//===--- amdgpu/src/rtl.cpp --------------------------------------- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // RTL for AMD hsa machine // //===----------------------------------------------------------------------===// #include #include #include #include #include #include #include #include #include #include #include #include #include #include "interop_hsa.h" #include "impl_runtime.h" #include "internal.h" #include "rt.h" #include "DeviceEnvironment.h" #include "get_elf_mach_gfx_name.h" #include "omptargetplugin.h" #include "print_tracing.h" #include "llvm/Frontend/OpenMP/OMPConstants.h" #include "llvm/Frontend/OpenMP/OMPGridValues.h" // hostrpc interface, FIXME: consider moving to its own include these are // statically linked into amdgpu/plugin if present from hostrpc_services.a, // linked as --whole-archive to override the weak symbols that are used to // implement a fallback for toolchains that do not yet have a hostrpc library. extern "C" { uint64_t hostrpc_assign_buffer(hsa_agent_t agent, hsa_queue_t *this_Q, uint32_t device_id); hsa_status_t hostrpc_init(); hsa_status_t hostrpc_terminate(); __attribute__((weak)) hsa_status_t hostrpc_init() { return HSA_STATUS_SUCCESS; } __attribute__((weak)) hsa_status_t hostrpc_terminate() { return HSA_STATUS_SUCCESS; } __attribute__((weak)) uint64_t hostrpc_assign_buffer(hsa_agent_t, hsa_queue_t *, uint32_t device_id) { DP("Warning: Attempting to assign hostrpc to device %u, but hostrpc library " "missing\n", device_id); return 0; } } // Heuristic parameters used for kernel launch // Number of teams per CU to allow scheduling flexibility static const unsigned DefaultTeamsPerCU = 4; int print_kernel_trace; #ifdef OMPTARGET_DEBUG #define check(msg, status) \ if (status != HSA_STATUS_SUCCESS) { \ DP(#msg " failed\n"); \ } else { \ DP(#msg " succeeded\n"); \ } #else #define check(msg, status) \ {} #endif #include "elf_common.h" namespace hsa { template hsa_status_t iterate_agents(C cb) { auto L = [](hsa_agent_t agent, void *data) -> hsa_status_t { C *unwrapped = static_cast(data); return (*unwrapped)(agent); }; return hsa_iterate_agents(L, static_cast(&cb)); } template hsa_status_t amd_agent_iterate_memory_pools(hsa_agent_t Agent, C cb) { auto L = [](hsa_amd_memory_pool_t MemoryPool, void *data) -> hsa_status_t { C *unwrapped = static_cast(data); return (*unwrapped)(MemoryPool); }; return hsa_amd_agent_iterate_memory_pools(Agent, L, static_cast(&cb)); } } // namespace hsa /// Keep entries table per device struct FuncOrGblEntryTy { __tgt_target_table Table; std::vector<__tgt_offload_entry> Entries; }; struct KernelArgPool { private: static pthread_mutex_t mutex; public: uint32_t kernarg_segment_size; void *kernarg_region = nullptr; std::queue free_kernarg_segments; uint32_t kernarg_size_including_implicit() { return kernarg_segment_size + sizeof(impl_implicit_args_t); } ~KernelArgPool() { if (kernarg_region) { auto r = hsa_amd_memory_pool_free(kernarg_region); if (r != HSA_STATUS_SUCCESS) { DP("hsa_amd_memory_pool_free failed: %s\n", get_error_string(r)); } } } // Can't really copy or move a mutex KernelArgPool() = default; KernelArgPool(const KernelArgPool &) = delete; KernelArgPool(KernelArgPool &&) = delete; KernelArgPool(uint32_t kernarg_segment_size, hsa_amd_memory_pool_t &memory_pool) : kernarg_segment_size(kernarg_segment_size) { // impl uses one pool per kernel for all gpus, with a fixed upper size // preserving that exact scheme here, including the queue hsa_status_t err = hsa_amd_memory_pool_allocate( memory_pool, kernarg_size_including_implicit() * MAX_NUM_KERNELS, 0, &kernarg_region); if (err != HSA_STATUS_SUCCESS) { DP("hsa_amd_memory_pool_allocate failed: %s\n", get_error_string(err)); kernarg_region = nullptr; // paranoid return; } err = core::allow_access_to_all_gpu_agents(kernarg_region); if (err != HSA_STATUS_SUCCESS) { DP("hsa allow_access_to_all_gpu_agents failed: %s\n", get_error_string(err)); auto r = hsa_amd_memory_pool_free(kernarg_region); if (r != HSA_STATUS_SUCCESS) { // if free failed, can't do anything more to resolve it DP("hsa memory poll free failed: %s\n", get_error_string(err)); } kernarg_region = nullptr; return; } for (int i = 0; i < MAX_NUM_KERNELS; i++) { free_kernarg_segments.push(i); } } void *allocate(uint64_t arg_num) { assert((arg_num * sizeof(void *)) == kernarg_segment_size); lock l(&mutex); void *res = nullptr; if (!free_kernarg_segments.empty()) { int free_idx = free_kernarg_segments.front(); res = static_cast(static_cast(kernarg_region) + (free_idx * kernarg_size_including_implicit())); assert(free_idx == pointer_to_index(res)); free_kernarg_segments.pop(); } return res; } void deallocate(void *ptr) { lock l(&mutex); int idx = pointer_to_index(ptr); free_kernarg_segments.push(idx); } private: int pointer_to_index(void *ptr) { ptrdiff_t bytes = static_cast(ptr) - static_cast(kernarg_region); assert(bytes >= 0); assert(bytes % kernarg_size_including_implicit() == 0); return bytes / kernarg_size_including_implicit(); } struct lock { lock(pthread_mutex_t *m) : m(m) { pthread_mutex_lock(m); } ~lock() { pthread_mutex_unlock(m); } pthread_mutex_t *m; }; }; pthread_mutex_t KernelArgPool::mutex = PTHREAD_MUTEX_INITIALIZER; std::unordered_map> KernelArgPoolMap; /// Use a single entity to encode a kernel and a set of flags struct KernelTy { llvm::omp::OMPTgtExecModeFlags ExecutionMode; int16_t ConstWGSize; int32_t device_id; void *CallStackAddr = nullptr; const char *Name; KernelTy(llvm::omp::OMPTgtExecModeFlags _ExecutionMode, int16_t _ConstWGSize, int32_t _device_id, void *_CallStackAddr, const char *_Name, uint32_t _kernarg_segment_size, hsa_amd_memory_pool_t &KernArgMemoryPool) : ExecutionMode(_ExecutionMode), ConstWGSize(_ConstWGSize), device_id(_device_id), CallStackAddr(_CallStackAddr), Name(_Name) { DP("Construct kernelinfo: ExecMode %d\n", ExecutionMode); std::string N(_Name); if (KernelArgPoolMap.find(N) == KernelArgPoolMap.end()) { KernelArgPoolMap.insert( std::make_pair(N, std::unique_ptr(new KernelArgPool( _kernarg_segment_size, KernArgMemoryPool)))); } } }; /// List that contains all the kernels. /// FIXME: we may need this to be per device and per library. std::list KernelsList; template static hsa_status_t FindAgents(Callback CB) { hsa_status_t err = hsa::iterate_agents([&](hsa_agent_t agent) -> hsa_status_t { hsa_device_type_t device_type; // get_info fails iff HSA runtime not yet initialized hsa_status_t err = hsa_agent_get_info(agent, HSA_AGENT_INFO_DEVICE, &device_type); if (err != HSA_STATUS_SUCCESS) { if (print_kernel_trace > 0) DP("rtl.cpp: err %s\n", get_error_string(err)); return err; } CB(device_type, agent); return HSA_STATUS_SUCCESS; }); // iterate_agents fails iff HSA runtime not yet initialized if (print_kernel_trace > 0 && err != HSA_STATUS_SUCCESS) { DP("rtl.cpp: err %s\n", get_error_string(err)); } return err; } static void callbackQueue(hsa_status_t status, hsa_queue_t *source, void *data) { if (status != HSA_STATUS_SUCCESS) { const char *status_string; if (hsa_status_string(status, &status_string) != HSA_STATUS_SUCCESS) { status_string = "unavailable"; } DP("[%s:%d] GPU error in queue %p %d (%s)\n", __FILE__, __LINE__, source, status, status_string); abort(); } } namespace core { namespace { void packet_store_release(uint32_t *packet, uint16_t header, uint16_t rest) { __atomic_store_n(packet, header | (rest << 16), __ATOMIC_RELEASE); } uint16_t create_header() { uint16_t header = HSA_PACKET_TYPE_KERNEL_DISPATCH << HSA_PACKET_HEADER_TYPE; header |= HSA_FENCE_SCOPE_SYSTEM << HSA_PACKET_HEADER_ACQUIRE_FENCE_SCOPE; header |= HSA_FENCE_SCOPE_SYSTEM << HSA_PACKET_HEADER_RELEASE_FENCE_SCOPE; return header; } hsa_status_t isValidMemoryPool(hsa_amd_memory_pool_t MemoryPool) { bool AllocAllowed = false; hsa_status_t Err = hsa_amd_memory_pool_get_info( MemoryPool, HSA_AMD_MEMORY_POOL_INFO_RUNTIME_ALLOC_ALLOWED, &AllocAllowed); if (Err != HSA_STATUS_SUCCESS) { DP("Alloc allowed in memory pool check failed: %s\n", get_error_string(Err)); return Err; } size_t Size = 0; Err = hsa_amd_memory_pool_get_info(MemoryPool, HSA_AMD_MEMORY_POOL_INFO_SIZE, &Size); if (Err != HSA_STATUS_SUCCESS) { DP("Get memory pool size failed: %s\n", get_error_string(Err)); return Err; } return (AllocAllowed && Size > 0) ? HSA_STATUS_SUCCESS : HSA_STATUS_ERROR; } hsa_status_t addMemoryPool(hsa_amd_memory_pool_t MemoryPool, void *Data) { std::vector *Result = static_cast *>(Data); hsa_status_t err; if ((err = isValidMemoryPool(MemoryPool)) != HSA_STATUS_SUCCESS) { return err; } Result->push_back(MemoryPool); return