1 Introduction

The size and availability of data sets has increased significantly over the course of the past decade. Several
technologies have been developed specifically to enable the analysis of very large data sets. These technolo-
gies have been dubbed “big data” platforms (Hadoop, Spark, Flink [1, 2, 3]). Big data platforms provide
users the ability to compute count-based summaries, through database-inspired interactions, over large sets
of information. The continued development and interest in Hadoop, the rise of the Spark platform, and
growing interest in Flink, Theano [4], and Google’s Tensorflow [5, 6] libraries demonstrate a concerted ef-
fort by academic, open source, and commercial interests to develop systems supporting large scale statistical
computing. Another solution, Spartan [7] is a platform that takes a step toward providing a general purpose
system for computations on distributed arrays for applied statistics on commodity cloud systems. Spartan
extends Theano and Tensorflow in an effort to generalize array operations specifically to support distributed
computing. Spartan decomposes array computations into a predefined set of parallel operations and em-
ploys a greedy algorithm to optimize execution and data layout using a user provided expression graph. The
expression graph is provided to the Spartan runtime which optimizes the expression graph and schedules
work, and infers the data layout on each compute locale using a greedy algorithm and user execution profile
arguments.

This project will develop Phylanx, an array-based and distributed framework targeted to HPC systems
using the HPX runtime, which will overcome some of the limitations of existing systems such as Hadoop,
Spark, and Flink.

Phylanx will build upon Spartan’s ideas and adds (1) more sophisticated algorithms to optimize data
layout, distribution, and tiling on HPC systems by applying combinatorial optimization algorithms relying
on submodularity functions which improves optimality guarantees beyond Spartan, and (2) the use of cache-
oblivious data layouts (based on space filling curves) to improve the overall performance and scalability of
the provided expression evaluations.

The overlap and interest in building a platform with statistical compute capabilities (note: many general
purpose big data and Tensorflow platforms use ‘“NumPy style operations” at scale) using these technologies
along with a number of similar efforts hints at technical challenges associated with efficiently scaling these
systems. Various publications confirm (see for instance [8]) that these existing big-data platforms face
serious performance challenges. As an example, the distributed and local disk I/O (associated with Spark’s
distributed disk shuffle operation) and concurrency management overhead in Spark severely constrains the
system’s performance. Also in HPC environments, the challenge of scaling big data platforms requires
a significant amount of runtime level modifications as outlined by [9]. Phylanx will provide a generic
framework to develop a wide variety of big-data algorithms targeting HPC platforms aiming to overcome
the mentioned limitations.

Consumers and developers of big data technologies continue to engineer solutions in order to increase
the scope of their technologies to encompass problem sets beyond count-based summarizations. Big data
technologies aim to enable statistical computing, machine learning, and data science capabilities matching
the increase in processing and analytics requirements. The popularity of big data platforms spans sev-
eral research and commercial ventures, including but not limited to marketing and financial analysis, bio-
informatics, medical diagnostics, particle physics, autonomous vehicles, and image and natural language
processing. However, a general purpose solution to scale sophisticated statistically oriented algorithms con-
tinues to elude the big data community. On the other hand, derivative technologies have been developed that
graft new features on top of existing platforms to support scaling statistical algorithms. These efforts demon-
strate that the existing systems require users to perform heroic engineering efforts in order to support each of
the technologies’ promises of resiliency for execution on commodity hardware. The challenges associated
with scaling statistical algorithms are often related to the underlying “big data” computational paradigms
and models. Scaling big data software ecosystems to perform more general purpose computations is an
ongoing effort. Spark and Flink are modern endeavors to offer more general purpose processing capabilities
built on top of the Hadoop File system. Phylanx will provide programming methods, environments, and



tools for these kind of computations which aims at reducing the overheads and improving scalability for a
set of big-data algorithms by utilizing (1) static optimization techniques improving data layout, distribution,
and tiling, and minimizing communication overheads based on the concrete expressions evaluated and by
(2) building on top of HPX, a parallel runtime system which serves a flexible and portable implementation
platform.

