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ABSTRACT
In this work we directly evaluate two PGAS programming
models, CAF and OpenSHMEM, as candidate technologies
for improving the performance and scalability of scientific
applications on future exascale HPC platforms. PGAS ap-
proaches are considered by many to represent a promising
research direction with the potential to solve some of the ex-
isting problems preventing codebases from scaling to exas-
cale levels of performance. The aim of this work is to better
inform the exacsale planning at large HPC centres such as
AWE. Such organisations invest significant resources main-
taining and updating existing scientific codebases, many of
which were not designed to run at the scales required to
reach exascale levels of computational performance on future
system architectures. We document our approach for imple-
menting a recently developed Lagrangian-Eulerian explicit
hydrodynamics mini-application in each of these PGAS lan-
guages. Furthermore, we also present our results and expe-
riences from scaling these different approaches to high node
counts on two state-of-the-art, large scale system architec-
tures from Cray (XC30) and SGI (ICE-X), and compare
their utility against an equivalent existing MPI implemen-
tation.

Categories and Subject Descriptors
[Computing methodologies]: Massively parallel and high-
performance simulations; [Software and its engineer-
ing]: Software organization and properties—Interoperabil-
ity, Software performance

General Terms
Languages, Performance, Measurement

Keywords
PGAS, Co-array Fortran, OpenSHMEM, MPI, HPC, Exas-
cale, Hydrodynamics

1. INTRODUCTION
Due to power constraints it is recognised that emerging HPC
system architectures continue to enhance overall computa-
tional capabilities through significant increases in hardware
concurrency [14]. With CPU clock-speeds constant or even
reducing, node-level computational capabilities are being
improved through increased CPU core and thread counts.
At the system-level, however, aggregate computational ca-
pabilities are being advanced through increased overall node
counts. Effectively utilising this increased concurrency will
therefore be vital if existing scientific applications are to
harness the increased computational capabilities available
in future supercomputer architectures.

It has also been recognised that the main memory capacity
available per CPU core is likely to continue to decrease in
future system architectures. Additionally for many appli-
cations memory bandwidth and latency are already the key
resource constraints limiting performance. Potentially fur-
ther necessitating the need to scale applications to higher
node counts in order to utilise greater aggregate memory
resources.

It is therefore highly likely that the ability to effectively
scale applications across multi-petascale or exascale plat-
forms will be essential if these classes of machine are to be
utilised for improved science. Irrespective of the nodal hard-
ware employed in a particular supercomputer architecture,
there is a common requirement for improving the scalability
of communication mechanisms within future systems. These
trends present a significant challenge to large HPC centres
such as the Atomic Weapons Establishment (AWE), as in
order to reach exascale levels of performance on future HPC
platforms, many of their applications require significant scal-
ability improvements.

The established method of utilising current supercomputer
architectures is based on an MPI-only approach, which utilises
a two-sided model of communication for both intra- and
inter-node communication. It is argued that this program-
ming approach is starting to reach its scalability limits due
to increasing nodal CPU core counts and the increased con-
gestion caused by the number of MPI tasks involved in a
large-scale distributed simulation [8].

Unlike Message Passing, PGAS (Partitioned Global Address
Space) based approaches such as CAF (Co-array Fortran),
OpenSHMEM or UPC (Unified Parallel C) rely on a lightweight



one-sided communication model and a global memory ad-
dress space. This model represents a promising area of re-
search for improving the performance and scalability of ap-
plications as well as programmer productivity. Additionally
they may also help to reduce the overall memory footprint
of applications through e.g. the elimination of communi-
cation buffers, potentially leading to further performance
advantages. The DARPA1 recently funded the development
of several PGAS-based languages through the HPCS2 pro-
gramme, including X10 [28], Chapel [11] and Fortress [6].

Historically, effectively utilising a PGAS-based approach of-
ten required the use of a proprietary interconnect technol-
ogy, incorporating explicit hardware support, such as those
commercialised in the past by Cray and Quadrics. Although
the body of work which examines PGAS-based applications
on these technologies is still relatively small, substantially
less works exists which examines their performance on sys-
tems constructed from commodity-based technologies such
as Infiniband. It is the view of the authors that this anal-
ysis may become increasingly important in the future given
that Intel recently procured both the Cray Aries and QLogic
Infiniband interconnect technologies and the potential for
these technologies to converge within future Intel system-
on-a-chip designs. Research is therefore needed to assess
the relative merits of PGAS-based programming models and
future hardware evolutions to ensure that the performance
of scientific applications is optimised. To date, insufficient
work has been conducted to directly evaluate both the CAF
and OpenSHMEM models at scale on current high-end HPC
platforms, particularly within the sphere of explicit Lagrangian
Eulerian hydrodynamics, which is a key focus of this work.

Large HPC sites are required to make significant investments
maintaining their existing production scientific codebases.
Production codes are usually legacy codes which are gener-
ally old, large and inflexible, with many man-years of de-
velopment resources invested in them. This effort cannot be
discarded and applications cannot be rewritten from scratch
for the latest hardware. These organisations are therefore
challenged with the task of deciding how best to develop
their existing applications to effectively harness future HPC
system architectures.

The optimal approach is unknown and likely to be appli-
cation and machine architecture specific. Evaluating the
strengths of each potential approach using existing produc-
tion codes is problematic due to their size and complexity.
Together with limited development and financial resources,
this complexity means that it is not possible to explore every
software development option for each HPC application. De-
cisions made now could also severely affect scientific produc-
tivity if the path chosen is not amenable to future hardware
platforms. A rapid, low risk approach for investigating the
solution space is therefore extremely desirable. We report on
how this programming model exploration, architecture eval-
uation and general decision making can be improved through
the use of mini-applications. Mini-applications (mini-apps)
are small, self contained programs that embody essential key
algorithmic components and performance characteristics of
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larger more complex production codes [18]. Thus their use
provides a viable way to develop and evaluate new methods
and technologies.

