APEX: HPX/Phylanx Y2 Plans

(Autonomic Performance Environment for eXascale)

Kevin Huck, Mohammad Alaul Haque Monil, Allen Malony

khuck@cs.uoregon.edu

http://github.com/khuck/xpress-apex

UNIVERSITY OF OREGON

What is APEX?

- Performance measurement library for distributed, asynchronous tasking models/runtimes
 - i.e. HPX, but there are others
 - Lightweight measurement (tasks <1ms)
 - High concurrency (both OS threads and tasks in flight)
 - Distinction between OS and runtime (HPX) thread context
 - Lack of a traditional call stack
 - Task dependency chain instead
 - Runtime controlled task switching
- Infrastructure for dynamic feedback and control of both the runtime and the application

APEX Measurement

- Top down (application) and bottom up (OS/HW) performance mapping / feedback
 - Make node-wide resource utilization data and analysis, energy consumption, and health information available in real time
 - Associate performance state with policies for feedback control

APEX introspection

- OS: track system resources, utilization, job contention, overhead
- Runtime (HPX): track threads, queues, concurrency, remote operations, parcels, memory management
- Application timer / counter observation
- Post-mortem performance analysis
- Integrated with HPX performance counters

APEX Architecture

APEX Introspection

- APEX collects data through "inspectors"
 - Synchronous uses an event API and event "listeners"
 - Initialize, terminate, new thread added to HPX runtime
 - Timer start, stop, yield*, resume* integrated into HPX task scheduler
 - Custom events (meta-events)
 - Asynchronous do not rely on events, but occur periodically
 - Sampled values (counters from HPX)
- APEX exploits access to performance data from lower stack components
 - "Health" data through other interfaces (/proc/stat, /proc/cpuinfo, /proc/meminfo, /proc/net/dev, /proc/self/status, lm_sensors, power*, PAPI hardware counters, etc.)

APEX Event Listeners

Profiling listener

- New task event: capture parent task relationship
- Start event: input name/address, get timestamp, return profiler handle
- Stop event: get timestamp, put profiler object in a queue for back-end processing, return
- Sample event: put the name & value in the queue
- Asynchronous consumer thread: process profiler objects and samples to build statistical profile (in HPX, processed/scheduled as a thread/task)

TAU Listener (postmortem analysis)

Synchronously passes all measurement events to TAU to build an offline profile/trace

OTF2 Listener (postmortem analysis)

Synchronously passes all measurement events to libotf2 for trace analysis

Concurrency listener (postmortem analysis)

- Start event: push timer ID on stack
- Stop event: pop timer ID off stack
- Asynchronous consumer thread: periodically log current timer for each thread, output report at termination

APEX Policy Listener

- Policies are rules that decide on outcomes based on observed state
 - Triggered policies are invoked by introspection API events
 - Periodic policies are run periodically on asynchronous thread
- Polices are registered with the Policy Engine
 - Applications, runtimes, and/or OS register callback functions
- Callback functions define the policy rules
 - "If x < y then..." any arbitrary logic</p>
- Enables runtime adaptation using introspection data
 - Feedback and control mechanism
 - Engages actuators across stack layers
 - Could also be used to involve online auto-tuning/online-search support
 - Active Harmony http://www.dyninst.org/harmony
 - Hill climbing, etc.
 - Control theory (e.g. concurrency)

