array accesses are
local. The argument to the owning expression f in line 3
represents the first loop iteration in each strip-mined por-
tion created in the Block Cyclic transformation. We evalu-
ate the owning expression at this loop iteration. This yields
the array index that is most accessed during this loop it-
eration. The locale where this array index resides should
be responsible for handling all iterations in this strip-mined
portion because this way most of the loop body’s affine array
accesses will be local.

6.4 Message Aggregation
The final step of the optimization is to communicate the

non-owned remote affine array accesses in a single message
before the loop. Figure 7c shows this transformation. The
loop nest starting on line 2 symbolically represents which
loop iterations are assigned to the N locales on the system
based on the owning expression calculation (line 3). The
array access A2[a2i + b2] is non-owned and may either be
entirely remote or entirely local. If entirely remote (as is
assumed here), it will require communication. We compute
its corresponding remote array slice in line 6 before com-
municating the entire array slice to a local buffer. Modulo
unrolling guarantees that all elements in this array slice are
remote with respect to a single locale on the loop iterations
that they are used. So, they can be brought to the current
locale $ in one message. Now in lines 8-12, the affine array
access A2[a2i+b2] can be replaced with an access to the local
buffer. Lines 14-15 handle the case that elements brought
over in bulk need to be written back to their remote locale.

6.5 Loops with Multi-Dimensional Array Ac-
cesses

The series of transformations described in this section and
illustrated in Figure 7 all apply to one-dimensional arrays

indexed by one loop induction variable. These transforma-
tions can also be generalized to apply to certain affine array
accesses for multi-dimensional arrays. The intuition for this
generalization is as follows. The input affine loop now con-
tains m loop induction variables i1, i2, ... , im. Similarly,
there are now m starting loop bounds, ending loop bounds,
loop strides, and block sizes. The pth block size is now the
number of consecutive array elements allocated to a single
locale in dimension p of the array, where 1 ≤ p ≤ m. Each
affine array access in the loop body now contains m affine
array expressions where expression p is an affine function of
ip.

Under these assumptions, the transformations described
in this section need only be applied to each loop induction
variable independently. The owning expression calculation
now produces an m-tuple of affine array expressions.2 The
results we collect in this work consider one-, two-, and three-
dimensional array accesses.

7. ADAPTATION IN CHAPEL
The goal of this section is to present our adaptation in

Chapel of the modulo unrolling WU optimization presented
in Section 6. We also provide a basic understanding of zip-
pered iteration and array slicing, two important features in
Chapel used in the optimization’s implementation.

7.1 Chapel Zippered Iteration
Iterators are a widely used language feature in the Chapel

programming language. Chapel iterators are blocks of code
that are similar to functions and methods except that iter-
ators can return multiple values back to the call site with
the use of the yield keyword instead of return. Iterators are
commonly used in loops to traverse data structures in a par-
ticular fashion. For example, an iterator fibonacci(n : int)
might be responsible for yielding the first n Fibonacci num-
bers. This iterator could then be called in a loop’s header to
execute iterations 0, 1, 1, 2, 3, and so on. Arrays themselves
are iterable in Chapel by default. This is how Chapel can
support other important language features such as scalar
promotion and whole array assignment.

Figure 8b shows how the original code in Figure 8a can
be rewritten to use zippered iteration [5] instead. Zippered
iteration is a Chapel language construct that allows multiple
iterators of the same size and shape to be iterated through si-
multaneously. When zippered iteration is used, correspond-
ing iterations are processed together. On each loop iteration,
an n-tuple is generated, where n is the number of items in
the zippering. The dth component of the tuple generated
on loop iteration j is the jth item that would be yielded by
iterator d in the zippering.

Zippered iteration can be used with either sequential for
loops or parallel forall loops in Chapel. Parallel zippered
iteration is implemented in Chapel using leader-follower se-
mantics. That is, a leader iterator is responsible for creating
tasks and dividing up the work to carry out the parallelism.
A follower iterator performs the work specified by the leader

2In our adaptation of modulo unrolling WU in Chapel, the
Cyclic distribution can apply the optimization to loops with
multi-dimensional array accesses, but the Block Cyclic dis-
tribution is limited to one-dimensional array accesses be-
cause of the current limitations within Chapel’s existing
Block Cyclic implementation that are outside the scope of
this work.