Weak- and strong-scaling experimental scenarios are likely
to be important on multi-petascale machines. The former
are likely to scale well as the communication to computation
ratio remains relatively constant. While the latter is more
challenging because the amount of computation per node re-
duces with increased scale and communications eventually
dominate. Historically, the use of a shared, globally acces-
sible memory has not been vital for this class of application
and treating each core/thread as a separate address space
has been a valid strategy.

In this work we utilise a simplified but still representative
structured, explicit hydrodynamic mini-app known as Clover-
Leaf [18] to investigate the utility of these PGAS-based ap-
proach for this class of application. CloverLeaf forms part of
the R&D Top 100 award winning Mantevo software suite [3].
We document our experiences porting the existing MPI code-
base to CAF and OpenSHMEM and compare the perfor-
mance and scalability of each approach, under a strong-
scaling experimental scenario, on two state-of-the-art system
architectures and vendor implementations.

Specifically, in this paper we make the following key contri-
butions:

• We document the implementation of each of our Open-
SHMEM and CAF versions of CloverLeaf; 10 and 8 dis-
tinct versions respectively. With the aim that this in-
formation will be useful to developers of future Open-
SHMEM and CAF applications.

• We present a performance analysis of these versions, at
considerable scale (up to 49,152 cores), to provide both
a comparison of each programming model but also to
assess how the communication constructs within each
can best be incorporated into parallel applications.
Based on these results we also make recommendations
to improve the OpenSHMEM specification and poten-
tially future CAF compiler and runtime systems.

• We provide a performance comparison of our PGAS
versions against an equivalent MPI implementation in
order to assess their utility against the dominant parad-
igm used in existing parallel scientific applications.

• Finally, we analyse the performance of our PGAS im-
plementations on two systems incorporating different
interconnect topologies and technologies. Namely the
Cray Aries (Dragonfly) interconnect in the XC30 plat-
form and the SGI 7D-hypercube Infiniband technology
within the ICE-X platform.

The remainder of this paper is organised as follows: Sec-
tion 2 discusses related work in this field. In section 3
we present background information on the hydrodynamics
scheme employed in CloverLeaf and the programming mod-
els which this work examines. Section 4 describes the im-
plementation of CloverLeaf in each of these programming
models. The results of our study are presented and analysed
in section 5, together with a description of our experimental
setup. Finally, section 6 concludes the paper and outlines
directions for potential future work.



2. RELATED WORK
Although CAF has only relatively recently been incorpo-
rated into the official Fortran standard, earlier versions of
the technology have existed for some time. Similarly sev-
eral distinct SHMEM implementations have existed since
the technology was originally developed by Cray in 1993
for its T3D supercomputers [5]. SHMEM has however only
very recently been officially standardised under OpenSH-
MEM [4,12].

Consequently, a number of studies have already examined
these technologies. To our knowledge, these studies have
generally focused on different scientific domains to the one
we examine here, and on applications which implement dif-
ferent algorithms or exhibit different performance character-
istics. Additionally, relatively little work has been carried
out to assess these technologies since their standardisation
and on the hardware platforms we examine in this work.
Overall, substantially less work exists which directly evalu-
ates implementations of the MPI, OpenSHMEM and CAF
programming models when applied to the same application.
The results from these previous studies have also varied sig-
nificantly, with some authors achieving significant speedups
by employing PGAS-based constructs whilst others present
performance degradations. Our work is motivated by the
need to further examine each of these programming models,
particularly when applied to Lagrangian-Eulerian explicit
hydrodynamics applications.

In previous work we reported on our experiences scaling
CloverLeaf to large node counts on the Cray XE6 and XK7 [23].
Whilst this study did examine the CAF-based implementa-
tion of the application, as well as an OpenMP-based hybrid
version, it focused on different hardware platforms to those
we consider here; additionally it also did not include an ex-
amination of the OpenSHMEM-based implementation. Sim-
ilarly, although we did examine the performance of Clover-
Leaf at scale, on the Cray XC30 (Aries interconnect) in [15],
this work did not examine any of the PGAS-based versions of
the codebase. Additionally we have also previously reported
on our experiences of porting CloverLeaf to GPU-based ar-
chitectures using OpenACC, OpenCL and CUDA [17,22].

Two studies which do directly evaluate the CAF and MPI
programming models at considerable scale are from Preissl [26]
and Mozdzynski [24]. Preissl et al. present work which
demonstrates a CAF-based implementation of a Gyrokinetic
Tokamak simulation code significantly outperforming an equiv-
alent MPI-based implementation on up to 131,000 processor
cores. Similarly Mozdzynski et al. document their work us-
ing CAF to improve the performance of the ECMWF IFS
weather forecasting code, relative to the original MPI im-
plementation, on over 50,000 cores. Both studies, however,
examine significantly different classes of application, a 3D
Particle-In-Cell code and a semi-Lagrangian weather fore-
cast code, respectively.

Stone et al. were, however, unable to improve the perfor-
mance of the MPI application on which their work focused
by employing the CAF constructs, instead experiencing a
significant performance degradation [29]. Their work, how-
ever, focused on the CGPOP mini-application, which rep-
resents the Parallel Ocean Program [19] from Los Alamos
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Figure 1: One CloverLeaf timestep

National Laboratory. Whilst the application examined by
Lavallée et al. has similarities to CloverLeaf, their work
compares several hybrid approaches against an MPI-only
based approach [21], additionally they focus on a differ-
ent hardware platform and do not examine either CAF-
or OpenSHMEM-based approaches. Henty also provides
a comparison between MPI and CAF using several micro-
benchmarks [16].