HSA_STATUS_SUCCESS; } } // namespace } // namespace core struct EnvironmentVariables { int NumTeams; int TeamLimit; int TeamThreadLimit; int MaxTeamsDefault; }; template static constexpr const llvm::omp::GV &getGridValue() { return llvm::omp::getAMDGPUGridValues(); } struct HSALifetime { // Wrapper around HSA used to ensure it is constructed before other types // and destructed after, which means said other types can use raii for // cleanup without risking running outside of the lifetime of HSA const hsa_status_t S; bool HSAInitSuccess() { return S == HSA_STATUS_SUCCESS; } HSALifetime() : S(hsa_init()) {} ~HSALifetime() { if (S == HSA_STATUS_SUCCESS) { hsa_status_t Err = hsa_shut_down(); if (Err != HSA_STATUS_SUCCESS) { // Can't call into HSA to get a string from the integer DP("Shutting down HSA failed: %d\n", Err); } } } }; // Handle scheduling of multiple hsa_queue's per device to // multiple threads (one scheduler per device) class HSAQueueScheduler { public: HSAQueueScheduler() : current(0) {} HSAQueueScheduler(const HSAQueueScheduler &) = delete; HSAQueueScheduler(HSAQueueScheduler &&q) { current = q.current.load(); for (uint8_t i = 0; i < NUM_QUEUES_PER_DEVICE; i++) { HSAQueues[i] = q.HSAQueues[i]; q.HSAQueues[i] = nullptr; } } // \return false if any HSA queue creation fails bool CreateQueues(hsa_agent_t HSAAgent, uint32_t queue_size) { for (uint8_t i = 0; i < NUM_QUEUES_PER_DEVICE; i++) { hsa_queue_t *Q = nullptr; hsa_status_t rc = hsa_queue_create(HSAAgent, queue_size, HSA_QUEUE_TYPE_MULTI, callbackQueue, NULL, UINT32_MAX, UINT32_MAX, &Q); if (rc != HSA_STATUS_SUCCESS) { DP("Failed to create HSA queue %d\n", i); return false; } HSAQueues[i] = Q; } return true; } ~HSAQueueScheduler() { for (uint8_t i = 0; i < NUM_QUEUES_PER_DEVICE; i++) { if (HSAQueues[i]) { hsa_status_t err = hsa_queue_destroy(HSAQueues[i]); if (err != HSA_STATUS_SUCCESS) DP("Error destroying HSA queue"); } } } // \return next queue to use for device hsa_queue_t *Next() { return HSAQueues[(current.fetch_add(1, std::memory_order_relaxed)) % NUM_QUEUES_PER_DEVICE]; } private: // Number of queues per device enum : uint8_t { NUM_QUEUES_PER_DEVICE = 4 }; hsa_queue_t *HSAQueues[NUM_QUEUES_PER_DEVICE] = {}; std::atomic current; }; /// Class containing all the device information class RTLDeviceInfoTy : HSALifetime { std::vector> FuncGblEntries; struct QueueDeleter { void operator()(hsa_queue_t *Q) { if (Q) { hsa_status_t Err = hsa_queue_destroy(Q); if (Err != HSA_STATUS_SUCCESS) { DP("Error destroying hsa queue: %s\n", get_error_string(Err)); } } } }; public: bool ConstructionSucceeded = false; // load binary populates symbol tables and mutates various global state // run uses those symbol tables std::shared_timed_mutex load_run_lock; int NumberOfDevices = 0; // GPU devices std::vector HSAAgents; std::vector HSAQueueSchedulers; // one per gpu // CPUs std::vector CPUAgents; // Device properties std::vector ComputeUnits; std::vector GroupsPerDevice; std::vector ThreadsPerGroup; std::vector WarpSize; std::vector GPUName; // OpenMP properties std::vector NumTeams; std::vector NumThreads; // OpenMP Environment properties EnvironmentVariables Env; // OpenMP Requires Flags int64_t RequiresFlags; // Resource pools SignalPoolT FreeSignalPool; bool hostcall_required = false; std::vector HSAExecutables; std::vector> KernelInfoTable; std::vector> SymbolInfoTable; hsa_amd_memory_pool_t KernArgPool; // fine grained memory pool for host allocations hsa_amd_memory_pool_t HostFineGrainedMemoryPool; // fine and coarse-grained memory pools per offloading device std::vector DeviceFineGrainedMemoryPools; std::vector DeviceCoarseGrainedMemoryPools; struct implFreePtrDeletor { void operator()(void *p) { core::Runtime::Memfree(p); // ignore failure to free } }; // device_State shared across loaded binaries, error if inconsistent size std::vector, uint64_t>> deviceStateStore; static const unsigned HardTeamLimit = (1 << 16) - 1; // 64K needed to fit in uint16 static const int DefaultNumTeams = 128; // These need to be per-device since different devices can have different // wave sizes, but are currently the same number for each so that refactor // can be postponed. static_assert(getGridValue<32>().GV_Max_Teams == getGridValue<64>().GV_Max_Teams, ""); static const int Max_Teams = getGridValue<64>().GV_Max_Teams; static_assert(getGridValue<32>().GV_Max_WG_Size == getGridValue<64>().GV_Max_WG_Size, ""); static const int Max_WG_Size = getGridValue<64>().GV_Max_WG_Size; static_assert(getGridValue<32>().GV_Default_WG_Size == getGridValue<64>().GV_Default_WG_Size, ""); static const int Default_WG_Size = getGridValue<64>().GV_Default_WG_Size; using MemcpyFunc = hsa_status_t (*)(hsa_signal_t, void *, void *, size_t size, hsa_agent_t, hsa_amd_memory_pool_t); hsa_status_t freesignalpool_memcpy(void *dest, void *src, size_t size, MemcpyFunc Func, int32_t deviceId) { hsa_agent_t agent = HSAAgents[deviceId]; hsa_signal_t s = FreeSignalPool.pop(); if (s.handle == 0) { return HSA_STATUS_ERROR; } hsa_status_t r = Func(s, dest, src, size, agent, HostFineGrainedMemoryPool); FreeSignalPool.push(s); return r; } hsa_status_t freesignalpool_memcpy_d2h(void *dest, void *src, size_t size, int32_t deviceId) { return freesignalpool_memcpy(dest, src, size, impl_memcpy_d2h, deviceId); } hsa_status_t freesignalpool_memcpy_h2d(void *dest, void *src, size_t size, int32_t deviceId) { return freesignalpool_memcpy(dest, src, size, impl_memcpy_h2d, deviceId); } // Record entry point associated with device void addOffloadEntry(int32_t device_id, __tgt_offload_entry entry) { assert(device_id < (int32_t)FuncGblEntries.size() && "Unexpected device id!"); FuncOrGblEntryTy &E = FuncGblEntries[device_id].back(); E.Entries.push_back(entry); } // Return true if the entry is associated with device bool findOffloadEntry(int32_t device_id, void *addr) { assert(device_id < (int32_t)FuncGblEntries.size() && "Unexpected device id!"); FuncOrGblEntryTy &E = FuncGblEntries[device_id].back(); for (auto &it : E.Entries) { if (it.addr == addr) return true; } return false; } // Return the pointer to the target entries table __tgt_target_table *getOffloadEntriesTable(int32_t device_id) { assert(device_id < (int32_t)FuncGblEntries.size() && "Unexpected device id!"); FuncOrGblEntryTy &E = FuncGblEntries[device_id].back(); int32_t size = E.Entries.size(); // Table is empty if (!size) return 0; __tgt_offload_entry *begin = &E.Entries[0]; __tgt_offload_entry *end = &E.Entries[size - 1]; // Update table info according to the entries and return the pointer E.Table.EntriesBegin = begin; E.Table.EntriesEnd = ++end; return &E.Table; } // Clear entries table for a device void clearOffloadEntriesTable(int device_id) { assert(device_id < (int32_t)FuncGblEntries.size() && "Unexpected device id!"); FuncGblEntries[device_id].emplace_back(); FuncOrGblEntryTy &E = FuncGblEntries[device_id].back(); // KernelArgPoolMap.clear(); E.Entries.clear(); E.Table.EntriesBegin = E.Table.EntriesEnd = 0; } hsa_status_t addDeviceMemoryPool(hsa_amd_memory_pool_t MemoryPool, int DeviceId) { assert(DeviceId < DeviceFineGrainedMemoryPools.size() && "Error here."); uint32_t GlobalFlags = 0; hsa_status_t Err = hsa_amd_memory_pool_get_info( MemoryPool, HSA_AMD_MEMORY_POOL_INFO_GLOBAL_FLAGS, &GlobalFlags); if (Err != HSA_STATUS_SUCCESS) { return Err; } if (GlobalFlags & HSA_AMD_MEMORY_POOL_GLOBAL_FLAG_FINE_GRAINED) { DeviceFineGrainedMemoryPools[DeviceId] = MemoryPool; } else if (GlobalFlags & HSA_AMD_MEMORY_POOL_GLOBAL_FLAG_COARSE_GRAINED) { DeviceCoarseGrainedMemoryPools[DeviceId] = MemoryPool; } return HSA_STATUS_SUCCESS; } hsa_status_t setupDevicePools(const std::vector &Agents) { for (int DeviceId = 0; DeviceId < Agents.size(); DeviceId++) { hsa_status_t Err = hsa::amd_agent_iterate_memory_pools( Agents[DeviceId], [&](hsa_amd_memory_pool_t MemoryPool) { hsa_status_t ValidStatus = core::isValidMemoryPool(MemoryPool); if (ValidStatus != HSA_STATUS_SUCCESS) { DP("Alloc allowed in memory pool check failed: %s\n", get_error_string(ValidStatus)); return HSA_STATUS_SUCCESS; } return addDeviceMemoryPool(MemoryPool, DeviceId); }); if (Err != HSA_STATUS_SUCCESS) { DP("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, "Iterate all memory pools", get_error_string(Err)); return Err; } } return HSA_STATUS_SUCCESS; } hsa_status_t setupHostMemoryPools(std::vector &Agents) { std::vector HostPools; // collect all the "valid" pools for all the given agents. for (const auto &Agent : Agents) { hsa_status_t Err = hsa_amd_agent_iterate_memory_pools( Agent, core::addMemoryPool, static_cast(&HostPools)); if (Err != HSA_STATUS_SUCCESS) { DP("addMemoryPool returned %s, continuing\n", get_error_string(Err)); } } // We need two fine-grained pools. // 1. One with kernarg flag set for storing kernel arguments // 2. Second for host allocations bool FineGrainedMemoryPoolSet = false; bool KernArgPoolSet = false; for (const auto &MemoryPool : HostPools) { hsa_status_t Err = HSA_STATUS_SUCCESS; uint32_t GlobalFlags = 0; Err = hsa_amd_memory_pool_get_info( MemoryPool, HSA_AMD_MEMORY_POOL_INFO_GLOBAL_FLAGS, &GlobalFlags); if (Err != HSA_STATUS_SUCCESS) { DP("Get memory pool info failed: %s\n", get_error_string(Err)); return Err; } if (GlobalFlags & HSA_AMD_MEMORY_POOL_GLOBAL_FLAG_FINE_GRAINED) { if (GlobalFlags & HSA_AMD_MEMORY_POOL_GLOBAL_FLAG_KERNARG_INIT) { KernArgPool = MemoryPool; KernArgPoolSet = true; } HostFineGrainedMemoryPool = MemoryPool; FineGrainedMemoryPoolSet = true; } } if (FineGrainedMemoryPoolSet && KernArgPoolSet) return HSA_STATUS_SUCCESS; return HSA_STATUS_ERROR; } hsa_amd_memory_pool_t getDeviceMemoryPool(int DeviceId) { assert(DeviceId >= 0 && DeviceId < DeviceCoarseGrainedMemoryPools.size() && "Invalid device Id"); return DeviceCoarseGrainedMemoryPools[DeviceId]; } hsa_amd_memory_pool_t getHostMemoryPool() { return HostFineGrainedMemoryPool; } static int readEnvElseMinusOne(const char *Env) { const char *envStr = getenv(Env); int res = -1; if (envStr) { res = std::stoi(envStr); DP("Parsed %s=%d\n", Env, res); } return res; } RTLDeviceInfoTy() { DP("Start initializing " GETNAME(TARGET_NAME) "\n"); // LIBOMPTARGET_KERNEL_TRACE provides a kernel launch trace to stderr // anytime. You do not need a debug library build. // 0 => no tracing // 1 => tracing dispatch only // >1 => verbosity increase if (!HSAInitSuccess()) { DP("Error when initializing HSA in " GETNAME(TARGET_NAME) "\n"); return; } if (char *envStr = getenv("LIBOMPTARGET_KERNEL_TRACE")) print_kernel_trace = atoi(envStr); else print_kernel_trace = 0; hsa_status_t err = core::atl_init_gpu_context(); if (err != HSA_STATUS_SUCCESS) { DP("Error when initializing " GETNAME(TARGET_NAME) "\n"); return; } // Init hostcall soon after initializing hsa hostrpc_init(); err = FindAgents([&](hsa_device_type_t DeviceType, hsa_agent_t Agent) { if (DeviceType == HSA_DEVICE_TYPE_CPU) { CPUAgents.push_back(Agent); } else { HSAAgents.push_back(Agent); } }); if (err != HSA_STATUS_SUCCESS) return; NumberOfDevices = (int)HSAAgents.size(); if (NumberOfDevices == 0) { DP("There are no devices supporting HSA.\n"); return; } else { DP("There are %d devices supporting HSA.\n", NumberOfDevices); } // Init the device info HSAQueueSchedulers.reserve(NumberOfDevices); FuncGblEntries.resize(NumberOfDevices); ThreadsPerGroup.resize(NumberOfDevices); ComputeUnits.resize(NumberOfDevices); GPUName.resize(NumberOfDevices); GroupsPerDevice.resize(NumberOfDevices); WarpSize.resize(NumberOfDevices); NumTeams.resize(NumberOfDevices); NumThreads.resize(NumberOfDevices); deviceStateStore.resize(NumberOfDevices); KernelInfoTable.resize(NumberOfDevices); SymbolInfoTable.resize(NumberOfDevices); DeviceCoarseGrainedMemoryPools.resize(NumberOfDevices); DeviceFineGrainedMemoryPools.resize(NumberOfDevices); err = setupDevicePools(HSAAgents); if (err != HSA_STATUS_SUCCESS) { DP("Setup for Device Memory Pools failed\n"); return; } err = setupHostMemoryPools(CPUAgents); if (err != HSA_STATUS_SUCCESS) { DP("Setup for Host Memory Pools failed\n"); return; } for (int i = 0; i < NumberOfDevices; i++) { uint32_t queue_size = 0; { hsa_status_t err = hsa_agent_get_info( HSAAgents[i], HSA_AGENT_INFO_QUEUE_MAX_SIZE, &queue_size); if (err != HSA_STATUS_SUCCESS) { DP("HSA query QUEUE_MAX_SIZE failed for agent %d\n", i); return; } enum { MaxQueueSize = 4096 }; if (queue_size > MaxQueueSize) { queue_size = MaxQueueSize; } } { HSAQueueScheduler QSched; if (!QSched.CreateQueues(HSAAgents[i], queue_size)) return; HSAQueueSchedulers.emplace_back(std::move(QSched)); } deviceStateStore[i] = {nullptr, 0}; } for (int i = 0; i < NumberOfDevices; i++) { ThreadsPerGroup[i] = RTLDeviceInfoTy::Default_WG_Size; GroupsPerDevice[i] = RTLDeviceInfoTy::DefaultNumTeams; ComputeUnits[i] = 1; DP("Device %d: Initial groupsPerDevice %d & threadsPerGroup %d\n", i, GroupsPerDevice[i], ThreadsPerGroup[i]); } // Get environment variables regarding teams Env.TeamLimit = readEnvElseMinusOne("OMP_TEAM_LIMIT"); Env.NumTeams = readEnvElseMinusOne("OMP_NUM_TEAMS"); Env.MaxTeamsDefault = readEnvElseMinusOne("OMP_MAX_TEAMS_DEFAULT"); Env.TeamThreadLimit = readEnvElseMinusOne("OMP_TEAMS_THREAD_LIMIT"); // Default state. RequiresFlags = OMP_REQ_UNDEFINED; ConstructionSucceeded = true; } ~RTLDeviceInfoTy() { DP("Finalizing the " GETNAME(TARGET_NAME) " DeviceInfo.\n"); if (!HSAInitSuccess()) { // Then none of these can have been set up and they can't be torn down return; } // Run destructors on types that use HSA before // impl_finalize removes access to it deviceStateStore.clear(); KernelArgPoolMap.clear(); // Terminate hostrpc before finalizing hsa hostrpc_terminate(); hsa_status_t Err; for (uint32_t I = 0; I < HSAExecutables.size(); I++) { Err = hsa_executable_destroy(HSAExecutables[I]); if (Err != HSA_STATUS_SUCCESS) { DP("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, "Destroying executable", get_error_string(Err)); } } } }; pthread_mutex_t SignalPoolT::mutex = PTHREAD_MUTEX_INITIALIZER; static RTLDeviceInfoTy DeviceInfo; namespace { int32_t dataRetrieve(int32_t DeviceId, void *HstPtr, void *TgtPtr, int64_t Size, __tgt_async_info *AsyncInfo) { assert(AsyncInfo && "AsyncInfo is nullptr"); assert(DeviceId < DeviceInfo.NumberOfDevices && "Device ID too large"); // Return success if we are not copying back to host from target. if (!HstPtr) return OFFLOAD_SUCCESS; hsa_status_t err; DP("Retrieve data %ld bytes, (tgt:%016llx) -> (hst:%016llx).\n", Size, (long long unsigned)(Elf64_Addr)TgtPtr, (long long unsigned)(Elf64_Addr)HstPtr); err = DeviceInfo.freesignalpool_memcpy_d2h(HstPtr, TgtPtr, (size_t)Size, DeviceId); if (err != HSA_STATUS_SUCCESS) { DP("Error when copying data from device to host. Pointers: " "host = 0x%016lx, device = 0x%016lx, size = %lld\n", (Elf64_Addr)HstPtr, (Elf64_Addr)TgtPtr, (unsigned long long)Size); return OFFLOAD_FAIL; } DP("DONE Retrieve data %ld bytes, (tgt:%016llx) -> (hst:%016llx).\n", Size, (long long unsigned)(Elf64_Addr)TgtPtr, (long long unsigned)(Elf64_Addr)HstPtr); return OFFLOAD_SUCCESS; } int32_t dataSubmit(int32_t DeviceId, void *TgtPtr, void *HstPtr, int64_t Size, __tgt_async_info *AsyncInfo) { assert(AsyncInfo && "AsyncInfo is nullptr"); hsa_status_t err; assert(DeviceId < DeviceInfo.NumberOfDevices && "Device ID too large"); // Return success if we are not doing host to target. if (!HstPtr) return OFFLOAD_SUCCESS; DP("Submit data %ld bytes, (hst:%016llx) -> (tgt:%016llx).\n", Size, (long long unsigned)(Elf64_Addr)HstPtr, (long long unsigned)(Elf64_Addr)TgtPtr); err = DeviceInfo.freesignalpool_memcpy_h2d(TgtPtr, HstPtr, (size_t)Size, DeviceId); if (err != HSA_STATUS_SUCCESS) { DP("Error when copying data from host to device. Pointers: " "host = 0x%016lx, device = 0x%016lx, size = %lld\n", (Elf64_Addr)HstPtr, (Elf64_Addr)TgtPtr, (unsigned long long)Size); return OFFLOAD_FAIL; } return OFFLOAD_SUCCESS; } // Async. // The implementation was written with cuda streams in mind. The semantics of // that are to execute kernels on a queue in order of insertion. A synchronise // call then makes writes visible between host and device. This means a series // of N data_submit_async calls are expected to execute serially. HSA offers // various options to run the data copies concurrently. This may require changes // to libomptarget. // __tgt_async_info* contains a void * Queue. Queue = 0 is used to indicate that // there are no outstanding kernels that need to be synchronized. Any async call // may be passed a Queue==0, at which point the cuda implementation will set it // to non-null (see getStream). The cuda streams are per-device. Upstream may // change this interface to explicitly initialize the AsyncInfo_pointer, but // until then hsa lazily initializes it as well. void initAsyncInfo(__tgt_async_info *AsyncInfo) { // set non-null while using async calls, return to null to indicate completion assert(AsyncInfo); if (!AsyncInfo->Queue) { AsyncInfo->Queue = reinterpret_cast(UINT64_MAX); } } void finiAsyncInfo(__tgt_async_info *AsyncInfo) { assert(AsyncInfo); assert(AsyncInfo->Queue); AsyncInfo->Queue = 0; } // Determine