Continued interest and development directed toward finding a one-platform-for-all solution invites ques-
tions about performance limitations. A system providing research into performance/scaling trade-offs (for
statistical algorithms and runtimes on HPC) does not currently exist. Phylanx will provide an experimental
platform to the wider research community enabling the data and statistical computing capability necessary
to investigate performance and scalability trade-offs for these algorithms at scale.

Big data systems achieve in-memory processing by using sophisticated cache policies to minimize dis-
tributed disk I/O. Local disk storage is used to “spill data” locally, when data set sizes exceed the heap size
of the JVM. The overhead associated with caching, spill files, and the reliance on distributed disk storage as
the mechanism for interprocess communication, imposes significant limitations that impact the performance
of statistical algorithms operating on big data platforms. Developers have to invent techniques under several
constraints imposed by the platform’s implementation. Creating complex algorithms on these platforms
requires a level of detailed understanding and access to the platform that can easily exceed the target user’s
expertise and level of access through the platform’s APIs. Phylanx will provide a higher-level interface
to the user from which it infers an optimized data placement and execution strategy, thus allowing domain
scientists to focus on their work instead of having to delve into system specific idiosyncrasies.

Additional scaling complexity faced by big data platforms is associated with the implementations using
third party libraries to provide primitives that enable asynchronous and distributed computing (e.g. Java’s
Netty library). Many third party libraries that provide asynchrony primitives use epoll, an operating system
service, to detect asynchronous completions. The epoll system call consumes file descriptors. As big data
technologies are required to scale to larger data set sizes, more file descriptors are consumed to maintain
state in spill files on disk. This has a side effect of limiting epoll’s functionality. There is a book-keeping
cost associated with the use of epoll. Bugs related to the consumption of file descriptors have impacted the
scalability of big data systems. The “garbage collection” of file descriptors to avoid leaks, a situation in
which file descriptors are opened and not closed, has been an issue in these platforms. Applications leak-
ing file descriptors can quickly reach operating system limitations causing the operating system hosting the
technology to fail. The use of these libraries (based on epoll) is ingrained into the technology’s implemen-
tations, and resides in places users are unable to touch directly. Phylanx will build upon the dynamic task
scheduling capabilities of HPX, a modern, asynchronous task-based parallel runtime system which com-
pletely alleviates this problem. The dataflow-style capabilities exposed by HPX also help with optimally
scheduling tasks, thus guaranteeing the preservation of all data-dependencies even for complex distributed
workflows.

Using Phylanx, we will implement three benchmarks (out of the twelve benchmarks provided by Spar-
tan) and three additional benchmarks not covered by Spartan, all of which have been chosen such that
the infrastructure required for their implementation has to expose a wide variety of functionalities nec-
essary for the implementation of a broader set of algorithms in the future. Phylanx will make use of a
submodularity-based optimizer to layout, distribute and tile the used data in the best way achievable, and
will use space-filling curves where such optimization is beneficial and appropriate. The use of dynamic,
runtime-based adaptation through application specific policies in APEX will complement the implemented
static optimizations. The broader research goals of the Phylanx project are to: (1) enable best possible per-
formance capabilities for array-based big-data applications, both current and future, (2) develop and deliver
a practical and easy to use computing framework for future practical big-data analysis, and (3) provide
programming methods, environments, and tools for effective means of expressing array-based big-data
applications for portable HPC system execution.



2 Background, State of the Art, and Preliminary Work

The data science and deep learning communities have embraced high productivity, rapid-development lan-
guages such as MATLAB, Julia, Scala, R, and Python. Data set sizes required to construct effective machine
learning models exceed the capabilities provided by rapid-development languages. In an effort to improve
the performance of machine learning algorithms implemented using rapid-development languages, domain
specific libraries and runtime systems such as Theano, Tensorflow, and Spartan have been developed to
support local and distributed data centric computations on commodity hardware.

Improved performance targets, and in some cases distributed processing, are achieved by Theano, Ten-
sorflow, and Spartan by leveraging a mixture of capabilities offered by interpreters and computer algebraic
systems. Each platform provides users with the ability to define computations using a NumPy interface. The
NumPy interface provides users a level of indirection to a software system that encodes the user’s NumPy-
expressions into an expression graph. At execution time each system interprets and evaluates the user’s
expression graph. The interpreter component attempts to find an optimal evaluation of the expression graph
using a combination of compiler techniques, heuristics, and computer algebraic simplification operations.