The OpenSHMEM programming model was shown to de-
liver some performance advantages relative to MPI by Bethune
et al. in [10]. However, their work examined Jacobi’s method
for solving a system of linear equations and they utilised a
previous generation of the Cray architecture (XE6) in their
experiments. In [27], Reyes et al. discuss their experiences
porting the GROMACS molecular dynamics application to
OpenSHMEM. Their experiments, however, showed a small
but significant performance degradation relative to the orig-
inal MPI implementation, additionally they also utilised the
Cray XE6 architecture.

Baker et al. looked at a hybrid approach using OpenACC
within a SHMEM-based application [7]. They concentrate
however on hybridising the application using OpenACC and
their results are also focused on the XK7 architecture (Ti-
tan). Jose et al. studied the implementation of a high per-
formance unified communication library that supports both
the OpenSHMEM and MPI programming models on the In-
finiband architecture [20]. Minimising communication oper-
ations within applications has also been recognised as a key
approach for improving the scalability and performance of
scientific applications [13].

3. BACKGROUND
CloverLeaf was developed with the purpose of assessing new
technologies and programming models both at the inter- and
intra-node system levels. It is part of the Mantevo mini-
applications test suite [18], which was recognised as one of
the 100 most technologically significant innovations in 2013,
by R&D Magazine [2]. In this section we provide details of
its hydrodynamics scheme and an overview of the program-
ming models examined in this study.

3.1 Hydrodynamics Scheme
CloverLeaf uses a Lagrangian-Eulerian scheme to solve Eu-
ler’s equations of compressible fluid dynamics in two spatial
dimensions. These are a system of three partial differential
equations which are mathematical statements of the conser-
vation of mass, energy and momentum. A fourth auxiliary
equation of state is used to close the system; CloverLeaf uses
the ideal gas equation of state to achieve this.



The equations are solved on a staggered grid (see figure 1a)
in which each cell centre stores three quantities: energy,
density and pressure; and each node stores a velocity vec-
tor. An explicit finite-volume method is used to solve the
equations with second-order accuracy. The system is hy-
perbolic, meaning that the equations can be solved using
explicit numerical methods, without the need to invert a
matrix. Currently only single material cells are simulated
by CloverLeaf.

The solution is advanced forward in time repeatedly until
the desired end time is reached. Unlike the computational
grid, the solution in time is not staggered, with both the
vertex and cell data being advanced to the same point in
time by the end of each computational step. One iteration,
or timestep, of CloverLeaf proceeds as follows (see figure 1):

1. a Lagrangian step advances the solution in time using
a predictor-corrector scheme, with the cells becoming
distorted as the vertices move due to the fluid flow;

2. an advection step restores the cells to their original
positions and calculates the amount of material which
passed through each cell face.

This is accomplished using two sweeps, one in the horizontal
dimension and the other in the vertical, using van Leer ad-
vection [30]. The direction of the initial sweep in each step
alternates in order to preserve second order accuracy.

The computational mesh is spatially decomposed into rect-
angular mesh chunks and distributed across processes within
the application, in a manner which attempts to minimise
the communication surface area between processes. Whilst
simultaneously attempting to assign a similar number of
cells to each process to balance computational load. Data
that is required for the various computational steps and is
non-local to a particular process is stored in outer layers of
“halo” cells within each mesh chunk. Data exchanges oc-
cur multiple times during each timestep, between logically
neighbouring processes within the decomposition, and with
varying depths. A global reduction operation is required by
the algorithm during the calculation of the minimum stable
timestep, which is calculated once per iteration. The com-
putational intensity per memory access in CloverLeaf is low
which generally makes the code limited by memory band-
width and latency speeds.

3.2 Programming Models
The following sections provide background information on
each of the programming models examined in this study.

3.2.1 MPI
As cluster-based designs have become the predominant ar-
chitecture for HPC systems, the Message Passing Interface
(MPI) has become the standard for developing parallel ap-
plications for these platforms. Standardised by the MPI
Forum, the interface is implemented as a parallel library
alongside existing sequential programming languages [1].

MPI programs are based on the SPMD (Single Process Mul-
tiple Data) paradigm in which each process (or rank) asyn-
chronously executes a copy of the same program, but is able
to follow different execution paths within the program. Each

process makes calls directly into the MPI library in order to
make use of the communication functions that it provides.

The technology is able to express both intra- and inter-node
parallelism, with current implementations generally use op-
timised shared memory constructs for communication within
a node. These Message Passing based communications are
generally two-sided, meaning that explicit application-level
management is required of both sides of the communication.

3.2.2 OpenSHMEM
The OpenSHMEM programming model was originally devel-
oped by Cray for their T3D systems. Although it is a rela-
tively old model, it was only recently standardised in 2012 as
part of the OpenSHMEM initiative [5]. Under the OpenSH-
MEM programming model, communications between pro-
cesses are all one-sided and are referred to as “puts” (remote
writes) and “gets” (remote reads). The technology is able
to express both intra- and inter-node parallelism, with the
latter generally requiring explicit RMA (Remote Memory
Access) support from the underlying system layers. These
constructs also purport to offer potentially lower latency and
higher bandwidth than some alternatives.

OpenSHMEM is not explicitly part of the Fortran/C lan-
guages and is implemented as part of a library alongside
these existing sequential languages. Processes within Open-
SHMEM programs make calls into the library to utilise its
communication and synchronisation functionality, in a simi-
lar manner to how MPI libraries are utilised. The program-
ming model is much lower-level than other PGAS models
such as CAF and enables developers to utilise functional-
ity significantly closer to the actual underlying hardware
primitives. It also makes considerably more functionality
available to application developers.

The concept of a symmetric address space is intrinsic to the
programming model. Each process makes areas of memory
potentially accessible to the other processes within the over-
all application, through the global address space supported
by the programming model. It is generally implementation-
dependent how this functionality is realised, however it is
often achieved using collective functions to allocate memory
at the same relative address on each process.