launch values for kernel. struct launchVals { int WorkgroupSize; int GridSize; }; launchVals getLaunchVals(int WarpSize, EnvironmentVariables Env, int ConstWGSize, llvm::omp::OMPTgtExecModeFlags ExecutionMode, int num_teams, int thread_limit, uint64_t loop_tripcount, int DeviceNumTeams) { int threadsPerGroup = RTLDeviceInfoTy::Default_WG_Size; int num_groups = 0; int Max_Teams = Env.MaxTeamsDefault > 0 ? Env.MaxTeamsDefault : DeviceNumTeams; if (Max_Teams > RTLDeviceInfoTy::HardTeamLimit) Max_Teams = RTLDeviceInfoTy::HardTeamLimit; if (print_kernel_trace & STARTUP_DETAILS) { DP("RTLDeviceInfoTy::Max_Teams: %d\n", RTLDeviceInfoTy::Max_Teams); DP("Max_Teams: %d\n", Max_Teams); DP("RTLDeviceInfoTy::Warp_Size: %d\n", WarpSize); DP("RTLDeviceInfoTy::Max_WG_Size: %d\n", RTLDeviceInfoTy::Max_WG_Size); DP("RTLDeviceInfoTy::Default_WG_Size: %d\n", RTLDeviceInfoTy::Default_WG_Size); DP("thread_limit: %d\n", thread_limit); DP("threadsPerGroup: %d\n", threadsPerGroup); DP("ConstWGSize: %d\n", ConstWGSize); } // check for thread_limit() clause if (thread_limit > 0) { threadsPerGroup = thread_limit; DP("Setting threads per block to requested %d\n", thread_limit); // Add master warp for GENERIC if (ExecutionMode == llvm::omp::OMPTgtExecModeFlags::OMP_TGT_EXEC_MODE_GENERIC) { threadsPerGroup += WarpSize; DP("Adding master wavefront: +%d threads\n", WarpSize); } if (threadsPerGroup > RTLDeviceInfoTy::Max_WG_Size) { // limit to max threadsPerGroup = RTLDeviceInfoTy::Max_WG_Size; DP("Setting threads per block to maximum %d\n", threadsPerGroup); } } // check flat_max_work_group_size attr here if (threadsPerGroup > ConstWGSize) { threadsPerGroup = ConstWGSize; DP("Reduced threadsPerGroup to flat-attr-group-size limit %d\n", threadsPerGroup); } if (print_kernel_trace & STARTUP_DETAILS) DP("threadsPerGroup: %d\n", threadsPerGroup); DP("Preparing %d threads\n", threadsPerGroup); // Set default num_groups (teams) if (Env.TeamLimit > 0) num_groups = (Max_Teams < Env.TeamLimit) ? Max_Teams : Env.TeamLimit; else num_groups = Max_Teams; DP("Set default num of groups %d\n", num_groups); if (print_kernel_trace & STARTUP_DETAILS) { DP("num_groups: %d\n", num_groups); DP("num_teams: %d\n", num_teams); } // Reduce num_groups if threadsPerGroup exceeds RTLDeviceInfoTy::Max_WG_Size // This reduction is typical for default case (no thread_limit clause). // or when user goes crazy with num_teams clause. // FIXME: We cant distinguish between a constant or variable thread limit. // So we only handle constant thread_limits. if (threadsPerGroup > RTLDeviceInfoTy::Default_WG_Size) // 256 < threadsPerGroup <= 1024 // Should we round threadsPerGroup up to nearest WarpSize // here? num_groups = (Max_Teams * RTLDeviceInfoTy::Max_WG_Size) / threadsPerGroup; // check for num_teams() clause if (num_teams > 0) { num_groups = (num_teams < num_groups) ? num_teams : num_groups; } if (print_kernel_trace & STARTUP_DETAILS) { DP("num_groups: %d\n", num_groups); DP("Env.NumTeams %d\n", Env.NumTeams); DP("Env.TeamLimit %d\n", Env.TeamLimit); } if (Env.NumTeams > 0) { num_groups = (Env.NumTeams < num_groups) ? Env.NumTeams : num_groups; DP("Modifying teams based on Env.NumTeams %d\n", Env.NumTeams); } else if (Env.TeamLimit > 0) { num_groups = (Env.TeamLimit < num_groups) ? Env.TeamLimit : num_groups; DP("Modifying teams based on Env.TeamLimit%d\n", Env.TeamLimit); } else { if (num_teams <= 0) { if (loop_tripcount > 0) { if (ExecutionMode == llvm::omp::OMPTgtExecModeFlags::OMP_TGT_EXEC_MODE_SPMD) { // round up to the nearest integer num_groups = ((loop_tripcount - 1) / threadsPerGroup) + 1; } else if (ExecutionMode == llvm::omp::OMPTgtExecModeFlags::OMP_TGT_EXEC_MODE_GENERIC) { num_groups = loop_tripcount; } else /* OMP_TGT_EXEC_MODE_GENERIC_SPMD */ { // This is a generic kernel that was transformed to use SPMD-mode // execution but uses Generic-mode semantics for scheduling. num_groups = loop_tripcount; } DP("Using %d teams due to loop trip count %" PRIu64 " and number of " "threads per block %d\n", num_groups, loop_tripcount, threadsPerGroup); } } else { num_groups = num_teams; } if (num_groups > Max_Teams) { num_groups = Max_Teams; if (print_kernel_trace & STARTUP_DETAILS) DP("Limiting num_groups %d to Max_Teams %d \n", num_groups, Max_Teams); } if (num_groups > num_teams && num_teams > 0) { num_groups = num_teams; if (print_kernel_trace & STARTUP_DETAILS) DP("Limiting num_groups %d to clause num_teams %d \n", num_groups, num_teams); } } // num_teams clause always honored, no matter what, unless DEFAULT is active. if (num_teams > 0) { num_groups = num_teams; // Cap num_groups to EnvMaxTeamsDefault if set. if (Env.MaxTeamsDefault > 0 && num_groups > Env.MaxTeamsDefault) num_groups = Env.MaxTeamsDefault; } if (print_kernel_trace & STARTUP_DETAILS) { DP("threadsPerGroup: %d\n", threadsPerGroup); DP("num_groups: %d\n", num_groups); DP("loop_tripcount: %ld\n", loop_tripcount); } DP("Final %d num_groups and %d threadsPerGroup\n", num_groups, threadsPerGroup); launchVals res; res.WorkgroupSize = threadsPerGroup; res.GridSize = threadsPerGroup * num_groups; return res; } static uint64_t acquire_available_packet_id(hsa_queue_t *queue) { uint64_t packet_id = hsa_queue_add_write_index_relaxed(queue, 1); bool full = true; while (full) { full = packet_id >= (queue->size + hsa_queue_load_read_index_scacquire(queue)); } return packet_id; } int32_t runRegionLocked(int32_t device_id, void *tgt_entry_ptr, void **tgt_args, ptrdiff_t *tgt_offsets, int32_t arg_num, int32_t num_teams, int32_t thread_limit, uint64_t loop_tripcount) { // Set the context we are using // update thread limit content in gpu memory if un-initialized or specified // from host DP("Run target team region thread_limit %d\n", thread_limit); // All args are references. std::vector args(arg_num); std::vector ptrs(arg_num); DP("Arg_num: %d\n", arg_num); for (int32_t i = 0; i < arg_num; ++i) { ptrs[i] = (void *)((intptr_t)tgt_args[i] + tgt_offsets[i]); args[i] = &ptrs[i]; DP("Offseted base: arg[%d]:" DPxMOD "\n", i, DPxPTR(ptrs[i])); } KernelTy *KernelInfo = (KernelTy *)tgt_entry_ptr; std::string kernel_name = std::string(KernelInfo->Name); auto &KernelInfoTable = DeviceInfo.KernelInfoTable; if (KernelInfoTable[device_id].find(kernel_name) == KernelInfoTable[device_id].end()) { DP("Kernel %s not found\n", kernel_name.c_str()); return OFFLOAD_FAIL; } const atl_kernel_info_t KernelInfoEntry = KernelInfoTable[device_id][kernel_name]; const uint32_t group_segment_size = KernelInfoEntry.group_segment_size; const uint32_t sgpr_count = KernelInfoEntry.sgpr_count; const uint32_t vgpr_count = KernelInfoEntry.vgpr_count; const uint32_t sgpr_spill_count = KernelInfoEntry.sgpr_spill_count; const uint32_t vgpr_spill_count = KernelInfoEntry.vgpr_spill_count; assert(arg_num == (int)KernelInfoEntry.explicit_argument_count); /* * Set limit based on ThreadsPerGroup and GroupsPerDevice */ launchVals LV = getLaunchVals(DeviceInfo.WarpSize[device_id], DeviceInfo.Env, KernelInfo->ConstWGSize, KernelInfo->ExecutionMode, num_teams, // From run_region arg thread_limit, // From run_region arg loop_tripcount, // From run_region arg DeviceInfo.NumTeams[KernelInfo->device_id]); const int GridSize = LV.GridSize; const int WorkgroupSize = LV.WorkgroupSize; if (print_kernel_trace >= LAUNCH) { int num_groups = GridSize / WorkgroupSize; // enum modes are SPMD, GENERIC, NONE 0,1,2 // if doing rtl timing, print to stderr, unless stdout requested. bool traceToStdout = print_kernel_trace & (RTL_TO_STDOUT | RTL_TIMING); fprintf(traceToStdout ? stdout : stderr, "DEVID:%2d SGN:%1d ConstWGSize:%-4d args:%2d teamsXthrds:(%4dX%4d) " "reqd:(%4dX%4d) lds_usage:%uB sgpr_count:%u vgpr_count:%u " "sgpr_spill_count:%u vgpr_spill_count:%u tripcount:%lu n:%s\n", device_id, KernelInfo->ExecutionMode, KernelInfo->ConstWGSize, arg_num, num_groups, WorkgroupSize, num_teams, thread_limit, group_segment_size, sgpr_count, vgpr_count, sgpr_spill_count, vgpr_spill_count, loop_tripcount, KernelInfo->Name); } // Run on the device. { hsa_queue_t *queue = DeviceInfo.HSAQueueSchedulers[device_id].Next(); if (!queue) { return OFFLOAD_FAIL; } uint64_t packet_id = acquire_available_packet_id(queue); const uint32_t mask = queue->size - 1; // size is a power of 2 hsa_kernel_dispatch_packet_t *packet = (hsa_kernel_dispatch_packet_t *)queue->base_address + (packet_id & mask); // packet->header is written last packet->setup = UINT16_C(1) << HSA_KERNEL_DISPATCH_PACKET_SETUP_DIMENSIONS; packet->workgroup_size_x = WorkgroupSize; packet->workgroup_size_y = 