//===- Synchronization.cpp - OpenMP Device synchronization API ---- c++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // Include all synchronization. // //===----------------------------------------------------------------------===// #include "Synchronization.h" #include "Debug.h" #include "Interface.h" #include "Mapping.h" #include "State.h" #include "Types.h" #include "Utils.h" #pragma omp declare target using namespace _OMP; namespace impl { /// Atomics /// ///{ /// NOTE: This function needs to be implemented by every target. uint32_t atomicInc(uint32_t *Address, uint32_t Val, int Ordering); uint32_t atomicLoad(uint32_t *Address, int Ordering) { return __atomic_fetch_add(Address, 0U, __ATOMIC_SEQ_CST); } void atomicStore(uint32_t *Address, uint32_t Val, int Ordering) { __atomic_store_n(Address, Val, Ordering); } uint32_t atomicAdd(uint32_t *Address, uint32_t Val, int Ordering) { return __atomic_fetch_add(Address, Val, Ordering); } uint32_t atomicMax(uint32_t *Address, uint32_t Val, int Ordering) { return __atomic_fetch_max(Address, Val, Ordering); } uint32_t atomicExchange(uint32_t *Address, uint32_t Val, int Ordering) { uint32_t R; __atomic_exchange(Address, &Val, &R, Ordering); return R; } uint32_t atomicCAS(uint32_t *Address, uint32_t Compare, uint32_t Val, int Ordering) { (void)__atomic_compare_exchange(Address, &Compare, &Val, false, Ordering, Ordering); return Compare; } uint64_t atomicAdd(uint64_t *Address, uint64_t Val, int Ordering) { return __atomic_fetch_add(Address, Val, Ordering); } ///} /// AMDGCN Implementation /// ///{ #pragma omp begin declare variant match(device = {arch(amdgcn)}) uint32_t atomicInc(uint32_t *A, uint32_t V, int Ordering) { // builtin_amdgcn_atomic_inc32 should expand to this switch when // passed a runtime value, but does not do so yet. Workaround here. switch (Ordering) { default: __builtin_unreachable(); case __ATOMIC_RELAXED: return __builtin_amdgcn_atomic_inc32(A, V, __ATOMIC_RELAXED, ""); case __ATOMIC_ACQUIRE: return __builtin_amdgcn_atomic_inc32(A, V, __ATOMIC_ACQUIRE, ""); case __ATOMIC_RELEASE: return __builtin_amdgcn_atomic_inc32(A, V, __ATOMIC_RELEASE, ""); case __ATOMIC_ACQ_REL: return __builtin_amdgcn_atomic_inc32(A, V, __ATOMIC_ACQ_REL, ""); case __ATOMIC_SEQ_CST: return __builtin_amdgcn_atomic_inc32(A, V, __ATOMIC_SEQ_CST, ""); } } uint32_t SHARED(namedBarrierTracker); void namedBarrierInit() { // Don't have global ctors, and shared memory is not zero init atomic::store(&namedBarrierTracker, 0u, __ATOMIC_RELEASE); } void namedBarrier() { uint32_t NumThreads = omp_get_num_threads(); // assert(NumThreads % 32 == 0); uint32_t WarpSize = mapping::getWarpSize(); uint32_t NumWaves = NumThreads / WarpSize; fence::team(__ATOMIC_ACQUIRE); // named barrier implementation for amdgcn. // Uses two 16 bit unsigned counters. One for the number of waves to have // reached the barrier, and one to count how many times the barrier has been // passed. These are packed in a single atomically accessed 32 bit integer. // Low bits for the number of waves, assumed zero before this call. // High bits to count the number of times the barrier has been passed. // precondition: NumWaves != 0; // invariant: NumWaves * WarpSize == NumThreads; // precondition: NumWaves < 0xffffu; // Increment the low 16 bits once, using the lowest active thread. if (mapping::isLeaderInWarp()) { uint32_t load = atomic::add(&namedBarrierTracker, 1, __ATOMIC_RELAXED); // commutative // Record the number of times the barrier has been passed uint32_t generation = load & 0xffff0000u; if ((load & 0x0000ffffu) == (NumWaves - 1)) { // Reached NumWaves in low bits so this is the last wave. // Set low bits to zero and increment high bits load += 0x00010000u; // wrap is safe load &= 0xffff0000u; // because bits zeroed