Only a global process synchronisation primitive is provided
natively. To implement point-to-point synchronisation it is
necessary to utilise explicit “flag” variables, or potentially
use OpenSHMEM’s extensive locking routines, to control
access to globally accessible memory locations. The concept
of memory “fences”, which ensure the ordering of operations
on remote processes’ memory locations, are also intrinsic to
the programming model. Collective operations are part of
the standard, although currently no all-to-one operations are
defined, just their all-to-all equivalents.

3.2.3 CAF
Several CAF extensions have been incorporated into the For-
tran 2008 standard. These extensions were originally pro-
posed in 1998 by Numrich and Reid as a means of adding
PGAS (Partitioned Global Address Space) concepts into the
main Fortran language, using only minimal additional syn-
tax [25]. The additions aim to make parallelism a first class



feature of the Fortran language.

CAF continues to follow the SPMD language paradigm with
a program being split into a number of communicating pro-
cesses known as images. Communications are one-sided,
with each process able to use a global address space to access
memory regions on other processes, without the involvement
of the remote processes. The “=” operator is overloaded for
local assignments and also for remote loads and stores. In-
creasingly, off-image loads and stores are being viewed as
yet another level of the memory hierarchy [9]. In contrast
to OpenSHMEM, CAF employs a predominantly compiler-
based approach (no separate communications library), in
which parallelism is explicitly part of the Fortran 2008 lan-
guage. Consequently the Fortran compiler is potentially able
to reorder the inter-image loads and stores with those local
to a particular image.

Two forms of synchronisation are available, the sync all

construct provides a global synchronisation capability. Whilst
the sync images construct provides functionality to syn-
chronise a subset of images. Collective operators have not
yet been standardised, although Cray have implemented their
own versions of several commonly used operations.

4. IMPLEMENTATION
The computational intensive sections of CloverLeaf are im-
plemented via fourteen individual kernels. In this instance,
we use “kernel” to refer to a self contained function which
carries out one specific aspect of the overall hydrodynamics
algorithm. Each kernel iterates over the staggered grid, up-
dating the appropriate quantities using the required stencil
operation. The kernels contain no subroutine calls and avoid
using complex features such as Fortran derived types.

Twelve of CloverLeaf’s kernels only perform computational
operations. Communication operations reside in the over-
all control code and two additional kernels. One of these
kernels is called repeatedly throughout each iteration of the
application, and is responsible for exchanging the halo data
associated with one (or more) data fields, as required by
the hydrodynamics algorithm. The second carries out the
global reduction operation required for the calculation of the
minimum timestep value.

During the initial development of the code, the algorithm
was engineered to ensure that all loop-level dependencies
within the kernels were eliminated and data parallelism was
maximised. Most of the dependencies were removed via code
rewrites: large loops were broken into smaller parts; extra
temporary storage was employed where necessary; branches
inside loops were replaced where possible; atomics and crit-
ical sections removed or replaced with reductions; memory
access was optimised to remove all scatter operations and
minimise memory stride for gather operations.

All of the MPI-, OpenSHMEM- and CAF-based versions
of CloverLeaf implement the same block-structured decom-
position of the overall problem domain. With each pro-
cess responsible for a particular rectangular region of the
overall computational mesh. As with the majority of block-
structured, distributed, scientific applications, which solve
systems of Partial Differential Equations, halo data is re-
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Figure 2: Cell calculation order for comms/comp overlap

quired to be exchanged between processes. To reduce syn-
chronisation requirements, data is only exchanged when ex-
plicitly required by the subsequent phase of the algorithm,
first in the horizontal and then in the vertical dimension.
The depth of these halo exchanges also varies throughout the
course of each iteration/timestep, depending on the numer-
ical stencil required by each part of the algorithm. Clover-
Leaf v1.0, which is the basis for all versions examined in this
work, employs a strategy in which one data-field is sent per
communications operation, in exchanges involving multiple
data-fields. It is in the implementation of these inter-process
communication functions that the three broad implementa-
tion categories (MPI/SHMEM/CAF) of CloverLeaf involved
in this study differ. The specific details of which are outlined
in the following sections.

To create versions of CloverLeaf which overlap communi-
cation and computation, the communication operations at
a particular phase of the algorithm were moved inside the
computational kernels which immediately preceded them.
The data-parallel nature of the computational kernels within
CloverLeaf enable us to reorder the loop iterations within
these kernels. This allows the outer halo of cells (which
need to be communicated) to be computed first before the
inner region of cells, which are only required on the host pro-
cess. Figure 2 depicts this arrangement. Once the outer halo
of cells have been computed we employ non-blocking com-
munication primitives to initiate the data transfers to the
appropriate neighbouring processes. This approach relies
on diagonal communication operations being implemented
between diagonally adjacent processes in the computational
mesh. Whilst these transfers are taking place the compu-
tational kernel completes the remaining calculations, with
these computations being fully overlapped with the preced-
ing communication operations.

4.1 MPI
The MPI-based versions of CloverLeaf perform their halo ex-
changes using the MPI_ISend and MPI_IRecv communication
operations with their immediate neighbours. Communica-
tions are therefore two-sided, with MPI_WaitAll operations
being employed to provide local synchronisation between the
data exchange phases. Consequently no explicit global syn-
chronisation operations (MPI_Barrier functions) are present
in the hydrodynamics timestep.



To provide global reduction functionality between the MPI
processes, the MPI_AllReduce and MPI_Reduce operations
are employed. These are required for the calculation of the
timestep value (dt) during each iteration and the produc-
tion of periodic intermediary results, respectively. The MPI-
based implementations therefore uses MPI communication
constructs for both intra- and inter-node communications.