1; packet->workgroup_size_z = 1; packet->reserved0 = 0; packet->grid_size_x = GridSize; packet->grid_size_y = 1; packet->grid_size_z = 1; packet->private_segment_size = KernelInfoEntry.private_segment_size; packet->group_segment_size = KernelInfoEntry.group_segment_size; packet->kernel_object = KernelInfoEntry.kernel_object; packet->kernarg_address = 0; // use the block allocator packet->reserved2 = 0; // impl writes id_ here packet->completion_signal = {0}; // may want a pool of signals KernelArgPool *ArgPool = nullptr; void *kernarg = nullptr; { auto it = KernelArgPoolMap.find(std::string(KernelInfo->Name)); if (it != KernelArgPoolMap.end()) { ArgPool = (it->second).get(); } } if (!ArgPool) { DP("Warning: No ArgPool for %s on device %d\n", KernelInfo->Name, device_id); } { if (ArgPool) { assert(ArgPool->kernarg_segment_size == (arg_num * sizeof(void *))); kernarg = ArgPool->allocate(arg_num); } if (!kernarg) { DP("Allocate kernarg failed\n"); return OFFLOAD_FAIL; } // Copy explicit arguments for (int i = 0; i < arg_num; i++) { memcpy((char *)kernarg + sizeof(void *) * i, args[i], sizeof(void *)); } // Initialize implicit arguments. TODO: Which of these can be dropped impl_implicit_args_t *impl_args = reinterpret_cast( static_cast(kernarg) + ArgPool->kernarg_segment_size); memset(impl_args, 0, sizeof(impl_implicit_args_t)); // may not be necessary impl_args->offset_x = 0; impl_args->offset_y = 0; impl_args->offset_z = 0; // assign a hostcall buffer for the selected Q if (__atomic_load_n(&DeviceInfo.hostcall_required, __ATOMIC_ACQUIRE)) { // hostrpc_assign_buffer is not thread safe, and this function is // under a multiple reader lock, not a writer lock. static pthread_mutex_t hostcall_init_lock = PTHREAD_MUTEX_INITIALIZER; pthread_mutex_lock(&hostcall_init_lock); uint64_t buffer = hostrpc_assign_buffer(DeviceInfo.HSAAgents[device_id], queue, device_id); pthread_mutex_unlock(&hostcall_init_lock); if (!buffer) { DP("hostrpc_assign_buffer failed, gpu would dereference null and " "error\n"); return OFFLOAD_FAIL; } if (KernelInfoEntry.implicit_argument_count >= 4) { // Initialise pointer for implicit_argument_count != 0 ABI // Guess that the right implicit argument is at offset 24 after // the explicit arguments. In the future, should be able to read // the offset from msgpack. Clang is not annotating it at present. uint64_t Offset = sizeof(void *) * (KernelInfoEntry.explicit_argument_count + 3); if ((Offset + 8) > (ArgPool->kernarg_segment_size)) { DP("Bad offset of hostcall, exceeds kernarg segment size\n"); } else { memcpy(static_cast(kernarg) + Offset, &buffer, 8); } } // initialise pointer for implicit_argument_count == 0 ABI impl_args->hostcall_ptr = buffer; } packet->kernarg_address = kernarg; } hsa_signal_t s = DeviceInfo.FreeSignalPool.pop(); if (s.handle == 0) { DP("Failed to get signal instance\n"); return OFFLOAD_FAIL; } packet->completion_signal = s; hsa_signal_store_relaxed(packet->completion_signal, 1); // Publish the packet indicating it is ready to be processed core::packet_store_release(reinterpret_cast(packet), core::create_header(), packet->setup); // Since the packet is already published, its contents must not be // accessed any more hsa_signal_store_relaxed(queue->doorbell_signal, packet_id); while (hsa_signal_wait_scacquire(s, HSA_SIGNAL_CONDITION_EQ, 0, UINT64_MAX, HSA_WAIT_STATE_BLOCKED) != 0) ; assert(ArgPool); ArgPool->deallocate(kernarg); DeviceInfo.FreeSignalPool.push(s); } DP("Kernel completed\n"); return OFFLOAD_SUCCESS; } bool elf_machine_id_is_amdgcn(__tgt_device_image *image) { const uint16_t amdgcnMachineID = 224; // EM_AMDGPU may not be in system elf.h int32_t r = elf_check_machine(image, amdgcnMachineID); if (!r) { DP("Supported machine ID not found\n"); } return r; } uint32_t elf_e_flags(__tgt_device_image *image) { char *img_begin = (char *)image->ImageStart; size_t img_size = (char *)image->ImageEnd - img_begin; Elf *e = elf_memory(img_begin, img_size); if (!e) { DP("Unable to get ELF handle: %s!\n", elf_errmsg(-1)); return 0; } Elf64_Ehdr *eh64 = elf64_getehdr(e); if (!eh64) { DP("Unable to get machine ID from ELF file!\n"); elf_end(e); return 0; } uint32_t Flags = eh64->e_flags; elf_end(e); DP("ELF Flags: 0x%x\n", Flags); return Flags; } template bool enforce_upper_bound(T *value, T upper) { bool changed = *value > upper; if (changed) { *value = upper; } return changed; } Elf64_Shdr *find_only_SHT_HASH(Elf *elf) { size_t N; int rc = elf_getshdrnum(elf, &N); if (rc != 0) { return nullptr; } Elf64_Shdr *result = nullptr; for (size_t i = 0; i < N; i++) { Elf_Scn *scn = elf_getscn(elf, i); if (scn) { Elf64_Shdr *shdr = elf64_getshdr(scn); if (shdr) { if (shdr->sh_type == SHT_HASH) { if (result == nullptr) { result = shdr; } else { // multiple SHT_HASH sections not handled return nullptr; } } } } } return result; } const Elf64_Sym *elf_lookup(Elf *elf, char *base, Elf64_Shdr *section_hash, const char *symname) { assert(section_hash); size_t section_symtab_index = section_hash->sh_link; Elf64_Shdr *section_symtab = elf64_getshdr(elf_getscn(elf, section_symtab_index)); size_t section_strtab_index = section_symtab->sh_link; const Elf64_Sym *symtab = reinterpret_cast(base + section_symtab->sh_offset); const uint32_t *hashtab = reinterpret_cast(base + section_hash->sh_offset); // Layout: // nbucket // nchain // bucket[nbucket] // chain[nchain] uint32_t nbucket = hashtab[0]; const uint32_t *bucket = &hashtab[2]; const uint32_t *chain = &hashtab[nbucket + 2]; const size_t max = strlen(symname) + 1; const uint32_t hash = elf_hash(symname); for (uint32_t i = bucket[hash % nbucket]; i != 0; i = chain[i]) { char *n = elf_strptr(elf, section_strtab_index, symtab[i].st_name); if (strncmp(symname, n, max) == 0) { return &symtab[i]; } } return nullptr; } struct symbol_info { void *addr = nullptr; uint32_t size = UINT32_MAX; uint32_t sh_type = SHT_NULL; }; int get_symbol_info_without_loading(Elf *elf, char *base, const char *symname, symbol_info *res) { if (elf_kind(elf) != ELF_K_ELF) { return 1; } Elf64_Shdr *section_hash = find_only_SHT_HASH(elf); if (!section_hash) { return 1; } const Elf64_Sym *sym = elf_lookup(elf, base, section_hash, symname); if (!sym) { return 1; } if (sym->st_size > UINT32_MAX) { return 1; } if (sym->st_shndx == SHN_UNDEF) { return 1; } Elf_Scn *section = elf_getscn(elf, sym->st_shndx); if (!section) { return 1; } Elf64_Shdr *header = elf64_getshdr(section); if (!header) { return 1; } res->addr = sym->st_value + base; res->size = static_cast(sym->st_size); res->sh_type = header->sh_type; return 0; } int get_symbol_info_without_loading(char *base, size_t img_size, const char *symname, symbol_info *res) { Elf *elf = elf_memory(base, img_size); if (elf) { int rc = get_symbol_info_without_loading(elf, base, symname, res); elf_end(elf); return rc; } return 1; } hsa_status_t interop_get_symbol_info(char *base, size_t img_size, const char *symname, void **var_addr, uint32_t *var_size) { symbol_info si; int rc = get_symbol_info_without_loading(base, img_size, symname, &si); if (rc == 0) { *var_addr = si.addr; *var_size = si.size; return HSA_STATUS_SUCCESS; } else { return HSA_STATUS_ERROR; } } template hsa_status_t module_register_from_memory_to_place( std::map &KernelInfoTable, std::map &SymbolInfoTable, void *module_bytes, size_t module_size, int DeviceId, C cb, std::vector &HSAExecutables) { auto L = [](void *data, size_t size, void *cb_state) -> hsa_status_t { C *unwrapped = static_cast(cb_state); return (*unwrapped)(data, size); }; return core::RegisterModuleFromMemory( KernelInfoTable, SymbolInfoTable, module_bytes, module_size, DeviceInfo.HSAAgents[DeviceId], L, static_cast(&cb), HSAExecutables); } uint64_t get_device_State_bytes(char *ImageStart, size_t img_size) { uint64_t device_State_bytes = 0; { // If this is the deviceRTL, get the state variable size symbol_info size_si; int rc = get_symbol_info_without_loading( ImageStart, img_size, "omptarget_nvptx_device_State_size", &size_si); if (rc == 0) { if (size_si.size != sizeof(uint64_t)) { DP("Found device_State_size variable with wrong size\n"); return 0; } // Read number of bytes directly from the elf memcpy(&device_State_bytes, size_si.addr, sizeof(uint64_t)); } } return device_State_bytes; } struct device_environment { // initialise an DeviceEnvironmentTy in the deviceRTL // patches around differences in the deviceRTL between trunk, aomp, // rocmcc. Over time these differences will tend to zero and this class // simplified. // Symbol may be in .data or .bss, and may be missing fields, todo: // review aomp/trunk/rocm and simplify the following // The symbol may also have been deadstripped because the device side // accessors were unused. // If the symbol is in .data (aomp, rocm) it can be written directly. // If it is in .bss, we must wait for it to be allocated space on the // gpu (trunk) and initialize after loading. const char *sym() { return "omptarget_device_environment"; } DeviceEnvironmentTy host_device_env; symbol_info si; bool valid = false; __tgt_device_image *image; const size_t img_size; device_environment(int device_id, int number_devices, __tgt_device_image *image, const size_t img_size) : image(image), img_size(img_size) { host_device_env.NumDevices = number_devices; host_device_env.DeviceNum = device_id; host_device_env.DebugKind = 0; host_device_env.DynamicMemSize = 0; if (char *envStr = getenv("LIBOMPTARGET_DEVICE_RTL_DEBUG")) { host_device_env.DebugKind = std::stoi(envStr); } int rc = get_symbol_info_without_loading((char *)image->ImageStart, img_size, sym(), &si); if (rc != 0) { DP("Finding global device environment '%s' - symbol missing.