second // Reset the wave counter and release the waiting waves atomic::store(&namedBarrierTracker, load, __ATOMIC_RELAXED); } else { // more waves still to go, spin until generation counter changes do { __builtin_amdgcn_s_sleep(0); load = atomic::load(&namedBarrierTracker, __ATOMIC_RELAXED); } while ((load & 0xffff0000u) == generation); } } fence::team(__ATOMIC_RELEASE); } // sema checking of amdgcn_fence is aggressive. Intention is to patch clang // so that it is usable within a template environment and so that a runtime // value of the memory order is expanded to this switch within clang/llvm. void fenceTeam(int Ordering) { switch (Ordering) { default: __builtin_unreachable(); case __ATOMIC_ACQUIRE: return __builtin_amdgcn_fence(__ATOMIC_ACQUIRE, "workgroup"); case __ATOMIC_RELEASE: return __builtin_amdgcn_fence(__ATOMIC_RELEASE, "workgroup"); case __ATOMIC_ACQ_REL: return __builtin_amdgcn_fence(__ATOMIC_ACQ_REL, "workgroup"); case __ATOMIC_SEQ_CST: return __builtin_amdgcn_fence(__ATOMIC_SEQ_CST, "workgroup"); } } void fenceKernel(int Ordering) { switch (Ordering) { default: __builtin_unreachable(); case __ATOMIC_ACQUIRE: return __builtin_amdgcn_fence(__ATOMIC_ACQUIRE, "agent"); case __ATOMIC_RELEASE: return __builtin_amdgcn_fence(__ATOMIC_RELEASE, "agent"); case __ATOMIC_ACQ_REL: return __builtin_amdgcn_fence(__ATOMIC_ACQ_REL, "agent"); case __ATOMIC_SEQ_CST: return __builtin_amdgcn_fence(__ATOMIC_SEQ_CST, "agent"); } } void fenceSystem(int Ordering) { switch (Ordering) { default: __builtin_unreachable(); case __ATOMIC_ACQUIRE: return __builtin_amdgcn_fence(__ATOMIC_ACQUIRE, ""); case __ATOMIC_RELEASE: return __builtin_amdgcn_fence(__ATOMIC_RELEASE, ""); case __ATOMIC_ACQ_REL: return __builtin_amdgcn_fence(__ATOMIC_ACQ_REL, ""); case __ATOMIC_SEQ_CST: return __builtin_amdgcn_fence(__ATOMIC_SEQ_CST, ""); } } void syncWarp(__kmpc_impl_lanemask_t) { // AMDGCN doesn't need to sync threads in a warp } void syncThreads() { __builtin_amdgcn_s_barrier(); } void syncThreadsAligned() { syncThreads(); } // TODO: Don't have wavefront lane locks. Possibly can't have them. void unsetLock(omp_lock_t *) { __builtin_trap(); } int testLock(omp_lock_t *) { __builtin_trap(); } void initLock(omp_lock_t *) { __builtin_trap(); } void destroyLock(omp_lock_t *) { __builtin_trap(); } void setLock(omp_lock_t *) { __builtin_trap(); } #pragma omp end declare variant ///} /// NVPTX Implementation /// ///{ #pragma omp begin declare variant match( \ device = {arch(nvptx, nvptx64)}, implementation = {extension(match_any)}) uint32_t atomicInc(uint32_t *Address, uint32_t Val, int Ordering) { return __nvvm_atom_inc_gen_ui(Address, Val); } void namedBarrierInit() {} void namedBarrier() { uint32_t NumThreads = omp_get_num_threads(); ASSERT(NumThreads % 32 == 0); // The named barrier for active parallel threads of a team in an L1 parallel // region to synchronize with each other. constexpr int BarrierNo = 7; asm volatile("barrier.sync %0, %1;" : : "r"(BarrierNo), "r"(NumThreads) : "memory"); } void fenceTeam(int) { __nvvm_membar_cta(); } void fenceKernel(int) { __nvvm_membar_gl(); } void fenceSystem(int) { __nvvm_membar_sys(); } void syncWarp(__kmpc_impl_lanemask_t Mask) { __nvvm_bar_warp_sync(Mask); } void syncThreads() { constexpr int BarrierNo = 8; asm volatile("barrier.sync %0;" : : "r"(BarrierNo) : "memory"); } void syncThreadsAligned() { __syncthreads(); } constexpr uint32_t OMP_SPIN = 1000; constexpr uint32_t UNSET = 0; constexpr uint32_t SET = 1; // TODO: This seems to hide a bug in the declare variant handling. If it is // called before it is defined // here the overload won't happen. Investigate lalter! void unsetLock(omp_lock_t *Lock) { (void)atomicExchange((uint32_t *)Lock, UNSET, __ATOMIC_SEQ_CST); } int testLock(omp_lock_t *Lock) { return