4.2 SHMEM
The OpenSHMEM-based versions of CloverLeaf employed in
this study utilise one of two general communication strate-
gies. These involve utilising the OpenSHMEM communica-
tion constructs to exchange data:

1. located within dedicated communication buffers. This
data is generally aggregated from non-contiguous mem-
ory regions into one contiguous space. Before being
written into the corresponding receive buffers on the
neighbouring processes, using shmem_put64 operations.
Following synchronisation operations this data then
has to be unpacked by the destination process.

2. directly between the original source and final destina-
tion memory addresses. To communicate data stored
within multi-dimensional arrays shmem_put64 opera-
tions are used to transmit contiguously stored data,
with strided shmem_iput64 operations being utilised
to transmit data stored non-contiguously. In order to
produce a functional implementation, we found it nec-
essary to employ two separate calls to a shmem_iput64

operation to transmit two columns of halo data items
rather than one call to a shmem_iput128 operation.

In section 5 versions which employ the first strategy contain
the word buffers in their description, whereas versions which
employ the second strategy are referred to as arrays. The
two-dimensional data arrays and communication buffers are
symmetrically allocated when necessary using the shpalloc

operator. All other scalar variables and arrays which are re-
quired to be globally addressable are defined within Fortran
common blocks to ensure they are globally accessible.

The only synchronisation primitive which OpenSHMEM pro-
vides natively is a global operation (shmem_barrier_all)
which synchronises all of the processes involved. One of the
OpenSHMEM versions involved in this study employs this
synchronisation strategy, in section 5 this version has the
word global in its description. All other versions employ a
point-to-point synchronisation strategy in which a particu-
lar process only synchronises with its logically immediate
neighbours. Integer “flag” variables are employed to achieve
this, these are set on a remote process after the original
communication operation completes. Either shmem_fence of
shmem_quiet operations are utilised to ensure the ordering
of these remote memory operations. Versions which employ
shmem_quiet contain the word quiet within their descrip-
tion in section 5, all other versions employ the shmem_fence

operation.

To prevent data access race conditions two methods of de-
laying process execution, until the associated “flag” vari-
able is set, are examined. Versions either employ a call
to shmem_int4_wait_until on the particular “flag” variable,
these are referred to using shmemwait in their description in
section 5. Alternative versions utilise an approach in which

the “flag” variables are declared as volatile and processes
perform “busy waits” on them until they are set remotely
by the initiating process. Versions which employ this latter
strategy have the word volatilevars in their descriptions in
section 5.

The native OpenSHMEM collective operations shmem_real8_
sum_to_all and shmem_real8_min_to_all were used to pro-
vide the global reduction facilities. The shmem_sum_to_all

function was used despite the application only requiring a
reduction to the master process. Two sets of symmetri-
cally allocated pSync and pWork arrays are allocated for use
with all the OpenSHMEM collective functions. These are
initialised to the required default values using the Fortran
data construct. The application alternates between each set
of pSync and pWork arrays on successive calls to the Open-
SHMEM collective operations.

4.3 CAF
The CAF implementations employed in this study all utilise
one-sided asynchronous CAF “put” operations, in which the
image responsible for the particular halo data items, re-
motely writes them into the appropriate memory regions of
its neighbouring images. No equivalent receive operations
are therefore required. Unless otherwise stated the top-level
Fortran type data-structure (a structure of arrays based
construct), which contains all data fields and communication
buffers, is declared as a Co-array object. Additional versions
examine the effect of moving the data fields and commu-
nication buffers outside of this derived-type data-structure
and declaring them individually as Co-array objects. In sec-
tion 5 of this paper, versions which employed this modified
approach contain the word FTL in their description.

The CAF-based versions of CloverLeaf employed in this study
utilise the same general communication strategies as the
OpenSHMEM versions, which were outlined in section 4.2.
Again versions which employ the communication buffer based
strategy contain the word buffers in their description in sec-
tion 5. Whereas versions which employ the direct memory
access strategy contain the word arrays. In the versions
which employ this latter strategy multi-dimensional Fortran
array sections are specified in the “put” operations. These
may require the CAF runtime to transmit data which is
stored non-contiguously in memory, potentially using strided
memory operations.

Synchronisation constructs are employed to prevent race
conditions between the images. Each version can be con-
figured to use either the global sync all construct or the
local sync images construct between immediate neighbour-
ing processes. The selection between these synchronisa-
tion primitives is controlled by compile-time pre-processor
macros. In section 5, versions which employed the sync all

synchronisation construct have the word global in their de-
scription; all other versions utilise sync images.

The CAF versions examined in this work employ the propri-
etary Cray collective operations to implement the global re-
duction operations. We have also developed hybrid (CAF+
MPI) alternatives which utilise MPI collectives, in order to
make these versions portable to other CAF implementations.
In this study, however, we only report on the performance of



Archer Spruce

Manufacturer Cray SGI
Model XC30 ICE-X
Cabinets 16 16
Peak Perf 1.56PF 0.97PF
Processor Intel Xeon E5-2697v2 Intel Xeon E5-2680v2
Proc Clock Freq 2.7GHz 2.8GHz
Cores / CPU 12 10
Compute Nodes 3,008 2,226
CPUs/Node 2 2
Total CPUs 6,016 4,452
Memory/Node 64GB 64GB
Memory Freq 1,833MHz 1,866 MT/s
Interconnect Cray Aries Mellanox IB-FDR
Topology Dragonfly 7D-hypercube
Compilers Cray CCE v8.2.6 Intel v14.0
MPI Cray Mpich v6.3.1 SGI MPI v2.9
OpenSHMEM Cray Shmem v6.3.1 SGI Shmem v2.9

Table 1: Experimental platform system specifications

the purely CAF-based versions as we have not observed any
noticeable performance differences between the CAF and
MPI collectives on the Cray architecture.

5. RESULTS
To assess the performance of the CloverLeaf mini-application
when expressed in each of the programming models exam-
ined here, we conducted a series of experiments using two
distinct hardware platforms with significantly different ar-
chitectures, a Cray XC30 (Archer) and an SGI ICE-X (Spruce).
The hardware and software configuration of these machines
is detailed in table 1. Both are based in the UK at the
Edinburgh Parallel Computing Centre (EPCC) and AWE
respectively.