\n", sym()); return; } if (si.size > sizeof(host_device_env)) { DP("Symbol '%s' has size %u, expected at most %zu.\n", sym(), si.size, sizeof(host_device_env)); return; } valid = true; } bool in_image() { return si.sh_type != SHT_NOBITS; } hsa_status_t before_loading(void *data, size_t size) { if (valid) { if (in_image()) { DP("Setting global device environment before load (%u bytes)\n", si.size); uint64_t offset = (char *)si.addr - (char *)image->ImageStart; void *pos = (char *)data + offset; memcpy(pos, &host_device_env, si.size); } } return HSA_STATUS_SUCCESS; } hsa_status_t after_loading() { if (valid) { if (!in_image()) { DP("Setting global device environment after load (%u bytes)\n", si.size); int device_id = host_device_env.DeviceNum; auto &SymbolInfo = DeviceInfo.SymbolInfoTable[device_id]; void *state_ptr; uint32_t state_ptr_size; hsa_status_t err = interop_hsa_get_symbol_info( SymbolInfo, device_id, sym(), &state_ptr, &state_ptr_size); if (err != HSA_STATUS_SUCCESS) { DP("failed to find %s in loaded image\n", sym()); return err; } if (state_ptr_size != si.size) { DP("Symbol had size %u before loading, %u after\n", state_ptr_size, si.size); return HSA_STATUS_ERROR; } return DeviceInfo.freesignalpool_memcpy_h2d(state_ptr, &host_device_env, state_ptr_size, device_id); } } return HSA_STATUS_SUCCESS; } }; hsa_status_t impl_calloc(void **ret_ptr, size_t size, int DeviceId) { uint64_t rounded = 4 * ((size + 3) / 4); void *ptr; hsa_amd_memory_pool_t MemoryPool = DeviceInfo.getDeviceMemoryPool(DeviceId); hsa_status_t err = hsa_amd_memory_pool_allocate(MemoryPool, rounded, 0, &ptr); if (err != HSA_STATUS_SUCCESS) { return err; } hsa_status_t rc = hsa_amd_memory_fill(ptr, 0, rounded / 4); if (rc != HSA_STATUS_SUCCESS) { DP("zero fill device_state failed with %u\n", rc); core::Runtime::Memfree(ptr); return HSA_STATUS_ERROR; } *ret_ptr = ptr; return HSA_STATUS_SUCCESS; } bool image_contains_symbol(void *data, size_t size, const char *sym) { symbol_info si; int rc = get_symbol_info_without_loading((char *)data, size, sym, &si); return (rc == 0) && (si.addr != nullptr); } } // namespace namespace core { hsa_status_t allow_access_to_all_gpu_agents(void *ptr) { return hsa_amd_agents_allow_access(DeviceInfo.HSAAgents.size(), &DeviceInfo.HSAAgents[0], NULL, ptr); } } // namespace core extern "C" { int32_t __tgt_rtl_is_valid_binary(__tgt_device_image *image) { return elf_machine_id_is_amdgcn(image); } int __tgt_rtl_number_of_devices() { // If the construction failed, no methods are safe to call if (DeviceInfo.ConstructionSucceeded) { return DeviceInfo.NumberOfDevices; } else { DP("AMDGPU plugin construction failed. Zero devices available\n"); return 0; } } int64_t __tgt_rtl_init_requires(int64_t RequiresFlags) { DP("Init requires flags to %ld\n", RequiresFlags); DeviceInfo.RequiresFlags = RequiresFlags; return RequiresFlags; } int32_t __tgt_rtl_init_device(int device_id) { hsa_status_t err; // this is per device id init DP("Initialize the device id: %d\n", device_id); hsa_agent_t agent = DeviceInfo.HSAAgents[device_id]; // Get number of Compute Unit uint32_t compute_units = 0; err = hsa_agent_get_info( agent, (hsa_agent_info_t)HSA_AMD_AGENT_INFO_COMPUTE_UNIT_COUNT, &compute_units); if (err != HSA_STATUS_SUCCESS) { DeviceInfo.ComputeUnits[device_id] = 1; DP("Error getting compute units : settiing to 1\n"); } else { DeviceInfo.ComputeUnits[device_id] = compute_units; DP("Using %d compute unis per grid\n", DeviceInfo.ComputeUnits[device_id]); } char GetInfoName[64]; // 64 max size returned by get info err = hsa_agent_get_info(agent, (hsa_agent_info_t)HSA_AGENT_INFO_NAME, (void *)GetInfoName); if (err) DeviceInfo.GPUName[device_id] = "--unknown gpu--"; else { DeviceInfo.GPUName[device_id] = GetInfoName; } if (print_kernel_trace & STARTUP_DETAILS) DP("Device#%-2d CU's: %2d %s\n", device_id, DeviceInfo.ComputeUnits[device_id], DeviceInfo.GPUName[device_id].c_str()); // Query attributes to determine number of threads/block and blocks/grid. uint16_t workgroup_max_dim[3]; err = hsa_agent_get_info(agent, HSA_AGENT_INFO_WORKGROUP_MAX_DIM, &workgroup_max_dim); if (err != HSA_STATUS_SUCCESS) { DeviceInfo.GroupsPerDevice[device_id] = RTLDeviceInfoTy::DefaultNumTeams; DP("Error getting grid dims: num groups : %d\n", RTLDeviceInfoTy::DefaultNumTeams); } else if (workgroup_max_dim[0] <= RTLDeviceInfoTy::HardTeamLimit) { DeviceInfo.GroupsPerDevice[device_id] = workgroup_max_dim[0]; DP("Using %d ROCm blocks per grid\n", DeviceInfo.GroupsPerDevice[device_id]); } else { DeviceInfo.GroupsPerDevice[device_id] = RTLDeviceInfoTy::HardTeamLimit; DP("Max ROCm blocks per grid %d exceeds the hard team limit %d, capping " "at the hard limit\n", workgroup_max_dim[0], RTLDeviceInfoTy::HardTeamLimit); } // Get thread limit hsa_dim3_t grid_max_dim; err = hsa_agent_get_info(agent, HSA_AGENT_INFO_GRID_MAX_DIM, &grid_max_dim); if (err == HSA_STATUS_SUCCESS) { DeviceInfo.ThreadsPerGroup[device_id] = reinterpret_cast(&grid_max_dim)[0] / DeviceInfo.GroupsPerDevice[device_id]; if (DeviceInfo.ThreadsPerGroup[device_id] == 0) { DeviceInfo.ThreadsPerGroup[device_id] = RTLDeviceInfoTy::Max_WG_Size; DP("Default thread limit: %d\n", RTLDeviceInfoTy::Max_WG_Size); } else if (enforce_upper_bound(&DeviceInfo.ThreadsPerGroup[device_id], RTLDeviceInfoTy::Max_WG_Size)) { DP("Capped thread limit: %d\n", RTLDeviceInfoTy::Max_WG_Size); } else { DP("Using ROCm Queried thread limit: %d\n", DeviceInfo.ThreadsPerGroup[device_id]); } } else { DeviceInfo.ThreadsPerGroup[device_id] = RTLDeviceInfoTy::Max_WG_Size; DP("Error getting max block dimension, use default:%d \n", RTLDeviceInfoTy::Max_WG_Size); } // Get wavefront size uint32_t wavefront_size = 0; err = hsa_agent_get_info(agent, HSA_AGENT_INFO_WAVEFRONT_SIZE, &wavefront_size); if (err == HSA_STATUS_SUCCESS) { DP("Queried wavefront size: %d\n", wavefront_size); DeviceInfo.WarpSize[device_id] = wavefront_size; } else { // TODO: Burn the wavefront size into the code object DP("Warning: Unknown wavefront size, assuming 64\n"); DeviceInfo.WarpSize[device_id] = 64; } // Adjust teams to the env variables if (DeviceInfo.Env.TeamLimit > 0 && (enforce_upper_bound(&DeviceInfo.GroupsPerDevice[device_id], DeviceInfo.Env.TeamLimit))) { DP("Capping max groups per device to OMP_TEAM_LIMIT=%d\n", DeviceInfo.Env.TeamLimit); } // Set default number of teams if (DeviceInfo.Env.NumTeams > 0) { DeviceInfo.NumTeams[device_id] = DeviceInfo.Env.NumTeams; DP("Default number of teams set according to environment %d\n", DeviceInfo.Env.NumTeams); } else { char *TeamsPerCUEnvStr = getenv("OMP_TARGET_TEAMS_PER_PROC"); int TeamsPerCU = DefaultTeamsPerCU; if (TeamsPerCUEnvStr) { TeamsPerCU = std::stoi(TeamsPerCUEnvStr); } DeviceInfo.NumTeams[device_id] = TeamsPerCU * DeviceInfo.ComputeUnits[device_id]; DP("Default number of teams = %d * number of compute units %d\n", TeamsPerCU, DeviceInfo.ComputeUnits[device_id]); } if (enforce_upper_bound(&DeviceInfo.NumTeams[device_id], DeviceInfo.GroupsPerDevice[device_id])) { DP("Default number of teams exceeds device limit, capping at %d\n", DeviceInfo.GroupsPerDevice[device_id]); } // Adjust threads to the env variables if (DeviceInfo.Env.TeamThreadLimit > 0 && (enforce_upper_bound(&DeviceInfo.NumThreads[device_id], DeviceInfo.Env.TeamThreadLimit))) { DP("Capping max number of threads to OMP_TEAMS_THREAD_LIMIT=%d\n", DeviceInfo.Env.TeamThreadLimit); } // Set default number of threads