1 //(a) Parallel loop with affine array accesses!
2 forall i in 1..10 {!
3 A[i] = B[i+2];!
4 }!
5!
6 //(b) Equivalent loop written using zippered iteration !
7 forall (a,b) in zip(A[1..10], B[3..12]) {!
8 a = b;!
9 }!

Figure 8: (a) Chapel loop written using a single loop
induction variable i ranging from 1 to 10. The loop
contains two affine array accesses. (b) The same
loop written using zippered iterators in Chapel. In-
stead of a loop induction variable and a range of
values to denote the loop bounds, two array slices
each containing the 10 elements accessed by the loop
in (a) are specified.

iterator for each task and generally resembles a serial itera-
tor.

7.2 Chapel Array Slicing
Chapel supports another useful language feature known

as array slicing. This feature allows portions of an array to
be accessed and modified in a succinct fashion. For example,
consider two arrays A and B containing indices from 1..10.
Suppose we wanted to assign elements A[6], A[7], and A[8] to
elements B[1], B[2], and B[3] respectively. We could achieve
this in one statement by writing B[1..3] = A[6..8]. Here,
A[6..8] is a slice of the original array A, and B[1..3] is a slice
of the original array B. Line 7 of Figure 8b shows examples
of two array slices of arrays A and B respectively.

In Chapel, an array slice can support a range of elements
with a stride in some cases. For example, in the previous ex-
ample, we could have made the assignment B[1..3] = A[1..6
by 2]. This would have assigned elements A[1], A[3], and
A[5] to elements B[1], B[2], and B[3] respectively. Since all
array slices in Chapel are arrays themselves, array slices are
also iterable.

Together, array slicing and parallel zippered iteration can
express any parallel affine loop in Chapel that uses affine
array accesses. Each affine array access in the loop body is
replaced with a corresponding array slice in the loop header,
which produces the same elements as the original loop.

The example code in Figure 8 shows how regular and zip-
pered iteration versions of the same program have different
execution orders but the same result. There are two affine
array accesses A[i] and B[i + 2] in Figure 8a. The loop is
written in a standard way where the loop induction vari-
able i takes on values from 1 to 10. Because the loop is a
forall loop, loop iterations are not guaranteed to complete
in a specific order. This loop assigns elements of array B to
A such that the ith element of A is equal to the (i + 2)th

element of B after the loop finishes. In Figure 8b, the same
loop is written using zippered iterators. The loop induction
variable i no longer needs to be specified, and each affine
array access has been replaced with an array slice in the
zippering of the loop header. It is possible to transform an
affine loop in this fashion even when an affine array access
has a constant factor multiplied by the loop induction vari-
able. The resulting array slice will contain a stride equal to

1 iter CyclicArr.these(param tag: iterKind, followThis, param fast: bool = false) var!
2 where tag == iterKind.follower {!
3!
4 //check that all elements in chunk are from the same locale!
5 for i in 1..rank {!
6 if (followThis(i).stride * dom.whole.dim(i).stride % !
7 dom.dist.targetLocDom.dim(i).size != 0) {!
8 //call original follower iterator helper for nonlocal elements!
9 } }!
10 if arrSection.locale.id == here.id then local {!
11 //original fast follower iterator helper for local elements!
12 } else {!
13 ! //allocate local buffer to hold remote elements, compute source and destination ! !
14 //strides, number of elements to communicate!
15 ! !chpl_comm_gets(buf, deststr, arrSection.myElems._value.theData, srcstr, count);!
16 ! !var changed = false;!
17 ! !for i in buf {!
18 ! ! !var old_i = i;!
19 ! ! yield i;!
20 ! ! !var new_val = i;!
21 ! ! !if(old_val != new_val) then changed = true;!
22 ! !}!
23 ! !if changed then !
24 ! chpl_comm_puts(arrSection.myElems._value.theData, srcstr, buf, deststr, count);!
25 } }!

Figure 9: Pseudocode for the Cyclic distribution fol-
lower iterator that has been modified to perform
modulo unrolling WU.

the constant factor. The two loops in Figure 8 are equiva-
lent and generate the same results, but they differ in their
execution.