In our experiments CloverLeaf was configured to simulate
the effects of a small, high-density region of ideal gas ex-
panding into a larger, low-density region of the same gas,
causing a shock-front to form. The configuration can be al-
tered by increasing the number of cells used in the computa-
tional mesh. Increasing the mesh resolution increases both
the runtime and memory usage of the simulation. In this
study we focused on a standard problem configuration from
the CloverLeaf benchmarking suite. We used the 15,3602

cell problem executed for 2,955 timesteps and strong-scaled
the simulation to large processor counts. The results of these
experiments are analysed in sections 5.1 and 5.2. Unless oth-
erwise noted, the results presented here are the averages of
three repeated runs of the experiment to reduce the affects
of system noise and jitter on our results.

For each job size examined we executed each version within
the same node allocation to eliminate any performance ef-
fects due to different topology allocations from the batch sys-
tem. We were able to conduct all of our experiments on the
Spruce platform with the system in a fully dedicated mode,
which should significantly reduce the affects of any system
noise on our results. Unfortunately this was not possible
on Archer, which we attribute to be the main cause of the
performance disparities between the systems. We therefore
do not present any direct performance comparisons between
the two system architectures. Each version was configured
to utilise the enhanced IEEE precision support for floating
point mathematics, available under the particular compila-
tion environment employed. On Archer all PGAS versions
were also built and executed with support for 2MB huge
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Figure 3: Array- and buffer-exchange based versions

memory pages enabled and 512MB of symmetric heap space
available. Huge page support was not enabled for the stan-
dard MPI versions, as we have not previously observed any
performance benefits for these versions. To again confirm
this an additional execution of the standard MPI version,
with this feature enabled, was completed as part of these
experiments, however, for brevity these results are omitted.

Our interest in undertaking this work was to assess the po-
tential of each of these programming models and techniques
for improving (reducing) overall time to solution. In our ex-
periments we therefore analysed their effectiveness by exam-
ining the runtime of the applications. For clarity the results
presented here (figures 3 to 8) are expressed in terms of the
number of sockets on which an experiment was conducted,
and the application iterations / second which the particular
version achieved (i.e. 2,955 / application wall-time).

5.1 First Strong-Scaling Results Analysis
The results from our experiments with the PGAS versions,
which employ either the communications buffer or array-
sections data exchange approaches, are shown in figure 3.
These charts show the positive effect which employing com-
munications buffers can have on both the Spruce and Archer
platforms, particularly at high node counts. In our exper-
iments on 4,096 sockets of Spruce the OpenSHMEM ver-
sion, which employs communication buffers, achieved an av-
erage of 278.14 iterations/sec. An improvement of 1.2-1.3×
over the equivalent array-section based approaches, which
achieved 224.31 and 209.33 iterations/sec. The OpenSH-
MEM and CAF results from Archer also exhibit a similar
pattern, at 4,096 sockets (49,152 cores) the communications
buffer based OpenSHMEM version achieved 197.49 itera-
tions/sec. Compared to the equivalent array-section based
approaches which achieved only 159.23 and 163.24 respec-
tively, an improvement of up to 1.24×. The CAF-based
versions exhibit a significantly larger performance disparity,
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with the communication buffers approach achieving 3.4×
the performance of the array-section based approach, 68.04
and 19.95 iterations/sec respectively. It should be noted
that each application kernel, which contains only compu-
tation, is identical across these different versions (only the
communication constructs differ), therefore given the same
compiler environment is employed for all of the experiments
on a particular system, performance due to e.g. automatic
vectorisation should be constant throughout.

These results also show the performance improvement de-
livered by moving the data field definitions from within the
original Fortran derived data type—defined as a Co-array—
to be individual Co-array objects, each defined as top-level
data structures. This optimisation (labeled FTL) improves
the performance of the CAF array-section based approach
by 3.39× (from 19.95 to 67.70 iterations/sec) at 4,096 sock-
ets on Archer. It also enabled the array-section based ap-
proach to deliver equivalent performance to the communica-
tions buffer based approach in our experiments at 2,048 and
4,096 sockets, and to slightly exceed it in the 256 to 1,024
sockets cases.

Following a detailed inspection of the intermediate code rep-
resentations produced by the Cray compiler, we believe that
this is due to the compiler having to make conservative as-
sumptions regarding the calculation of the remote addresses
of the Co-array objects on other images. For each remote
“put” within the FTL version, the compiler produces a sin-
gle loop block containing one __pgas_memput_nb and one
__pgas_sync_nb operation. In the original array-exchange
version, however, the compiler generates three additional
__pgas_get_nb and __pgas_sync_nb operations prior to the
loop containing the “put” operation, a further set of these
operations within this loop and an additional nested loop
block containing a __pgas_put_nbi operation. Whilst it is
not clear to us the precise function of each of these opera-
tions, as Cray does not publish this information. It would
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Figure 5: Local & global synchronisation versions

appear that due to the extra complexity of the original data-
structure, e.g. the additional levels of indirection involved.
The compiler is forced to insert “get” operations to the other
images in order to retrieve the remote memory addresses to
which an image should write the required data, despite these
addresses remaining constant throughout the execution of
the program. If this analysis is indeed correct, the creation
of an additional compiler directive may prove to be useful
here. This would enable developers to inform the compiler
that the original data structure remains constant and there-
fore allow it to be less conservative during code generation.