DeviceInfo.NumThreads[device_id] = RTLDeviceInfoTy::Default_WG_Size; DP("Default number of threads set according to library's default %d\n", RTLDeviceInfoTy::Default_WG_Size); if (enforce_upper_bound(&DeviceInfo.NumThreads[device_id], DeviceInfo.ThreadsPerGroup[device_id])) { DP("Default number of threads exceeds device limit, capping at %d\n", DeviceInfo.ThreadsPerGroup[device_id]); } DP("Device %d: default limit for groupsPerDevice %d & threadsPerGroup %d\n", device_id, DeviceInfo.GroupsPerDevice[device_id], DeviceInfo.ThreadsPerGroup[device_id]); DP("Device %d: wavefront size %d, total threads %d x %d = %d\n", device_id, DeviceInfo.WarpSize[device_id], DeviceInfo.ThreadsPerGroup[device_id], DeviceInfo.GroupsPerDevice[device_id], DeviceInfo.GroupsPerDevice[device_id] * DeviceInfo.ThreadsPerGroup[device_id]); return OFFLOAD_SUCCESS; } static __tgt_target_table * __tgt_rtl_load_binary_locked(int32_t device_id, __tgt_device_image *image); __tgt_target_table *__tgt_rtl_load_binary(int32_t device_id, __tgt_device_image *image) { DeviceInfo.load_run_lock.lock(); __tgt_target_table *res = __tgt_rtl_load_binary_locked(device_id, image); DeviceInfo.load_run_lock.unlock(); return res; } __tgt_target_table *__tgt_rtl_load_binary_locked(int32_t device_id, __tgt_device_image *image) { // This function loads the device image onto gpu[device_id] and does other // per-image initialization work. Specifically: // // - Initialize an DeviceEnvironmentTy instance embedded in the // image at the symbol "omptarget_device_environment" // Fields DebugKind, DeviceNum, NumDevices. Used by the deviceRTL. // // - Allocate a large array per-gpu (could be moved to init_device) // - Read a uint64_t at symbol omptarget_nvptx_device_State_size // - Allocate at least that many bytes of gpu memory // - Zero initialize it // - Write the pointer to the symbol omptarget_nvptx_device_State // // - Pulls some per-kernel information together from various sources and // records it in the KernelsList for quicker access later // // The initialization can be done before or after loading the image onto the // gpu. This function presently does a mixture. Using the hsa api to get/set // the information is simpler to implement, in exchange for more complicated // runtime behaviour. E.g. launching a kernel or using dma to get eight bytes // back from the gpu vs a hashtable lookup on the host. const size_t img_size = (char *)image->ImageEnd - (char *)image->ImageStart; DeviceInfo.clearOffloadEntriesTable(device_id); // We do not need to set the ELF version because the caller of this function // had to do that to decide the right runtime to use if (!elf_machine_id_is_amdgcn(image)) { return NULL; } { auto env = device_environment(device_id, DeviceInfo.NumberOfDevices, image, img_size); auto &KernelInfo = DeviceInfo.KernelInfoTable[device_id]; auto &SymbolInfo = DeviceInfo.SymbolInfoTable[device_id]; hsa_status_t err = module_register_from_memory_to_place( KernelInfo, SymbolInfo, (void *)image->ImageStart, img_size, device_id, [&](void *data, size_t size) { if (image_contains_symbol(data, size, "needs_hostcall_buffer")) { __atomic_store_n(&DeviceInfo.hostcall_required, true, __ATOMIC_RELEASE); } return env.before_loading(data, size); }, DeviceInfo.HSAExecutables); check("Module registering", err); if (err != HSA_STATUS_SUCCESS) { const char *DeviceName = DeviceInfo.GPUName[device_id].c_str(); const char *ElfName = get_elf_mach_gfx_name(elf_e_flags(image)); if (strcmp(DeviceName, ElfName) != 0) { DP("Possible gpu arch mismatch: device:%s, image:%s please check" " compiler flag: -march=\n", DeviceName, ElfName); } else { DP("Error loading image onto GPU: %s\n", get_error_string(err)); } return NULL; } err = env.after_loading(); if (err != HSA_STATUS_SUCCESS) { return NULL; } } DP("AMDGPU module successfully loaded!\n"); { // the device_State array is either large value in bss or a void* that // needs to be assigned to a pointer to an array of size device_state_bytes // If absent, it has been deadstripped and needs no setup. void *state_ptr; uint32_t state_ptr_size; auto &SymbolInfoMap = DeviceInfo.SymbolInfoTable[device_id]; hsa_status_t err = interop_hsa_get_symbol_info( SymbolInfoMap, device_id, "omptarget_nvptx_device_State", &state_ptr, &state_ptr_size); if (err != HSA_STATUS_SUCCESS) { DP("No device_state symbol found, skipping initialization\n"); } else { if (state_ptr_size < sizeof(void *)) { DP("unexpected size of state_ptr %u != %zu\n", state_ptr_size, sizeof(void *)); return NULL; } // if it's larger than a void*, assume it's a bss array and no further // initialization is required. Only try to set up a pointer for // sizeof(void*) if (state_ptr_size == sizeof(void *)) { uint64_t device_State_bytes = get_device_State_bytes((char *)image->ImageStart, img_size); if (device_State_bytes == 0) { DP("Can't initialize device_State, missing size information\n"); return NULL; } auto &dss = DeviceInfo.deviceStateStore[device_id]; if (dss.first.get() == nullptr) { assert(dss.second == 0); void *ptr = NULL; hsa_status_t err = impl_calloc(&ptr, device_State_bytes, device_id); if (err != HSA_STATUS_SUCCESS) { DP("Failed to allocate device_state array\n"); return NULL; } dss = { std::unique_ptr{ptr}, device_State_bytes, }; } void *ptr = dss.first.get(); if (device_State_bytes != dss.second) { DP("Inconsistent sizes of device_State unsupported\n"); return NULL; } // write ptr to device memory so it can be used by later kernels err = DeviceInfo.freesignalpool_memcpy_h2d(state_ptr, &ptr, sizeof(void *), device_id); if (err != HSA_STATUS_SUCCESS) { DP("memcpy install of state_ptr failed\n"); return NULL; } } } } // Here, we take advantage of the data that is appended after img_end to get // the symbols' name we need to load. This data consist of the host entries // begin and end as well as the target name (see the offloading linker script // creation in clang compiler). // Find the symbols in the module by name. The name can be obtain by // concatenating the host entry name with the target name __tgt_offload_entry *HostBegin = image->EntriesBegin; __tgt_offload_entry *HostEnd = image->EntriesEnd; for (__tgt_offload_entry *e = HostBegin; e != HostEnd; ++e) { if (!e->addr) { // The host should have always something in the address to // uniquely identify the target region. DP("Analyzing host entry '' (size = %lld)...\n", (unsigned long long)e->size); return NULL; } if (e->size) { __tgt_offload_entry entry = *e; void *varptr; uint32_t varsize; auto &SymbolInfoMap = DeviceInfo.SymbolInfoTable[device_id]; hsa_status_t err = interop_hsa_get_symbol_info( SymbolInfoMap, device_id, e->name, &varptr, &varsize); if (err != HSA_STATUS_SUCCESS) { // Inform the user what symbol prevented offloading DP("Loading global '%s' (Failed)\n", e->name); return NULL; } if (varsize != e->size) { DP("Loading global '%s' - size mismatch (%u != %lu)\n", e->name, varsize, e->size); return NULL; } DP("Entry point " DPxMOD " maps to global %s (" DPxMOD ")\n", DPxPTR(e - HostBegin), e->name, DPxPTR(varptr)); entry.addr = (void *)varptr; DeviceInfo.addOffloadEntry(device_id, entry); if (DeviceInfo.RequiresFlags & OMP_REQ_UNIFIED_SHARED_MEMORY && e->flags & OMP_DECLARE_TARGET_LINK) { // If unified memory is present any target link variables // can access host addresses directly. There is no longer a // need for device copies. err = DeviceInfo.freesignalpool_memcpy_h2d(varptr, e->addr, sizeof(void *), device_id); if (err != HSA_STATUS_SUCCESS) DP("Error when copying USM\n"); DP("Copy linked variable host address (" DPxMOD ")" "to device address (" DPxMOD ")\n", DPxPTR(*((void **)e->addr)), DPxPTR(varptr)); } continue; } DP("to find the kernel name: %s size: %lu\n", e->name, strlen(e->name)); // errors in kernarg_segment_size previously treated as = 0 (or as undef) uint32_t kernarg_segment_size = 0; auto &KernelInfoMap = DeviceInfo.KernelInfoTable[device_id]; hsa_status_t err = HSA_STATUS_SUCCESS; if (!e->name) { err = HSA_STATUS_ERROR; } else { std::string kernelStr = std::string(e->name); auto It = KernelInfoMap.find(kernelStr); if (It != KernelInfoMap.end()) { atl_kernel_info_t info = It->second; kernarg_segment_size = info.kernel_segment_size; } else { err = HSA_STATUS_ERROR; } } // default value GENERIC (in case symbol is missing from cubin file) llvm::omp::OMPTgtExecModeFlags ExecModeVal = llvm::omp::OMPTgtExecModeFlags::OMP_TGT_EXEC_MODE_GENERIC; // get flat group size if present, else Default_WG_Size int16_t WGSizeVal = RTLDeviceInfoTy::Default_WG_Size; // get Kernel Descriptor if present. // Keep struct in