Because any parallel affine loop can be transformed into
an equivalent parallel loop that uses zippered iteration, we
observe a natural place in the Chapel programming language
in which to implement modulo unrolling WU: the leader and
follower iterators of the Cyclic and Block Cyclic distribution.
The leader iterator divides up the loop’s iterations according
to the locales they are executed on and passes this work to
each follower iterator in the zippering. The follower iterator
can then perform the aggregation of remote data elements
according to the work that has been passed to it.

7.3 Implementation
Modulo unrolling WU is implemented into the Chapel pro-

gramming language through the Cyclic and Block Cyclic
distribution modules, as opposed to being implemented via
traditional compiler passes. Specifically, the follower iterator
is modified in the Cyclic distribution, and both the leader
and follower iterators are modified in the Block Cyclic dis-
tribution. Because these modules are written in Chapel, the
optimization can be expressed using Chapel’s higher-level
language constructs, such as zippered iteration and array
slicing.

Figure 9 shows a pseudocode representation of the Cyclic
follower iterator modified to perform modulo unrolling WU.
Some coding details are left out for brevity. The follower it-
erator is responsible for carrying out the loop iterations that
are passed to it by the leader iterator. Because the follower
iterator has no knowledge about how the leader iterator di-
vides up the loop iterations, this chunk of work can either be
entirely local, entirely remote to a single locale, or partially
remote and local. Lines 5-9 determine whether all elements
of the chunk of work come from the same locale. If not,
then we cannot aggregate, and the follower iterator calls a
helper function responsible for yielding remote elements in-
dividually. Lines 10-25 handle the cases where the chunk of
work does reside on a single locale. If the chunk is found
locally, another helper function responsible for yielding lo-
cal elements is called, showed in lines 10-12. Finally, if the
chunk is entirely remote, we can perform the message ag-

Name Lines of
Code

Input Size Description Elements per
follower
iterator chunk

2mm 221 128 x 128 2 matrix multiplications (D=A*B; E=C*D) 4

fw 153 64 x 64 Floyd-Warshall all-pairs shortest path
algorithm

2

trmm 133 128 x 128 Triangular matrix multiply 8

correlation 235 512 x 512 Correlation computation 16

covariance 201 512 x 512 Covariance computation 16

cholesky 182 256 x 256 Cholesky decomposition 16

lu 143 128 x 128 LU decomposition 8

mvt 185 4000 Matrix vector product and transpose 250

syrk 154 128 x 128 Symmetric rank-k operations 8

fdtd-2d 201 1000 x 1000 2D Finite Different Time Domain Kernel 16000

fdtd-apml 333 64 x 64 x 64 FDTD using Anisotropic Perfectly
Matched Layer

4

jacobi1D 138 10000 1D Jacobi stencil computation 157

jacobi2D 152 400 x 400 2D Jacobi stencil computation 2600

stencil9† 142 400 x 400 9-point stencil computation 2613

pascal‡ 126 100000, 100003 Computation of pascal triangle rows 1563

folding‡ 139 50400 Strided sum of consecutive array
elements

394

Figure 10: Benchmark suite. Benchmarks with no
symbol after their name were taken from the Poly-
bench suite of benchmarks and translated to Chapel.
Benchmarks with † are taken from the Chapel Trunk
test directory. Benchmarks with ‡ were developed
on our own in order to test specific data access pat-
terns. We also measure the maximum number of el-
ements per follower iterator chunk of work for each
benchmark to get a sense of how much aggregation
is possible.

gregation step of modulo unrolling WU that was previously
described in Section 6.4.

The entire chunk of work, specified by the arrSection

pointer, is communicated to the local buf in one message
with the chpl_comm_gets call on line 15. Then, elements in
this buffer are yielded back to the loop following zippered
iteration semantics. The values in buf are compared before
and after they are yielded in order to determine whether
or not they were written to in the loop body. If so, a
chpl_comm_puts call on line 24 is required to write all buf
elements back to the remote locale.