Figure 4 shows the results from our experiments to assess
the performance of our PGAS implementations against an
equivalent MPI version. These charts document a signifi-
cantly different performance trend on the two system archi-
tectures we examine here. The performance delivered on
Spruce by both the OpenSHMEM and MPI implementa-
tions is virtually identical at all the scales examined (128
- 4,096 sockets), reaching 278.14 and 276.49 iterations/sec
respectively on 4,096 sockets. On Archer, however, the per-
formance of the two PGAS versions is not able to match
that of the equivalent MPI implementation, with the per-
formance disparity widening as the scale of the experiments
is increased. Our OpenSHMEM implementation delivers the
closest levels of performance to the MPI implementation and
also significantly outperforms the CAF-based implementa-
tion. The results show 197.49 iterations/sec on 4,096 sock-
ets compared to 230.08 iterations/sec achieved by the MPI
implementation, an improvement of 1.17×. The CAF im-
plementation, however, only delivers 68.04 iterations/sec on
4,096 sockets, a slowdown of 2.9× relative to the equivalent
OpenSHMEM implementation.

To assess the affect of employing either the global or point-to-
point synchronisation constructs on the performance of the
PGAS versions, we analysed the results obtained on both ex-
perimental platforms from the OpenSHMEM and CAF ver-
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sions, which employed the communications buffer data ex-
change approach and either synchronisation construct. The
OpenSHMEM versions examined here utilise the shmem wait
approach to implement the point-to-point synchronisation.
Figure 5 provides a comparison of the results obtained from
each of these versions.

On both platforms it is clear that employing point-to-point
synchronisation can deliver significant performance benefits,
particularly as the scale of the experiments is increased. At
128 sockets there is relatively little difference between the
performance of each version. On Spruce (1,280 cores) the
OpenSHMEM implementation which employs point-to-point
synchronisation achieved 9.13 iterations/sec, compared to
8.90 for the global synchronisation version. Whilst on Archer
(1,536 cores) the point-to-point synchronisation versions of
the OpenSHMEM and CAF implementations achieve 9.84
and 7.73 iterations/sec respectively, compared to the equiv-
alent global synchronisation versions which achieve 9.34 and
7.31 iterations/sec. At 4,096 sockets (40,960 cores), how-
ever, the performance disparity between the two OpenSH-
MEM versions on Spruce increases to 278.13 and 159.97 iter-
ations/sec, a difference of approximately 1.74×. The perfor-
mance disparity between the OpenSHMEM versions is even
greater on Archer, reaching 2.10× at 4,096 sockets (49,152
cores), with the point-to-point version delivering 197.49 it-
erations/sec and the global version 93.91. Interesting the
CAF-based versions do not exhibit the same performance
differences, with the point-to-point synchronisation version
achieving only a 1.29× improvement (68.04 and 52.84 it-
erations/sec respectively). We speculate that this may be
due to the performance of the CAF-based versions—which
is significantly less than the OpenSHMEM-based versions—
being limited by another factor and therefore the choice of
synchronisation construct has a reduced, but still significant,
affect on overall application performance.

The performance results obtained from several alternative
versions of the OpenSHMEM implementation, on both the

128 256 512 1024 2048 4096

20

40

60

80

sockets

CAF buffers dc mf

CAF buffers dc mf defer

CAF buffers dc mf overlap

CAF buffers dc mf overlap defer

Cray: iterations / sec

Figure 7: CAF pgas defer_sync & comms overlap versions

Cray and SGI platforms, are shown in figure 6. These charts
compare versions which employ either the shmem wait or
volatile variables synchronisation techniques and either the
quiet or fence remote memory operation ordering constructs.
All versions examined here employ diagonal communications
(dc) between logical neighbouring processes, exchange mul-
tiple data fields simultaneously (mf) and employ a communi-
cations buffer-based approach to data exchange. It is evident
from the charts that in our experiments the choice of each of
these implementation approaches has no significant effect on
overall performance. The results from both platforms show
very little variation in the number of application iterations
achieved per second as the scales of the experiments are
increased. Although the Cray results do show some small
variations at the higher node counts, we feel that this is
likely due to the effects of system noise arising from the use
of a non-dedicated system.

Figure 7 documents our experimental results on Archer from
the CAF versions which employ our optimisations to overlap
communications and computation together with the propri-
etary Cray pgas defer_sync directive. This purports to
force the compiler to make all communication operations,
in the next statement, non-blocking and to postpone the
synchronisation of PGAS data until the next fence instruc-
tion is encountered, potentially beyond what the compiler
can determine to be safe. The chart presents these results
together with an equivalent CAF-based version which does
not utilise any of these features. It shows that in our exper-
iments the overall performance of CloverLeaf is not signif-
icantly affected (beneficially or detrimentally) by either of
these potential optimisations, as the performance of all four
versions is virtually identical in all cases.

5.2 Second Strong-Scaling Results Analysis
Following our results analysis in section 5.1, we conducted
an additional set of experiments on Archer. Our aim was
to examine the affect of: the proprietary Cray non-blocking
SHMEM operations; employing 4MB huge-pages; and ap-
plying the FTL optimisation to the CAF buffer-exchange
based version. We followed the same experimental method-
ology outlined in section 5 and our results can be found in
figure 8. As these experiments were conducted at a different
time (different system loads) and using different node alloca-
tions from the batch system, to our first set of experiments,
the performance results between the two sets of experiments
will differ, particularly at scale. We therefore only present
performance comparisons within each set of experimental
results rather than between them.
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It is evident from figure 8 that the CAF buffer-exchange
based version does indeed benefit significantly from the FTL
optimisation. The modified version delivers substantially
superior performance at all the node configurations exam-
ined, achieving 2.2× and 1.9× more iterations/sec during
the 2,048 and 4,096 socket experiments, respectively. Al-
though significantly improved, its performance still does not
quiet match that of the OpenSHMEM-based equivalent par-
ticularly at large node counts. In the 4,096 socket exper-
iment the OpenSHMEM buffer-exchange version achieved
184.23 iterations/sec compared to 138.01 for the CAF FTL
version, an improvement of 1.33×. As in our previous set of
experiments, the original OpenSHMEM version is not able
to match the equivalent MPI implementation. It achieved
135.21 and 184.23 iterations/sec at 2,048 and 4,096 sock-
ets respectively, compared to 153.92 and 209.65 for the MPI
version.

