//===--- amdgpu/impl/system.cpp ----------------------------------- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include #include #include #include #include "internal.h" #include "rt.h" #include "msgpack.h" namespace hsa { // Wrap HSA iterate API in a shim that allows passing general callables template hsa_status_t executable_iterate_symbols(hsa_executable_t executable, C cb) { auto L = [](hsa_executable_t executable, hsa_executable_symbol_t symbol, void *data) -> hsa_status_t { C *unwrapped = static_cast(data); return (*unwrapped)(executable, symbol); }; return hsa_executable_iterate_symbols(executable, L, static_cast(&cb)); } } // namespace hsa typedef unsigned char *address; /* * Note descriptors. */ // FreeBSD already declares Elf_Note (indirectly via ) #if !defined(__FreeBSD__) typedef struct { uint32_t n_namesz; /* Length of note's name. */ uint32_t n_descsz; /* Length of note's value. */ uint32_t n_type; /* Type of note. */ // then name // then padding, optional // then desc, at 4 byte alignment (not 8, despite being elf64) } Elf_Note; #endif class KernelArgMD { public: enum class ValueKind { HiddenGlobalOffsetX, HiddenGlobalOffsetY, HiddenGlobalOffsetZ, HiddenNone, HiddenPrintfBuffer, HiddenDefaultQueue, HiddenCompletionAction, HiddenMultiGridSyncArg, HiddenHostcallBuffer, Unknown }; KernelArgMD() : name_(std::string()), size_(0), offset_(0), valueKind_(ValueKind::Unknown) {} // fields std::string name_; uint32_t size_; uint32_t offset_; ValueKind valueKind_; }; static const std::map ArgValueKind = { // v3 // {"by_value", KernelArgMD::ValueKind::ByValue}, // {"global_buffer", KernelArgMD::ValueKind::GlobalBuffer}, // {"dynamic_shared_pointer", // KernelArgMD::ValueKind::DynamicSharedPointer}, // {"sampler", KernelArgMD::ValueKind::Sampler}, // {"image", KernelArgMD::ValueKind::Image}, // {"pipe", KernelArgMD::ValueKind::Pipe}, // {"queue", KernelArgMD::ValueKind::Queue}, {"hidden_global_offset_x", KernelArgMD::ValueKind::HiddenGlobalOffsetX}, {"hidden_global_offset_y", KernelArgMD::ValueKind::HiddenGlobalOffsetY}, {"hidden_global_offset_z", KernelArgMD::ValueKind::HiddenGlobalOffsetZ}, {"hidden_none", KernelArgMD::ValueKind::HiddenNone}, {"hidden_printf_buffer", KernelArgMD::ValueKind::HiddenPrintfBuffer}, {"hidden_default_queue", KernelArgMD::ValueKind::HiddenDefaultQueue}, {"hidden_completion_action", KernelArgMD::ValueKind::HiddenCompletionAction}, {"hidden_multigrid_sync_arg", KernelArgMD::ValueKind::HiddenMultiGridSyncArg}, {"hidden_hostcall_buffer", KernelArgMD::ValueKind::HiddenHostcallBuffer}, }; namespace core { hsa_status_t callbackEvent(const hsa_amd_event_t *event, void *data) { if (event->event_type == HSA_AMD_GPU_MEMORY_FAULT_EVENT) { hsa_amd_gpu_memory_fault_info_t memory_fault = event->memory_fault; // memory_fault.agent // memory_fault.virtual_address // memory_fault.fault_reason_mask // fprintf("[GPU Error at %p: Reason is ", memory_fault.virtual_address); std::stringstream stream; stream << std::hex << (uintptr_t)memory_fault.virtual_address; std::string addr("0x" + stream.str()); std::string err_string = "[GPU Memory Error] Addr: " + addr; err_string += " Reason: "; if (!(memory_fault.fault_reason_mask & 0x00111111)) { err_string += "No Idea! "; } else { if (memory_fault.fault_reason_mask & 0x00000001) err_string += "Page not present or supervisor privilege. "; if (memory_fault.fault_reason_mask & 0x00000010) err_string += "Write access to a read-only page. "; if (memory_fault.fault_reason_mask & 0x00000100) err_string += "Execute access to a page marked NX. "; if (memory_fault.fault_reason_mask & 0x00001000) err_string += "Host access only. "; if (memory_fault.fault_reason_mask & 0x00010000) err_string += "ECC failure (if supported by HW). "; if (memory_fault.fault_reason_mask & 0x00100000) err_string += "Can't determine the exact fault address. "; } fprintf(stderr, "%s\n", err_string.c_str()); return HSA_STATUS_ERROR; } return HSA_STATUS_SUCCESS; } hsa_status_t atl_init_gpu_context() { hsa_status_t err = hsa_amd_register_system_event_handler(callbackEvent, NULL); if (err != HSA_STATUS_SUCCESS) { printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, "Registering the system for memory faults", get_error_string(err)); return HSA_STATUS_ERROR; } return HSA_STATUS_SUCCESS; } static bool isImplicit(KernelArgMD::ValueKind value_kind) { switch (value_kind) { case KernelArgMD::ValueKind::HiddenGlobalOffsetX: case KernelArgMD::ValueKind::HiddenGlobalOffsetY: case KernelArgMD::ValueKind::HiddenGlobalOffsetZ: case KernelArgMD::ValueKind::HiddenNone: case KernelArgMD::ValueKind::HiddenPrintfBuffer: case KernelArgMD::ValueKind::HiddenDefaultQueue: case KernelArgMD::ValueKind::HiddenCompletionAction: case KernelArgMD::ValueKind::HiddenMultiGridSyncArg: case KernelArgMD::ValueKind::HiddenHostcallBuffer: return true; default: return false; } } static std::pair find_metadata(void *binary, size_t binSize) { std::pair failure = {nullptr, nullptr}; Elf *e = elf_memory(static_cast(binary), binSize); if (elf_kind(e) != ELF_K_ELF) { return failure; } size_t numpHdrs; if (elf_getphdrnum(e, &numpHdrs) != 0) { return failure; } Elf64_Phdr *pHdrs = elf64_getphdr(e); for (size_t i = 0; i < numpHdrs; ++i) { Elf64_Phdr pHdr = pHdrs[i]; // Look for the runtime metadata note if (pHdr.p_type == PT_NOTE && pHdr.p_align >= sizeof(int)) { // Iterate over the notes in this segment address ptr = (address)binary + pHdr.p_offset; address segmentEnd = ptr + pHdr.p_filesz; while (ptr < segmentEnd) { Elf_Note *note = reinterpret_cast(ptr); address name = (address)¬e[1]; if (note->n_type == 7 || note->n_type == 8) { return failure; } else if (note->n_type == 10 /* NT_AMD_AMDGPU_HSA_METADATA */ && note->n_namesz == sizeof "AMD" && !memcmp(name, "AMD", note->n_namesz)) { // code object v2 uses yaml metadata, no longer supported return failure; } else if (note->n_type == 32 /* NT_AMDGPU_METADATA */ && note->n_namesz == sizeof "AMDGPU" && !memcmp(name, "AMDGPU", note->n_namesz)) { // n_descsz = 485 // value is padded to 4 byte alignment, may want to move end up to // match size_t offset = sizeof(uint32_t) * 3 /* fields */ + sizeof("AMDGPU") /* name */ + 1 /* padding to 4 byte alignment */; // Including the trailing padding means both pointers are 4 bytes // aligned, which may be useful later. unsigned char *metadata_start = (unsigned char *)ptr + offset; unsigned char *metadata_end = metadata_start + core::alignUp(note->n_descsz, 4); return {metadata_start, metadata_end}; } ptr += sizeof(*note) + core::alignUp(note->n_namesz, sizeof(int)) + core::alignUp(note->n_descsz, sizeof(int)); } } } return failure; } namespace { int map_lookup_array(msgpack::byte_range message, const char *needle, msgpack::byte_range *res, uint64_t *size) { unsigned count = 0; struct s : msgpack::functors_defaults { s(unsigned &count, uint64_t *size) : count(count), size(size) {} unsigned &count; uint64_t *size; const unsigned char *handle_array(uint64_t N, msgpack::byte_range bytes) { count++; *size = N; return bytes.end; } }; msgpack::foreach_map(message, [&](msgpack::byte_range key, msgpack::byte_range value) { if (msgpack::message_is_string(key, needle)) { // If the message is an array, record number of // elements in *size msgpack::handle_msgpack(value, {count, size}); // return the whole array *res = value; } }); // Only claim success if exactly one key/array pair matched return count != 1; } int map_lookup_string(msgpack::byte_range message, const char *needle, std::string *res) { unsigned count = 