The implementation of modulo unrolling WU into the
Block Cyclic distribution is nearly identical to Figure 9 with
one key addition: the Block Cyclic leader iterator is also al-
tered so that chunks of work that the leader creates only
contain elements that reside in the same position within a
block. This addition ensures static disambiguation for the
Block Cyclic distribution, as described in Section 6.2.

We are currently in the process of contributing our source
code implementation of modulo unrolling WU to the trunk
repository of the Chapel compiler, maintained by Cray Inc.
We are working very closely with the researchers at Cray to
make this happen.

8. RESULTS
To demonstrate the effectiveness of modulo unrolling WU

in the Chapel Cyclic and Block Cyclic distributions, we
present our results. We have composed a suite of sixteen
parallel benchmarks shown in Figure 10. Each benchmark
is written in Chapel and contains loops with affine array
accesses that use zippered iterations, as discussed in Sec-
tion 7.2. This ensures that the leader and follower itera-

tors where modulo unrolling WU is implemented are called.
Our suite of benchmarks contains programs with single, dou-
ble, and triple nested affine loops. Additionally, our bench-
mark suite contains programs operating on one, two, and
three-dimensional distributed arrays. Thirteen of the six-
teen benchmarks are taken from the Polybench suite of bench-
marks [1] and are translated from C to Chapel by hand.
The stencil9 benchmark was taken from the Chapel source
trunk directory. The remaining two benchmarks, pascal and
folding, were written by our group. pascal is an additional
benchmark other than jacobi1D that is able to test Block
Cyclic with modulo unrolling WU. folding is the only bench-
mark in our suite that has strided affine array accesses.

To evaluate improvements due to modulo unrolling WU,
we ran our benchmarks using the Cyclic and Block Cyclic
distributions from the trunk revision 22919 of the Chapel
compiler as well as the Cyclic and Block Cyclic distribu-
tions that have been modified to perform modulo unrolling
WU, as described in Section 7. We measure both runtime
and message counts for each benchmark. We also compute
the geometric means of all normalized runtimes and mes-
sage count numbers for both distributions to get a sense of
how much improvement, on average, modulo unrolling WU
provided.

Data was collected on the ten-locale Golgatha cluster at
the Laboratory for Telecommunication Sciences in College
Park, Maryland. Each computing node on the cluster is
comprised of two 2.93 GHz Intel Xeon X5670 processors,
with 24 GB of RAM. The nodes are connected via an Infini-
Band network communication link. Benchmarks fdtd-apml,
syrk, lu, mvt, and trmm were run using eight of the ten lo-
cales because these programs drew too much power during
data collection when all ten locales were used. All other
benchmarks were run on ten locales.

When evaluating modulo unrolling WU used with the
Block Cyclic distribution, we only ran two benchmarks (jacobi-
1D and pascal) out of our suite of sixteen because of lim-
itations within the original Chapel Block Cyclic distribu-
tion. Many of our benchmarks operate on two or three-
dimensional arrays and all require array slicing for the mod-
ulo unrolling WU optimization to apply. Both array slic-
ing of multi-dimensional arrays and array slicing containing
strides for one-dimensional arrays are not yet supported in
the Chapel compiler’s Block Cyclic distribution. Implement-
ing such features remained outside the scope of this work.
There was no limitation when evaluating modulo unrolling
WU with the Cyclic distribution, and all sixteen benchmarks
were tested. Once these missing features are implemented
in the Chapel compiler, then our method will apply to all of
our benchmarks using Block Cyclic.

Figure 11 compares the normalized runtime numbers for
the Cyclic and Block Cyclic distributions with and without
modulo unrolling WU. For ten out of the sixteen bench-
marks, we see reductions in runtime when the modulo un-
rolling WU optimization is applied to the Cyclic distribu-
tion. Both benchmarks tested with the Block Cyclic distri-
bution with modulo unrolling WU show reductions in run-
time. On average, modulo unrolling WU results in a 36
percent decrease in runtime for Cyclic and a 53 percent de-
crease in runtime for Block Cyclic.