Theano users are able to define, symbolically, with “place holder variables,” mathematical expressions
using multi-dimensional arrays. Theano expressions are optimized at evaluation time using functionality
blending computer algebraic optimization and compiler style optimizations. Theano makes optimization
choices using rule-based pattern matching over the expression graph. Theano boasts GPU support, constant
folding, subgraph merging, arithmetic simplification, BLAS function scheduling, memory aliasing, and loop
fusion. Theano’s optimizations target single-node algorithms for commodity hardware.

Tensorflow provides a system of computation similar to Theano. Users implement an algorithm in
Python using placeholder variables. At evaluation time, users provide to the interpreter the expression graph
and values, or files representing values, as inputs for placeholder variables. For distributed algorithms,
Tensorflow’s optimization choices are driven by heuristics related to when network copies are implicitly
scheduled by the user’s expression graph. For local computation, Tensorflow includes a just-in-time compi-
lation technique to optimize execution of the user’s expression graph. Tensorflow’s optimizations target both
distributed and single-node commodity clouds executing optimization algorithms for neural networks using
unpublished heuristics. The Tensorflow user community has started several open source efforts to develop
libraries extending the platform’s support for non-neural-network oriented algorithms. All of the Tensorflow
extension libraries are built for single locality computations. An opportunity exists for the development of a
system built from conception for local and distributed execution of user-generated expression graphs.

Spartan is a platform that takes a step toward providing a general purpose distributed array system for
applied statistical computing for commodity cloud systems. Spartan extends Theano and Tensorflow in
an effort to generalize array operations specifically to support distributed computing. Spartan decomposes
array computations into 5 parallel operations (filter, map, fold, scan, join_update) and provides a greedy
algorithm to optimize execution and data layout using a user provided expression graph. Spartan operates in
a manner similar to Theano and Tensorflow. Users interact with a NumPy interface to encode an expression
graph. The expression graph is provided to the Spartan runtime which optimizes the expression graph and
schedules work, and infers the data layout—or tiling—on each compute locale using a greedy algorithm and
user execution profile arguments.

The HPX runtime system to be used by Phylanx provides the necessary abstractions to build efficient
code which is oblivious to local and remote operation while maintaining data locality.

2.1 The HPX Runtime System

HPX is a general purpose C++ runtime system for parallel and distributed applications of any scale. It has
been described in detail in other publications [10, 11, 12, 13, 14, 15]. In the context of this research we plan
to use HPX because of its dynamic scheduling and global data addressing capabilities.

HPX represents an innovative mixture of components as shown in Figure 1. HPX is built using long-
known ideas and concepts such as static and dynamic dataflow, fine-grained futures-based synchronization,



and continuation-style programming. However, it is the combination of these ideas and their strict applica-
tion that form overarching design principles making HPX unique [12]. HPX aims to resolve the problems of
scalability, resiliency, power efficiency, and runtime adaptive resource management that continue to grow in
importance as computer architectures evolve from petascale to exascale, as the industry is facing increasing
demands in supporting highly distributed, heterogeneous systems. Modern applications have to run on a
varying set of resources that are mostly unknown at compile time. To achieve these goals, HPX departs
from today’s prevalent parallel programming models with the aim of mitigating traditional limitations, such
as implicit and explicit (global and local) barriers, coarse-grained parallelism, and lack of easily achievable
overlap between computation and communication.

HPX exposes a coherent program-
ming model unifying all the different
types of parallelism available in today’s
C++1y Concurrency/Parallelism  APIs computer systems. By modeling the API
after the interfaces defined by the C++
Local Control Objects standards, programmers are able to write
¢ . fully asynchronous code using hundreds

Perfo;g::j,fiumer of millions of HPX-threads (tasks) in a
Active Global familiar environment. This ease of pro-
. Parcel Transport Layer .