0; struct s : public msgpack::functors_defaults { s(unsigned &count, std::string *res) : count(count), res(res) {} unsigned &count; std::string *res; void handle_string(size_t N, const unsigned char *str) { count++; *res = std::string(str, str + N); } }; msgpack::foreach_map(message, [&](msgpack::byte_range key, msgpack::byte_range value) { if (msgpack::message_is_string(key, needle)) { msgpack::handle_msgpack(value, {count, res}); } }); return count != 1; } int map_lookup_uint64_t(msgpack::byte_range message, const char *needle, uint64_t *res) { unsigned count = 0; msgpack::foreach_map(message, [&](msgpack::byte_range key, msgpack::byte_range value) { if (msgpack::message_is_string(key, needle)) { msgpack::foronly_unsigned(value, [&](uint64_t x) { count++; *res = x; }); } }); return count != 1; } int array_lookup_element(msgpack::byte_range message, uint64_t elt, msgpack::byte_range *res) { int rc = 1; uint64_t i = 0; msgpack::foreach_array(message, [&](msgpack::byte_range value) { if (i == elt) { *res = value; rc = 0; } i++; }); return rc; } int populate_kernelArgMD(msgpack::byte_range args_element, KernelArgMD *kernelarg) { using namespace msgpack; int error = 0; foreach_map(args_element, [&](byte_range key, byte_range value) -> void { if (message_is_string(key, ".name")) { foronly_string(value, [&](size_t N, const unsigned char *str) { kernelarg->name_ = std::string(str, str + N); }); } else if (message_is_string(key, ".size")) { foronly_unsigned(value, [&](uint64_t x) { kernelarg->size_ = x; }); } else if (message_is_string(key, ".offset")) { foronly_unsigned(value, [&](uint64_t x) { kernelarg->offset_ = x; }); } else if (message_is_string(key, ".value_kind")) { foronly_string(value, [&](size_t N, const unsigned char *str) { std::string s = std::string(str, str + N); auto itValueKind = ArgValueKind.find(s); if (itValueKind != ArgValueKind.end()) { kernelarg->valueKind_ = itValueKind->second; } }); } }); return error; } } // namespace static hsa_status_t get_code_object_custom_metadata( void *binary, size_t binSize, std::map &KernelInfoTable) { // parse code object with different keys from v2 // also, the kernel name is not the same as the symbol name -- so a // symbol->name map is needed std::pair metadata = find_metadata(binary, binSize); if (!metadata.first) { return HSA_STATUS_ERROR_INVALID_CODE_OBJECT; } uint64_t kernelsSize = 0; int msgpack_errors = 0; msgpack::byte_range kernel_array; msgpack_errors = map_lookup_array({metadata.first, metadata.second}, "amdhsa.kernels", &kernel_array, &kernelsSize); if (msgpack_errors != 0) { printf("[%s:%d] %s failed\n", __FILE__, __LINE__, "kernels lookup in program metadata"); return HSA_STATUS_ERROR_INVALID_CODE_OBJECT; } for (size_t i = 0; i < kernelsSize; i++) { assert(msgpack_errors == 0); std::string kernelName; std::string symbolName; msgpack::byte_range element; msgpack_errors += array_lookup_element(kernel_array, i, &element); if (msgpack_errors != 0) { printf("[%s:%d] %s failed\n", __FILE__, __LINE__, "element lookup in kernel metadata"); return HSA_STATUS_ERROR_INVALID_CODE_OBJECT; } msgpack_errors += map_lookup_string(element, ".name", &kernelName); msgpack_errors += map_lookup_string(element, ".symbol", &symbolName); if (msgpack_errors != 0) { printf("[%s:%d] %s failed\n", __FILE__, __LINE__, "strings lookup in kernel metadata"); return HSA_STATUS_ERROR_INVALID_CODE_OBJECT; } // Make sure that kernelName + ".kd" == symbolName if ((kernelName + ".kd") != symbolName) { printf("[%s:%d] Kernel name mismatching symbol: %s != %s + .kd\n", __FILE__, __LINE__, symbolName.c_str(), kernelName.c_str()); return HSA_STATUS_ERROR_INVALID_CODE_OBJECT; } atl_kernel_info_t info = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; uint64_t