Figure 12 compares the normalized message count num-
bers for the Cyclic and Block Cyclic distributions with and
without modulo unrolling WU. For the Cyclic distribution,

Figure 11: Runtime data collected for our suite of
benchmarks. Numbers are normalized to the origi-
nal Chapel Cyclic and Block Cyclic distributions.

nine out of the sixteen benchmarks show reductions in mes-
sage count 15 percent or greater. Both benchmarks tested
with Block Cyclic with modulo unrolling WU show reduc-
tions in message count greater than 15 percent. On average,
modulo unrolling WU results in a 64 percent decrease in
message count for Cyclic and a 72 percent decrease in mes-
sage count for Block Cyclic.

The final column in Figure 10 shows the maximum num-
ber of data elements per follower iterator chunk of work for
each benchmark. These numbers, measure experimentally,
give us a sense of how many data elements can be aggre-
gated into a single message using modulo unrolling WU.
Our results show that programs with chunks of work each
containing more than a few hundred data elements see a
significant runtime and message count improvement when
using modulo unrolling WU over the original Chapel distri-
butions.

Some detailed observations on Figures 11 and 12 follow.
For six benchmarks that were run using the Cyclic distri-
bution with modulo unrolling WU, runtimes were actually
slower and message count numbers either slightly increased
or decreased by under 15 percent. Following Figure 10, all
six of these benchmarks contain follower iterator chunks of
work with few data elements. This suggests that, although
modulo unrolling WU is applicable to these benchmarks,
there is not enough aggregation present within each chunk
of work to be worthwhile. For these benchmarks, mod-
ulo unrolling WU performs worse because of the optimiza-
tion’s overhead. Unlike normal remote data memory ac-
cesses (RDMA), the strided bulk communication primitives
chpl_comm_gets and chpl_comm_puts that are used in the
optimization are not hardware optimized and will generally
be slower than RDMA when few data elements are being
transferred. Furthermore, the Chapel distributions using
modulo unrolling WU use more memory than the originals.
We yield elements directly from a local buffer within the
follower iterator. This could drastically limit the cache per-
formance that we would get when running the original dis-
tribution’s follower iterator. Our results clearly show that
message aggregation using modulo unrolling WU is benefi-

Figure 12: Message count data collected for our
suite of benchmarks. Numbers are normalized to
the original Chapel Cyclic and Block Cyclic distri-
butions.

cial for affine programs with large enough parallel chunks of
work.

9. FUTURE WORK
As presented, the modulo unrolling WU optimization can

be improved upon in a few ways to achieve even better per-
formance in practice. First, there is currently no limit on
the number of array elements that an aggregate message
may contain. For applications with extremely large data
sets, buffers containing remote data elements may become
too large and exceed the memory budget of a particular lo-
cale. This may slow down other programs running on the
system. A naive solution to this problem is to just turn off
the optimization when the aggregate message is deemed too
large and communicate remote data elements individually.
A better solution would be to perform strip mining where
the aggregate message is broken down into smaller aggregate
messages of a configurable threshold size.

The two forms of bulk communication used in this work
(chpl_comm_gets and chpl_comm_puts) are both blocking
communication calls. Our optimization might achieve better
performance if it used a non-blocking strided bulk communi-
cation scheme. That way, communication and computation
may be able to occur in parallel.

Finally, it would be extremely beneficial if our implemen-
tation of modulo unrolling WU in the Cyclic follower iter-
ator did not slow down programs with few data elements
per chunk of parallel work. Ideally, these programs should,
in the worst case, run as fast as they would if the origi-
nal Chapel Cyclic follower iterator was used. Our research
group is currently working on adding a dynamic check within
the follower iterator that tests whether the number of data
elements per chunk of parallel work is above the threshold
where aggregation is still profitable. If not, the original fol-
lower iterator without modulo unrolling WU is called.

10. REFERENCES
[1] Polybench/C- The Polyhedral Benchmark Suite.

http://www.cse.ohio-state.edu/~pouchet/

software/polybench/.

[2] R. Barik, J. Zhao, D. Grove, I. Peshansky,
Z. Budimlic, and V. Sarkar. Communication
optimizations for distributed-memory x10 programs.
In Parallel & Distributed Processing Symposium
(IPDPS), 2011 IEEE International, pages 1101–1113.
IEEE, 2011.