Address Space (AGA>) gramming extends to both parallel and
distributed applications. HPX is the first
open source runtime system to imple-
ment the concepts of the ParalleX execu-
tion model [16, 17] on conventional sys-
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Figure 1: Architecture of the HPX runtime system. HPX imple-
ments the supporting functionality for all of the modules to be built . . . .
for the Phylaggc proﬁ:ct. HPX re;resents an innovative mixture of a tems' including Lln'ux clusters, Wlnc'lows,
global system-wide active address space (AGAS), fine-grained paral- Macintosh, Android, Intel Xeon/Phi, and
lelism, and lightweight synchronization combined with implicit, work the IBM Blue Gene/Q. Further, HPX
queue based, message-driven, asynchronous computation; full seman- provides services and APIs allowing it
tic equivalence of local and remote execution; and support for hardware to coordinate and manage code execu-
accelerators. tion on GPUs and accelerators in dis-

tributed systems, such as Nvidia and
AMD GPUs, and Intel Xeon Phis (Knight’s Corner and Knight’s Landing architectures). Support for other
accelerators will be added in the context of the Phylanx project. HPX is published under a liberal, open-
source license and has an open, active, and thriving developer and user community.

2.1.1 Active Global Address Space

The AGAS dynamically assigns system wide unique global addresses to objects. As such it unifies local and
remote operations: code looks the same regardless of whether the target object is local or remote. Therefore,
objects can be migrated to other localities (nodes), or migrated out of main memory to persistent storage and
back into memory, a technique which is useful for load-balancing and optimized data distribution, but also
to make the execution state of the system persistent. In the context of Phylanx we will rely on AGAS for
efficiently accessing the partitions of the distributed arrays. Thus the algorithms we will design for working
with those arrays can be locality-agnostic which simplifies their implementations significantly.

2.1.2 Threading/Synchronization

HPX uses a highly efficient threading system based on C++11/C++14 standardized/proposed facilities, it
enables executors (a set of predefined or user supplied policies defining how to schedule threads and where
to execute them), and various scheduling policies (FIFO, LIFO, priority based schemes, etc.). This threading
system enables continuation style (data-flow style) programming supporting full asynchrony of execution
which avoids global barriers and improves system utilization. The threads interact with a highly efficient
constraint-based synchronization model which waits only for results that are necessary before continuing



a particular operation thus avoiding global barriers. Finally, the threading system allows fine control over
which resources on a node are used by the Phylanx processing pipeline. The lightweight threading and syn-
chronization provided by HPX do not rely on operating system consumables and will thus allow program-
mers to overcome the limitations of systems which rely on epoll (libev) for their synchronization needs.

2.1.3 Parcel Transport

HPX includes a modular networking (parcel) layer which has back-end modules for different network fab-
rics. Existing ports are TCP, MPI, and IBverbs parcel-ports. Others ports such as shared-memory, portals,
or proprietary networks are readily implementable. This transport layer allows for dynamic expansion and
shrinking of the number of localities connected together at any point in time (not possible with the current
MPI parcel-port). This abstraction creates semantic equivalence between local and remote operations: local
operations just create a new thread, remote operations create a parcel describing a new thread to be created
on another locality.

2.1.4 Performance Counters/Policies

HPX includes a performance counter framework with a uniform interface for extracting arbitrary information
including performance metrics, queue lengths, execution times of crucial functions, memory footprint, etc.
There is also a policy based decision engine (see Section 2.2) that uses user defined (or predefined) policies
to make decisions about parameter changes based on performance counters evaluated at user defined (or
predefined) events that may be recurring, one time, or custom. As part of Phylanx we will perform research
with the goal of determining the type of policies needed to dynamically adapt the runtime parameters of the
processing pipeline (dynamic data placement, replication, caching polices, etc.) towards best possible 10
bandwidth and minimal network overheads.

2.1.5 C++1y Concurrency and Parallelism APIs

HPX exposes a full set of higher-level parallelization facilities. These higher-level parallelization APIs
have been designed to overcome limitations of today’s commonly used programming models in C++ codes.
The constructs exposed by HPX are well-aligned with the existing C++ standard [18, 19] and the ongoing
standardization work (see for instance [20, 21, 22, 23, 24]). However, HPX goes beyond those with the goal
of providing a flexible, well-integrated, and extensible framework for parallelizing applications using a wide
range of types of parallelism [13]. Because HPX is designed for use on both, single and multiple nodes,
the facilities we describe are also available in distributed use cases, which further broadens their usability.
HPX exposes a uniform higher-level API which gives the application programmer syntactic and semantic
equivalence of various types of on-node and off-node parallelism, all of which are well-integrated into the
C++ type system. These facilities are not only fully aligned with modern C++ programming concepts,
easily extensible and fully generic, they also enable highly efficient parallelization on par or better than
existing equivalent applications based on bulk synchronous coding that is typical of OpenMP and/or MPI
applications.