sgpr_count, vgpr_count, sgpr_spill_count, vgpr_spill_count; msgpack_errors += map_lookup_uint64_t(element, ".sgpr_count", &sgpr_count); if (msgpack_errors != 0) { printf("[%s:%d] %s failed\n", __FILE__, __LINE__, "sgpr count metadata lookup in kernel metadata"); return HSA_STATUS_ERROR_INVALID_CODE_OBJECT; } info.sgpr_count = sgpr_count; msgpack_errors += map_lookup_uint64_t(element, ".vgpr_count", &vgpr_count); if (msgpack_errors != 0) { printf("[%s:%d] %s failed\n", __FILE__, __LINE__, "vgpr count metadata lookup in kernel metadata"); return HSA_STATUS_ERROR_INVALID_CODE_OBJECT; } info.vgpr_count = vgpr_count; msgpack_errors += map_lookup_uint64_t(element, ".sgpr_spill_count", &sgpr_spill_count); if (msgpack_errors != 0) { printf("[%s:%d] %s failed\n", __FILE__, __LINE__, "sgpr spill count metadata lookup in kernel metadata"); return HSA_STATUS_ERROR_INVALID_CODE_OBJECT; } info.sgpr_spill_count = sgpr_spill_count; msgpack_errors += map_lookup_uint64_t(element, ".vgpr_spill_count", &vgpr_spill_count); if (msgpack_errors != 0) { printf("[%s:%d] %s failed\n", __FILE__, __LINE__, "vgpr spill count metadata lookup in kernel metadata"); return HSA_STATUS_ERROR_INVALID_CODE_OBJECT; } info.vgpr_spill_count = vgpr_spill_count; size_t kernel_explicit_args_size = 0; uint64_t kernel_segment_size; msgpack_errors += map_lookup_uint64_t(element, ".kernarg_segment_size", &kernel_segment_size); if (msgpack_errors != 0) { printf("[%s:%d] %s failed\n", __FILE__, __LINE__, "kernarg segment size metadata lookup in kernel metadata"); return HSA_STATUS_ERROR_INVALID_CODE_OBJECT; } bool hasHiddenArgs = false; if (kernel_segment_size > 0) { uint64_t argsSize; size_t offset = 0; msgpack::byte_range args_array; msgpack_errors += map_lookup_array(element, ".args", &args_array, &argsSize); if (msgpack_errors != 0) { printf("[%s:%d] %s failed\n", __FILE__, __LINE__, "kernel args metadata lookup in kernel metadata"); return HSA_STATUS_ERROR_INVALID_CODE_OBJECT; } for (size_t i = 0; i < argsSize; ++i) { KernelArgMD lcArg; msgpack::byte_range args_element; msgpack_errors += array_lookup_element(args_array, i, &args_element); if (msgpack_errors != 0) { printf("[%s:%d] %s failed\n", __FILE__, __LINE__, "iterate args map in kernel args metadata"); return HSA_STATUS_ERROR_INVALID_CODE_OBJECT; } msgpack_errors += populate_kernelArgMD(args_element, &lcArg); if (msgpack_errors != 0) { printf("[%s:%d] %s failed\n", __FILE__, __LINE__, "iterate args map in kernel args metadata"); return HSA_STATUS_ERROR_INVALID_CODE_OBJECT; } // v3 has offset field and not align field size_t new_offset = lcArg.offset_; size_t padding = new_offset - offset; offset = new_offset; DP("Arg[%lu] \"%s\" (%u, %u)\n", i, lcArg.name_.c_str(), lcArg.size_, lcArg.offset_); offset += lcArg.size_; // check if the arg is a hidden/implicit arg // this logic assumes that all hidden args are 8-byte aligned if (!isImplicit(lcArg.valueKind_)) { info.explicit_argument_count++; kernel_explicit_args_size += lcArg.size_; } else { info.implicit_argument_count++; hasHiddenArgs = true; } kernel_explicit_args_size += padding; } } // TODO: Probably don't want this arithmetic info.kernel_segment_size = (hasHiddenArgs ? kernel_explicit_args_size : kernel_segment_size); DP("[%s: kernarg seg size] (%lu --> %u)\n", kernelName.c_str(), kernel_segment_size, info.kernel_segment_size); // kernel received, now add it to the kernel info table KernelInfoTable[kernelName] = info; } return HSA_STATUS_SUCCESS; } static hsa_status_t populate_InfoTables(hsa_executable_symbol_t symbol, std::map &KernelInfoTable, std::map &SymbolInfoTable) { hsa_symbol_kind_t type; uint32_t name_length; hsa_status_t err; err = hsa_executable_symbol_get_info(symbol, HSA_EXECUTABLE_SYMBOL_INFO_TYPE, &type); if (err != HSA_STATUS_SUCCESS) { printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, "Symbol info extraction", get_error_string(err)); return err; } DP("Exec Symbol type: %d\n", type); if (type == HSA_SYMBOL_KIND_KERNEL) { err = hsa_executable_symbol_get_info( symbol, HSA_EXECUTABLE_SYMBOL_INFO_NAME_LENGTH, &name_length); if (err != HSA_STATUS_SUCCESS) { printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, "Symbol info extraction", get_error_string(err)); return err; } char *name = reinterpret_cast(malloc(name_length + 1)); err = hsa_executable_symbol_get_info(symbol, HSA_EXECUTABLE_SYMBOL_INFO_NAME, name); if (err != HSA_STATUS_SUCCESS) { printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, "Symbol info extraction", get_error_string(err)); return err; } // remove the suffix .kd from symbol name. name[name_length - 3] = 0; atl_kernel_info_t info; std::string kernelName(name); // by now, the kernel info table should already have an entry // because the non-ROCr custom code object parsing is called before // iterating over the code object symbols using ROCr if (KernelInfoTable.find(kernelName) == KernelInfoTable.end()) { DP("amdgpu internal consistency error\n"); return HSA_STATUS_ERROR; } // found, so assign and update info = KernelInfoTable[kernelName]; /* Extract dispatch information from the symbol */ err = hsa_executable_symbol_get_info( symbol, HSA_EXECUTABLE_SYMBOL_INFO_KERNEL_OBJECT, &(info.kernel_object)); if (err != HSA_STATUS_SUCCESS) { printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, "Extracting the symbol from the executable", get_error_string(err)); return err; } err = hsa_executable_symbol_get_info( symbol, HSA_EXECUTABLE_SYMBOL_INFO_KERNEL_GROUP_SEGMENT_SIZE, &(info.group_segment_size)); if (err != HSA_STATUS_SUCCESS) { printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, "Extracting the group segment size from the executable", get_error_string(err)); return err; } err = hsa_executable_symbol_get_info( symbol, HSA_EXECUTABLE_SYMBOL_INFO_KERNEL_PRIVATE_SEGMENT_SIZE, &(info.private_segment_size)); if (err != HSA_STATUS_SUCCESS) { printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, "Extracting the private segment from the executable", get_error_string(err)); return err; } DP("Kernel %s --> %lx symbol %u group segsize %u pvt segsize %u bytes " "kernarg\n", kernelName.c_str(), info.kernel_object, info.group_segment_size, info.private_segment_size, info.kernel_segment_size); // assign it back to the kernel info table KernelInfoTable[kernelName] = info; free(name); } else if (type == HSA_SYMBOL_KIND_VARIABLE) { err = hsa_executable_symbol_get_info( symbol, HSA_EXECUTABLE_SYMBOL_INFO_NAME_LENGTH, &name_length); if (err != HSA_STATUS_SUCCESS) { printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, "Symbol info extraction", get_error_string(err)); return err; } char *name = reinterpret_cast(malloc(name_length + 1)); err = hsa_executable_symbol_get_info(symbol, HSA_EXECUTABLE_SYMBOL_INFO_NAME, name); if (err != HSA_STATUS_SUCCESS) { printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, "Symbol info extraction", get_error_string(err)); return err; } name[name_length] = 0; atl_symbol_info_t info; err = hsa_executable_symbol_get_info( symbol, HSA_EXECUTABLE_SYMBOL_INFO_VARIABLE_ADDRESS, &(info.addr)); if (err != HSA_STATUS_SUCCESS) { printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, "Symbol info address extraction", get_error_string(err)); return err; } err = hsa_executable_symbol_get_info( symbol, HSA_EXECUTABLE_SYMBOL_INFO_VARIABLE_SIZE, &(info.size)); if (err != HSA_STATUS_SUCCESS) { printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, "Symbol info size extraction", get_error_string(err)); return err; } DP("Symbol %s = %p (%u bytes)\n", name, (void *)info.addr, info.size); SymbolInfoTable[std::string(name)] = info; free(name); } else { DP("Symbol is an indirect function\n"); } return HSA_STATUS_SUCCESS; } hsa_status_t RegisterModuleFromMemory( std::map &KernelInfoTable, std::map &SymbolInfoTable, void *module_bytes, size_t module_size, hsa_agent_t agent, hsa_status_t (*on_deserialized_data)(void *data, size_t size, void *cb_state), void *cb_state, std::vector &HSAExecutables) { hsa_status_t err; hsa_executable_t executable = {0}; hsa_profile_t agent_profile; err = hsa_agent_get_info(agent, HSA_AGENT_INFO_PROFILE, &agent_profile); if (err != HSA_STATUS_SUCCESS) { printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, "Query the agent profile", get_error_string(err)); return HSA_STATUS_ERROR; } // FIXME: Assume that every profile is FULL until we understand how to build // GCN with base profile agent_profile = HSA_PROFILE_FULL; /* Create the empty executable. */ err = hsa_executable_create(agent_profile, HSA_EXECUTABLE_STATE_UNFROZEN, "", &executable); if (err != HSA_STATUS_SUCCESS) { printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, "Create the executable", get_error_string(err)); return HSA_STATUS_ERROR; } bool module_load_success = false; do // Existing control flow used continue, preserve that for this patch { { // Some metadata info is not available through ROCr API, so use custom // code object metadata parsing to collect such metadata info err = get_code_object_custom_metadata(module_bytes, module_size, KernelInfoTable); if (err != HSA_STATUS_SUCCESS) { DP("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, "Getting custom code object metadata", get_error_string(err)); continue; } // Deserialize code object. hsa_code_object_t code_object = {0}; err = hsa_code_object_deserialize(module_bytes, module_size, NULL, &code_object); if (err != HSA_STATUS_SUCCESS) { DP("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, "Code Object Deserialization", get_error_string(err)); continue; } assert(0 != code_object.handle); // Mutating the device image here avoids another allocation & memcpy void *code_object_alloc_data = reinterpret_cast(code_object.handle); hsa_status_t impl_err = on_deserialized_data(code_object_alloc_data, module_size, cb_state); if (impl_err != HSA_STATUS_SUCCESS) { printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, "Error in deserialized_data callback", get_error_string(impl_err)); return impl_err; } /* Load the code object. */ err = hsa_executable_load_code_object(executable, agent, code_object, NULL); if (err != HSA_STATUS_SUCCESS) { DP("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, "Loading the code object", get_error_string(err)); continue; } // cannot iterate over symbols until executable is frozen } module_load_success = true; } while (0); DP("Modules loaded successful? %d\n", module_load_success); if (module_load_success) { /* Freeze the executable; it can now be queried for symbols. */ err = hsa_executable_freeze(executable, ""); if (err != HSA_STATUS_SUCCESS) { printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, "Freeze the executable", get_error_string(err)); return HSA_STATUS_ERROR; } err = hsa::executable_iterate_symbols( executable, [&](hsa_executable_t, hsa_executable_symbol_t symbol) -> hsa_status_t { return populate_InfoTables(symbol, KernelInfoTable, SymbolInfoTable); }); if (err != HSA_STATUS_SUCCESS) { printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, "Iterating over symbols for execuatable", get_error_string(err)); return HSA_STATUS_ERROR; } // save the executable and destroy during finalize HSAExecutables.push_back(executable); return HSA_STATUS_SUCCESS; } else { return HSA_STATUS_ERROR; } } } // namespace core