sync wih getTgtAttributeStructQTy in CGOpenMPRuntime.cpp struct KernDescValType { uint16_t Version; uint16_t TSize; uint16_t WG_Size; }; struct KernDescValType KernDescVal; std::string KernDescNameStr(e->name); KernDescNameStr += "_kern_desc"; const char *KernDescName = KernDescNameStr.c_str(); void *KernDescPtr; uint32_t KernDescSize; void *CallStackAddr = nullptr; err = interop_get_symbol_info((char *)image->ImageStart, img_size, KernDescName, &KernDescPtr, &KernDescSize); if (err == HSA_STATUS_SUCCESS) { if ((size_t)KernDescSize != sizeof(KernDescVal)) DP("Loading global computation properties '%s' - size mismatch (%u != " "%lu)\n", KernDescName, KernDescSize, sizeof(KernDescVal)); memcpy(&KernDescVal, KernDescPtr, (size_t)KernDescSize); // Check structure size against recorded size. if ((size_t)KernDescSize != KernDescVal.TSize) DP("KernDescVal size %lu does not match advertized size %d for '%s'\n", sizeof(KernDescVal), KernDescVal.TSize, KernDescName); DP("After loading global for %s KernDesc \n", KernDescName); DP("KernDesc: Version: %d\n", KernDescVal.Version); DP("KernDesc: TSize: %d\n", KernDescVal.TSize); DP("KernDesc: WG_Size: %d\n", KernDescVal.WG_Size); if (KernDescVal.WG_Size == 0) { KernDescVal.WG_Size = RTLDeviceInfoTy::Default_WG_Size; DP("Setting KernDescVal.WG_Size to default %d\n", KernDescVal.WG_Size); } WGSizeVal = KernDescVal.WG_Size; DP("WGSizeVal %d\n", WGSizeVal); check("Loading KernDesc computation property", err); } else { DP("Warning: Loading KernDesc '%s' - symbol not found, ", KernDescName); // Flat group size std::string WGSizeNameStr(e->name); WGSizeNameStr += "_wg_size"; const char *WGSizeName = WGSizeNameStr.c_str(); void *WGSizePtr; uint32_t WGSize; err = interop_get_symbol_info((char *)image->ImageStart, img_size, WGSizeName, &WGSizePtr, &WGSize); if (err == HSA_STATUS_SUCCESS) { if ((size_t)WGSize != sizeof(int16_t)) { DP("Loading global computation properties '%s' - size mismatch (%u " "!= " "%lu)\n", WGSizeName, WGSize, sizeof(int16_t)); return NULL; } memcpy(&WGSizeVal, WGSizePtr, (size_t)WGSize); DP("After loading global for %s WGSize = %d\n", WGSizeName, WGSizeVal); if (WGSizeVal < RTLDeviceInfoTy::Default_WG_Size || WGSizeVal > RTLDeviceInfoTy::Max_WG_Size) { DP("Error wrong WGSize value specified in HSA code object file: " "%d\n", WGSizeVal); WGSizeVal = RTLDeviceInfoTy::Default_WG_Size; } } else { DP("Warning: Loading WGSize '%s' - symbol not found, " "using default value %d\n", WGSizeName, WGSizeVal); } check("Loading WGSize computation property", err); } // Read execution mode from global in binary std::string ExecModeNameStr(e->name); ExecModeNameStr += "_exec_mode"; const char *ExecModeName = ExecModeNameStr.c_str(); void *ExecModePtr; uint32_t varsize; err = interop_get_symbol_info((char *)image->ImageStart, img_size, ExecModeName, &ExecModePtr, &varsize); if (err == HSA_STATUS_SUCCESS) { if ((size_t)varsize != sizeof(llvm::omp::OMPTgtExecModeFlags)) { DP("Loading global computation properties '%s' - size mismatch(%u != " "%lu)\n", ExecModeName, varsize, sizeof(llvm::omp::OMPTgtExecModeFlags)); return NULL; } memcpy(&ExecModeVal, ExecModePtr, (size_t)varsize); DP("After loading global for %s ExecMode = %d\n", ExecModeName, ExecModeVal); if (ExecModeVal < 0 || ExecModeVal > llvm::omp::OMP_TGT_EXEC_MODE_GENERIC_SPMD) { DP("Error wrong exec_mode value specified in HSA code object file: " "%d\n", ExecModeVal); return NULL; } } else { DP("Loading global exec_mode '%s' - symbol missing, using default " "value " "GENERIC (1)\n", ExecModeName); } check("Loading computation property", err); KernelsList.push_back(KernelTy(ExecModeVal, WGSizeVal, device_id, CallStackAddr, e->name, kernarg_segment_size, DeviceInfo.KernArgPool)); __tgt_offload_entry entry = *e; entry.addr = (void *)&KernelsList.back(); DeviceInfo.addOffloadEntry(device_id, entry); DP("Entry point %ld maps to %s\n", e - HostBegin, e->name); } return DeviceInfo.getOffloadEntriesTable(device_id); } void *__tgt_rtl_data_alloc(int device_id, int64_t size, void *, int32_t kind) { void *ptr = NULL; assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); if (kind != TARGET_ALLOC_DEFAULT) { REPORT("Invalid target data allocation kind or requested allocator not " "implemented yet\n"); return NULL; } hsa_amd_memory_pool_t MemoryPool = DeviceInfo.getDeviceMemoryPool(device_id); hsa_status_t err = hsa_amd_memory_pool_allocate(MemoryPool, size, 0, &ptr); DP("Tgt alloc data %ld bytes, (tgt:%016llx).\n", size, (long long unsigned)(Elf64_Addr)ptr); ptr = (err == HSA_STATUS_SUCCESS) ? ptr : NULL; return ptr; } int32_t __tgt_rtl_data_submit(int device_id, void *tgt_ptr, void *hst_ptr, int64_t size) { assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); __tgt_async_info AsyncInfo; int32_t rc = dataSubmit(device_id, tgt_ptr, hst_ptr, size, &AsyncInfo); if (rc != OFFLOAD_SUCCESS) return OFFLOAD_FAIL; return __tgt_rtl_synchronize(device_id, &AsyncInfo); } int32_t __tgt_rtl_data_submit_async(int device_id, void *tgt_ptr, void *hst_ptr, int64_t size, __tgt_async_info *AsyncInfo) { assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); if (AsyncInfo) { initAsyncInfo(AsyncInfo); return dataSubmit(device_id, tgt_ptr, hst_ptr, size, AsyncInfo); } else { return __tgt_rtl_data_submit(device_id, tgt_ptr, hst_ptr, size); } } int32_t __tgt_rtl_data_retrieve(int device_id, void *hst_ptr, void *tgt_ptr, int64_t size) { assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); __tgt_async_info AsyncInfo; int32_t rc = dataRetrieve(device_id, hst_ptr, tgt_ptr, size, &AsyncInfo); if (rc != OFFLOAD_SUCCESS) return OFFLOAD_FAIL; return __tgt_rtl_synchronize(device_id, &AsyncInfo); } int32_t __tgt_rtl_data_retrieve_async(int device_id, void *hst_ptr, void *tgt_ptr, int64_t size, __tgt_async_info *AsyncInfo) { assert(AsyncInfo && "AsyncInfo is nullptr"); assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); initAsyncInfo(AsyncInfo); return dataRetrieve(device_id, hst_ptr, tgt_ptr, size, AsyncInfo); } int32_t __tgt_rtl_data_delete(int device_id, void *tgt_ptr) { assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); hsa_status_t err; DP("Tgt free data (tgt:%016llx).\n", (long long unsigned)(Elf64_Addr)tgt_ptr); err = core::Runtime::Memfree(tgt_ptr); if (err != HSA_STATUS_SUCCESS) { DP("Error when freeing CUDA memory\n"); return OFFLOAD_FAIL; } return OFFLOAD_SUCCESS; } int32_t __tgt_rtl_run_target_team_region(int32_t device_id, void *tgt_entry_ptr, void **tgt_args, ptrdiff_t *tgt_offsets, int32_t arg_num, int32_t num_teams, int32_t thread_limit, uint64_t loop_tripcount) { DeviceInfo.load_run_lock.lock_shared(); int32_t res = runRegionLocked(device_id, tgt_entry_ptr, tgt_args, tgt_offsets, arg_num, num_teams, thread_limit, loop_tripcount); DeviceInfo.load_run_lock.unlock_shared(); return res; } int32_t __tgt_rtl_run_target_region(int32_t device_id, void *tgt_entry_ptr, void **tgt_args, ptrdiff_t *tgt_offsets, int32_t arg_num) { // use one team and one thread // fix thread num int32_t team_num = 1; int32_t thread_limit = 0; // use default return __tgt_rtl_run_target_team_region(device_id, tgt_entry_ptr, tgt_args, tgt_offsets, arg_num, team_num, thread_limit, 0); } int32_t __tgt_rtl_run_target_team_region_async( int32_t device_id, void *tgt_entry_ptr, void **tgt_args, ptrdiff_t *tgt_offsets, int32_t arg_num, int32_t num_teams, int32_t thread_limit, uint64_t loop_tripcount, __tgt_async_info *AsyncInfo) { assert(AsyncInfo && "AsyncInfo is nullptr"); initAsyncInfo(AsyncInfo); DeviceInfo.load_run_lock.lock_shared(); int32_t res = runRegionLocked(device_id, tgt_entry_ptr, tgt_args, tgt_offsets, arg_num, num_teams, thread_limit, loop_tripcount); DeviceInfo.load_run_lock.unlock_shared(); return res; } int32_t __tgt_rtl_run_target_region_async(int32_t device_id, void *tgt_entry_ptr, void **tgt_args, ptrdiff_t *tgt_offsets, int32_t arg_num, __tgt_async_info *AsyncInfo) { // use one team and one thread // fix thread num int32_t team_num = 1; int32_t thread_limit = 0; // use default return __tgt_rtl_run_target_team_region_async( device_id, tgt_entry_ptr, tgt_args, tgt_offsets, arg_num, team_num, thread_limit, 0, AsyncInfo); } int32_t __tgt_rtl_synchronize(int32_t device_id, __tgt_async_info *AsyncInfo) { assert(AsyncInfo && "AsyncInfo is nullptr"); // Cuda asserts that AsyncInfo->Queue is non-null, but this invariant // is not ensured by devices.cpp for amdgcn // assert(AsyncInfo->Queue && "AsyncInfo->Queue is nullptr"); if (AsyncInfo->Queue) { finiAsyncInfo(AsyncInfo); } return OFFLOAD_SUCCESS; } } // extern "C"