The differences between HPX and other parallel models and runtime systems like X10, Chapel,
Charm++, Habanero, OpenMP and MPI have been discussed in detail in [12]. To summarize one compar-
ison, the pragma-based constructs in OpenMP (such as #pragma omp) often feel misplaced in a modern
C++ application since they operate outside of the C++ type system and are restricted operating within a
locality. HPX, on the other hand, operates within the C++ standard and offers distributed parallelism. Other
notable (and partially comparable) solutions are provided by the Intel Threading Building Blocks [25] and
Microsoft’s Parallel Patterns Library [26] which expose similar APIs as HPX. However, like OpenMP, all
these solutions fall short when it comes to applications for distributed memory. Alternatively, X10, Chapel,
Charm++, and Habenero operate in a distributed setting, but rely on providing a new language. We expect
that many of the core algorithms for Phylanx can be implemented elegantly using HPX’s higher-level API,
which also opens up a natural upgrade path to acceleration.

As a complement to the distributed algorithmic constructs, HPX also supports distributed data structures



like hpx: :partitioned._vector and hpx: :unordered._map. These are modeled as closely as pos-
sible to the well-known container types of the C++ Standard library vector and unordered_map except
that the underlying data storage allows for a flexible distributed data layout and placement across the nodes
associated with a running application. Many of the algorithmic constructs in HPX directly support these
distributed data container types.

2.2 APEX

The transition to extreme-scale computing poses new challenges in performance analysis and optimization
because of the anticipated high concurrency and dynamic operation that will be required to make systems
operate efficiently. Increasingly heterogeneous hardware, deeper memory hierarchies, reliability concerns,
and constraints posed by power limits will contribute to a dynamic environment in which hardware and
software performance may vary considerably during an application’s execution. Furthermore, emerging
exascale programming models like ParalleX emphasize message-driven computation and finer-grained par-
allelism, resulting in more asynchronous computation. Within this context, there is a compelling case for
runtime performance observation that merges first-person (application perspective) with third-person (re-
source perspective) introspection, and for in situ performance analytics to identify bottlenecks and their
impact on specific sections of code. This information drives online dynamic feedback and adaptation tech-
niques that can be integrated with an exascale runtime system. The goal is to create an autonomic capability
in the system that can direct the application performance to more productive execution outcomes. In addi-
tion, there is a need to provide applications with an adaptable feedback and control mechanism, so that they
can trigger restructuring, algorithmic changes, or load balancing when key conditions are met.

We have implemented such a ca-
Application i

pability for asynchronous tasking mod-
Runtime
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els, called Autonomic Performance Envi-
ronment for eXascale (APEX) [27, 28],
a component of the HPX runtime sys-
tem. APEX supports both introspec-
tion and policy-driven adaptation for per-
formance and power optimization ob-

Jectives. Autonomic behaVIOF requires Figure 2: The APEX system design. Events are passed from the appli-
both performance awareness (introspec-  ca(ion and runtime to APEX, which updates the internal performance
tion), and performance control and adap-  state and optionally buffers the trace events to the filesystem for post-
tation. ~ APEX provides lightweight, mortem analysis and visualization. Phylanx proposes new trace events
low-overhead introspection from timers, and semantics for post-mortem analysis of asynchronous tasking run-
counters, node- or machine-wide re- times, including from the APEX policy engine.

source utilization data, energy consump-

tion, and system health, all accessed in real-time. The introspection results are analyzed at runtime by policy
rules in order to provide the feedback control mechanism. In addition, the performance measurements can
be buffered out to performance measurement libraries like TAU [29], generating profiles or event traces for
detailed post-mortem analysis and visualization.