atomicAdd((uint32_t *)Lock, 0u, __ATOMIC_SEQ_CST); } void initLock(omp_lock_t *Lock) { unsetLock(Lock); } void destroyLock(omp_lock_t *Lock) { unsetLock(Lock); } void setLock(omp_lock_t *Lock) { // TODO: not sure spinning is a good idea here.. while (atomicCAS((uint32_t *)Lock, UNSET, SET, __ATOMIC_SEQ_CST) != UNSET) { int32_t start = __nvvm_read_ptx_sreg_clock(); int32_t now; for (;;) { now = __nvvm_read_ptx_sreg_clock(); int32_t cycles = now > start ? now - start : now + (0xffffffff - start); if (cycles >= OMP_SPIN * mapping::getBlockId()) { break; } } } // wait for 0 to be the read value } #pragma omp end declare variant ///} } // namespace impl void synchronize::init(bool IsSPMD) { if (!IsSPMD) impl::namedBarrierInit(); } void synchronize::warp(LaneMaskTy Mask) { impl::syncWarp(Mask); } void synchronize::threads() { impl::syncThreads(); } void synchronize::threadsAligned() { impl::syncThreadsAligned(); } void fence::team(int Ordering) { impl::fenceTeam(Ordering); } void fence::kernel(int Ordering) { impl::fenceKernel(Ordering); } void fence::system(int Ordering) { impl::fenceSystem(Ordering); } uint32_t atomic::load(uint32_t *Addr, int Ordering) { return impl::atomicLoad(Addr, Ordering); } void atomic::store(uint32_t *Addr, uint32_t V, int Ordering) { impl::atomicStore(Addr, V, Ordering); } uint32_t atomic::inc(uint32_t *Addr, uint32_t V, int Ordering) { return impl::atomicInc(Addr, V, Ordering); } uint32_t atomic::add(uint32_t *Addr, uint32_t V, int Ordering) { return impl::atomicAdd(Addr, V, Ordering); } uint64_t atomic::add(uint64_t *Addr, uint64_t V, int Ordering) { return impl::atomicAdd(Addr, V, Ordering); } extern "C" { void __kmpc_ordered(IdentTy *Loc, int32_t TId) { FunctionTracingRAII(); } void __kmpc_end_ordered(IdentTy *Loc, int32_t TId) { FunctionTracingRAII(); } int32_t __kmpc_cancel_barrier(IdentTy *Loc, int32_t TId) { FunctionTracingRAII(); __kmpc_barrier(Loc, TId); return 0; } void __kmpc_barrier(IdentTy *Loc, int32_t TId) { FunctionTracingRAII(); if (mapping::isMainThreadInGenericMode()) return __kmpc_flush(Loc); if (mapping::isSPMDMode()) return __kmpc_barrier_simple_spmd(Loc, TId); impl::namedBarrier(); } __attribute__((noinline)) void __kmpc_barrier_simple_spmd(IdentTy *Loc, int32_t TId) { FunctionTracingRAII(); synchronize::threadsAligned(); } __attribute__((noinline)) void __kmpc_barrier_simple_generic(IdentTy *Loc, int32_t TId) { FunctionTracingRAII(); synchronize::threads(); } int32_t __kmpc_master(IdentTy *Loc, int32_t TId) { FunctionTracingRAII(); return omp_get_team_num() == 0; } void __kmpc_end_master(IdentTy *Loc, int32_t TId) { FunctionTracingRAII(); } int32_t __kmpc_single(IdentTy *Loc, int32_t TId) { FunctionTracingRAII(); return __kmpc_master(Loc, TId); } void __kmpc_end_single(IdentTy *Loc, int32_t TId) { FunctionTracingRAII(); // The barrier is explicitly called. } void __kmpc_flush(IdentTy *Loc) { FunctionTracingRAII(); fence::kernel(__ATOMIC_SEQ_CST); } uint64_t __kmpc_warp_active_thread_mask(void) { FunctionTracingRAII(); return mapping::activemask(); } void __kmpc_syncwarp(uint64_t Mask) { FunctionTracingRAII(); synchronize::warp(Mask); } void __kmpc_critical(IdentTy *Loc, int32_t TId, CriticalNameTy *Name) { FunctionTracingRAII(); omp_set_lock(reinterpret_cast(Name)); } void __kmpc_end_critical(IdentTy *Loc, int32_t TId, CriticalNameTy *Name) { FunctionTracingRAII(); omp_unset_lock(reinterpret_cast(Name)); } void omp_init_lock(omp_lock_t *Lock) { impl::initLock(Lock); } void omp_destroy_lock(omp_lock_t *Lock) { impl::destroyLock(Lock); } void omp_set_lock(omp_lock_t *Lock) { impl::setLock(Lock); } void omp_unset_lock(omp_lock_t *Lock) { impl::unsetLock(Lock); } int omp_test_lock(omp_lock_t *Lock) { return impl::testLock(Lock); } } // extern "C" #pragma omp end declare target