[3] R. Barua, W. Lee, S. Amarasinghe, and A. Agarwal.
Maps: a compiler-managed memory system for raw
machines. In ACM SIGARCH Computer Architecture
News, volume 27, pages 4–15. IEEE Computer
Society, 1999.

[4] D. Callahan and K. Kennedy. Compiling programs for
distributed–memory multiprocessors. The Journal of
Supercomputing, 2(2):151–169, 1988.

[5] B. L. Chamberlain, S.-E. Choi, S. J. Deitz, and
A. Navarro. User-defined parallel zippered iterators in
chapel. 2011.

[6] D. Chavarŕıa-Miranda and J. Mellor-Crummey.
Effective communication coalescing for data-parallel
applications. In Proceedings of the tenth ACM
SIGPLAN symposium on Principles and practice of
parallel programming, pages 14–25. ACM, 2005.

[7] W.-Y. Chen, C. Iancu, and K. Yelick. Communication
optimizations for fine-grained upc applications. In
Parallel Architectures and Compilation Techniques,
2005. PACT 2005. 14th International Conference on,
pages 267–278. IEEE, 2005.

[8] C. Germain and F. Delaplace. Automatic
vectorization of communications for data-parallel
programs. In EURO-PAR’95 Parallel Processing,
pages 429–440. Springer, 1995.

[9] G. Goumas, N. Drosinos, M. Athanasaki, and
N. Koziris. Message-passing code generation for
non-rectangular tiling transformations. Parallel
Computing, 32(10):711–732, 2006.

[10] M. Gupta and P. Banerjee. Automatic data
partitioning on distributed memory multiprocessors.
Technical report, 1991.

[11] S. K. S. Gupta, S. Kaushik, C.-H. Huang, and
P. Sadayappan. Compiling array expressions for
efficient execution on distributed-memory machines.
Journal of Parallel and Distributed Computing,
32(2):155–172, 1996.

[12] C. Iancu, W. Chen, and K. Yelick. Performance
portable optimizations for loops containing
communication operations. In Proceedings of the 22nd
annual international conference on Supercomputing,
pages 266–276. ACM, 2008.

[13] M. E. Mace. Memory storage patterns in parallel
processing. Kluwer Academic Publishers, 1987.

[14] L. Prylli and B. Tourancheau. Fast runtime block
cyclic data redistribution on multiprocessors. Journal
of Parallel and Distributed Computing, 45(1):63–72,
1997.

[15] J. Ramanujam and P. Sadayappan. Compile-time
techniques for data distribution in distributed memory
machines. Parallel and Distributed Systems, IEEE
Transactions on, 2(4):472–482, 1991.

[16] A. Sanz, R. Asenjo, J. López, R. Larrosa, A. Navarro,
V. Litvinov, S.-E. Choi, and B. L. Chamberlain.
Global data re-allocation via communication

aggregation in chapel. In Computer Architecture and
High Performance Computing (SBAC-PAD), 2012
IEEE 24th International Symposium on, pages
235–242. IEEE, 2012.

[17] S. D. Sung-Eun Choi. Chapel: Distributions and
Layouts. http://chapel.cray.com/tutorials/
DC2010/DC08-DISTRIBUTIONS.pdf.

[18] E. Waingold, M. Taylor, D. Srikrishna, V. Sarkar,
W. Lee, V. Lee, J. Kim, M. Frank, P. Finch, R. Barua,
et al. Baring it all to software: Raw machines.
Computer, 30(9):86–93, 1997.

[19] D. W. Walker and S. W. Otto. Redistribution of
block-cyclic data distributions using mpi. Concurrency
Practice and Experience, 8(9):707–728, 1996.

[20] W.-H. Wei, K.-P. Shih, J.-P. Sheu, et al. Compiling
array references with affine functions for data-parallel
programs. J. Inf. Sci. Eng., 14(4):695–723, 1998.

[21] Y. Wu and J. R. Larus. Static branch frequency and
program profile analysis. In Proceedings of the 27th
annual international symposium on Microarchitecture,
pages 1–11. ACM, 1994.

[22] J. Xue. Communication-minimal tiling of uniform
dependence loops. In Languages and Compilers for
Parallel Computing, pages 330–349. Springer, 1997.