In these experiments use of the proprietary Cray non-blocking
operations and 4MB huge memory pages delivers some fur-
ther performance benefits for the OpenSHMEM-based ver-
sions, particularly at high node counts. The performance of
the non-blocking operations version is virtually identical to
the original in the experiments ≤512 sockets. At 1,024 sock-
ets and above, however, it starts to deliver significant perfor-
mance advantages, achieving 206.66 iterations/sec at 4,096
sockets, compared to only 184.23 for the original version. In
both the 2,048 and 4,096 socket experiments it also deliv-
ered broadly equivalent performance to the MPI implemen-
tation, achieving 155.31 and 206.66 iterations respectively,
compared to 153.92 and 209.65 for the MPI version. The
performance benefits from employing the larger 4MB huge
memory pages are even more significant; in the 4,096 socket
experiment this version achieved 217.42 iterations/sec. A
1.2× improvement over the original OpenSHMEM version
and an improvement of 7.78 iterations/sec over the equiva-
lent MPI implementation. Interestingly, however, its perfor-
mance in the experiments below 1,024 sockets was slightly
worse than the original OpenSHMEM version.

6. CONCLUSIONS AND FUTURE WORK
As we approach the era of exascale computing, improving
the scalability of applications will become increasingly im-
portant in enabling applications to effectively harness the
parallelism available in future architectures and thus achieve
the required levels of performance. PGAS approaches such
as OpenSHMEM or CAF, based on lighter-weight one-sided
communication operations, represent a promising area of re-

search to address this problem.

This work has evaluated the performance of equivalent Open-
SHMEM, CAF and MPI based versions of CloverLeaf at
considerable scale (up to 4,096 sockets/49,152 cores) on two
significantly different, whilst still state-of-the-art, system ar-
chitectures from two leading vendors. The results presented
here demonstrate that the OpenSHMEM PGAS program-
ming model can deliver portable performance across both
the Cray and SGI system architectures. On the SGI ICE-
X architecture it is able to match the performance of the
MPI model, whilst delivering comparable—albeit surpris-
ingly slightly slower—performance when compared to MPI
on the Cray XC30 system architecture. Our experiments
showed that the use of the proprietary Cray non-blocking
operations enables the performance of the SHMEM-based
versions to match and sometimes exceed that of their MPI
equivalents, on the Cray architecture. We feel that the in-
clusion of these constructs together with “rooted” versions of
some collective operations, in a future release of the Open-
SHMEM standard, would be a useful improvement to the
programming model. Additionally, we have also shown that
the library-based PGAS model of OpenSHMEM can be sig-
nificantly more performant than the equivalent language/
compiler based PGAS approaches such as CAF on the Cray
XC30.

Our experiments demonstrated that applications based on
either the OpenSHMEM or CAF PGAS paradigms can ben-
efit, in terms of improved application performance, from the
aggregation of data into communication buffers. In order
to collectively communicate the required data items to the
remote processes, rather than moving them directly using
strided memory operations. The performance of CAF-based
applications can also be sensitive to the selection of appro-
priate Co-array data structures within the application, as
this can have implications for how these data-structures are
accessed by remote memory operations. To potentially alle-
viate this problem we proposed the development of an ad-
ditional compiler directive.

We also presented performance data documenting the per-
formance improvements which can be obtained, for both
OpenSHMEM- and CAF-based applications, by employing
point-to-point synchronisation mechanisms rather than the
alternative global synchronisation primitives. In our experi-
ments our results showed that for OpenSHMEM-based ver-
sions of CloverLeaf, the choice of implementation mecha-
nisms for the point-to-point synchronisation constructs (shm-
em wait or volatile variables), and the remote memory op-
eration ordering constructs (fence and quiet), does not sig-
nificantly affect the overall performance of the application.
Similarly, the proprietary Cray CAF pgas defer_sync con-
structs and our optimisations to overlap communications
and computation, do not significantly affect overall perfor-
mance.

In future work, using our PGAS implementations of Clover-
Leaf, we plan to conduct additional experiments on the
Archer XC30 platform including profiling the performance of
each particular code variant (MPI, CAF and OpenSHMEM)
to confirm the causes of the performance disparities docu-
mented in this work. We also plan to examine the one-sided



communications constructs recently standardised within the
MPI 3.0 specification. Additionally, running further experi-
ments on both Spruce and Archer with different huge mem-
ory page and symmetric heap settings, would enable us to
determine if any additional performance improvements can
be achieved via these mechanisms. Similarly, for complete-
ness, repeating the experiments with our CAF-based ver-
sions on Spruce, using the Intel CAF implementation, would
be a potentially interesting research direction.

Analysing the overall memory consumption of our PGAS
versions, when compared to the reference MPI implementa-
tion, maybe useful in determining whether these program-
ming models deliver any advantages in terms of a reduc-
tion in memory consumption, e.g. due to the elimination
of communication buffers. Hybridising all of our PGAS im-
plementations of CloverLeaf with threading constructs such
as OpenMP, to determine if the performance improvements
which we have seen with the hybrid MPI-based versions can
be replicated with the PGAS implementations, is another
direction of research we plan to undertake. To determine if
the performance trends we have seen in this work continue,
we also plan to conduct larger-scale experiments on these
and other platforms, including an Infiniband-based platform
using the QLogic OpenSHMEM implementation. A longer-
term goal of our research is to apply the PGAS programming
models to applications which exhibit different communica-
tions characteristics (potentially irregular patterns) to the
one we have studied here, to determine if they can deliver
any improvements in performance for other classes of appli-
cation.
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