Screen Output

es detected: 160 ker Threads observed: 40 ilable CPU time: 65.4036 seconds											
unter		rs rsamples	minimun	ı į	mean		maximum	to	tal		stddev
		1	0.000		0.000		0.000		.000		0.000
CPU I/O Wait %		ī	0.000		0.000		0.000		.000		0.000
CPU IRO %		1	0.000		0.000		0.000		.000		0.000
CPU Idle %		1	75.454		75.454		75.454		. 454		0.000
CPU Nice %		1	0.000		0.000		0.000		.000		0.000
CPU Steal %		1	0.000		0.000		0.000		.000		0.000
CPU System %		ī	22.004		22.004		22.004		.004		0.000
CPU User %		1	2.541		2.541		2.541		.541		0.000
CPU soft IRQ %		1	0.000		0.000		0.000	0	.000		0.000
ner					#calls		mean	to	tal		% total
access-argument\$15\$enabl					1		4.84e-04		e-04		0.001
<pre>apex_internal_process_profiles_action :</pre>					19		1.59e-03		e-02		0.046
		nal_shutdo			1		2.13e-05		e-05		0.000
broadcast_call_shu					1		1.39e-04		e-04		0.000
call-function					1		6.84e-05		e-05		0.000
call-functio					1		6.15e-05		e-05		0.000
call-funct					1		2.58e-05		e-05		0.000
px::parallel::execution::p	ara	llel_execu			3		3.91e-05		e-04		0.000
			hpx_mair		1		4.97e-02		e-02		0.076
primary_nam					1		1.01e-04		e-04		0.000
primary_namespace_d	ecr				182		7.68e-05		e-02		0.021
			un_helper		1		4.01e-03		e-03		0.006
set s		for acti			602		5.35e-05		e-02		0.049
		shutdown_a			1		4.74e-03		e-03		0.007
		re\$0/2\$21			1		1.02e-04		e-04		0.000
		re\$1/2\$22			1		1.11e-04		e-04		0.000
	st	re\$2/2\$23			2		1.68e-04		e-04		0.001
		task_obje			131046		3.61e-05		e+00		7.235
variable\$0					1		1.65e-04		e-04		0.000
		ransx/2\$11			1		9.16e-05		e-05		0.000
		pred/2\$12			1		1.41e-04		e-04		0.000
variable\$3\$error/2\$13\$20::eval : variable\$4\$gradient/2\$14\$20::eval :					1		1.27e-04		e-04		0.000
					1		8.51e-05		e-05		0.000

APEX, HPX counters

APEX timers

Concurrency View

Concurrency View

OTF2 View in Vampir

OTF2 View in Vampir - Phylanx

Task Scatterplot Analysis

Taskgraph View

Next Steps

- Phylanx Policies
 - Direct actions vs. scheduled tasks
 - Algorithmic parameter optimization
- HPX Policies
 - Parcel coalescing
 - Auto-chunking / Parallel Algorithms
 - Global performance view
- Phylanx counter integration
 - Add as APEX counters
 - AST tree measurements

- Task dependency analysis
 - APEX taskgraph combined with Phylanx AST graph
 - OTF2 task dependency analysis
 - HPX "states"
- Updated documentation
 - Quickstart
 - Howto
 - FAQ
 - User/Reference guides
 - http://khuck.github.io/xpress-apex/

Policy Example: Parcel Coalescing

Task Graph Example: Ira_csv

Phylanx AST (old data/graph)

Task dependency analysis

- Previous work (see following slides) performed by extending OTF2 and building custom analysis and viewer
- Current OTF2 modifications: adding task GUID and parent GUID attributes to timer events captures dependencies
- Options:
 - Update existing viewer to work with conventional OTF2 with attributes
 - Add analysis algorithm to "viewer 2.0" (née Ravel)

Task dependency in new viewer

Zoom to end of computation

HPCG application from "another runtime"

Automated Performance Diagnosis

- Idle workers
 - Can we automatically identify why workers are idle?
- HPCG iteration boundaries
 - Center of reduction represents natural bottleneck
 - Reduction cannot complete until the final task of the iteration is complete
 - Next iteration cannot begin until reduction completes
- Generic diagnosis module
 - Find idle regions
 - Identify the bottleneck task (region-breaking task)
 - Follow dependencies back from effect to cause (task to blame)

Idle Region

If the final satisfaction taking place during the task to blame had occurred earlier, the idle region could have been shorter.

"Eligible" to run (scheduled)

- Add events to HPX scheduler to identify thread states
 - Created
 - Waiting on dependency
 - Scheduled / ready-to-run
 - Executing
 - Completed

APEX concurrency view (modified)

Region of interest