The most distinguishing component in APEX is the policy engine. The policy engine provides controls
to an application, library, runtime, and/or operating system using the aforementioned introspection mea-
surements. Policies are rules that provide controls based on the observed state captured by APEX. The rules
are encoded as callback functions that are periodic or triggered by events. The policy functions query the
APEX state, extracting updated profile values from any measurement collected by APEX. The functions can
change application or runtime behavior by whatever means available, such as throttling threads, changing al-
gorithms, changing task granularity, or triggering data movement such as mesh refinement or repartitioning.
We hypothesize there will be new policies that emerge from our experiences with the Phylanx project. Any
of the proposed benchmark applications or underlying components may have faster performance or execute




more efficiently given an opportunity for dynamic behavior. The tiled array optimizer could benefit from
APEX policies that define performance expectations and evaluate the solver progress to validate and/or cor-
rect them. The Phylanx framework or even the HPX runtime itself could benefit from policies with respect
to parcels, parallel algorithms or auto-chunked execution.

2.3 The Tensor Contraction Engine

The Tensor Contraction Engine (TCE) [30, 31, 32, 33, 34, 35] is a source-to-source translator that generates
optimized code for a variety of targets from source code consisting of properly structured loop nests in which
arrays are accessed using affine combinations of loop indices. Starting with a polyhedral representation
of the original loop nests a variety of mathematical techniques are applied to find transformations of the
loop nests into forms which facilitate parallel implementation, improve locality, and realize other benefits.
TCE has been used to optimize locality levels beyond main memory [36]. It has been used with a DSL
targeting computational chemistry, and related efforts provide more general DSLs [37]. One of the important
issues addressed in TCE in data layout selection in the context of tensor operations [35]. This approach
combines the best features of empirical optimizations, namely, the incorporation of complex behavior of
modern architectures, and a model-driven approach that enables efficient exploration of the search space
through modeling the cost of constituent operations. We will integrate this model-driven approach with the
algorithmic techniques described in Section 2.4.

In Phylanx TCE, along with an existing DSL, will provide a general loop nest facility that will be
processed by a polyhedral model based compiler such as Pluto [38, 39, 40, 41]. TCE will be adapted to
transform suitably formed IR derived from other Phylanx DSLs, providing the code generator with more
powerful transformation facilities. TCE code generation capabilities, including those for Intel vector units,
will be integrated into the code generator. In addition, the data layout selection techniques used in TCE [35]
will be further developed for Phylanx.

2.4 Performance guarantee for data tiling

Spartan employs a greedy algorithm to determine a tiling scheme for the data that attempts to minimize the
cost of communication between nodes. It is known [7] that finding the minimum-cost solution exactly is an
NP-hard problem, so the authors of Spartan employ a simple greedy algorithm with no quality guarantees.

We observe that, even in the case of NP-hard problems, it is often possible to say something about the
quality of the solution. We can either produce an optimal solution that is found in reasonable time for most
instances (using Smoothed Analysis [42]), or produce a solution in polynomial time whose cost is within a
constant fraction of the optimum. Since smoothed analysis requires assumptions on the input that we cannot
make (our input is user-produced code), we will focus on the latter: Find an efficient algorithm that assigns
data tilings to an expression tree, such that the output tiling has cost at most ¢ - OPT, where c is a constant
and OPT is the cost of the optimal tiling.

The theory of Approximation Algorithms [43] provides us with various tools for this, including Primal-
Dual methods [44] (see [45] for an application) and Submodular Function Optimization [46].

A third route that we wish to explore is that of Fixed-Parameter Tractability [47], where we seek to
identify a parameter of the input that is responsible for the hardness of the problem. Controlling such a
parameter would yield a polynomial-time algorithm for the problem.

2.5 Submodular function optimization

Many optimization problems take on the form “ maxgcy f(.S) such that S is feasible,” where V is a finite
set and f : 2 — R assigns values to subsets. We will focus on the case where f is submodular, which
intuitively means that selecting an element earlier will increase the objective value more than selecting it
later: the marginal return of selecting an element is diminishing as the selected set grows. Submodular func-
tion maximization problems have been studied extensively, and though the problem is NP-hard, successful
approximation strategies exist. Notably, the celebrated result of Nemhauser and Wolsey [46] provides an
algorithm that produces a set S with f(.S) within a (1 — 1/e) factor of the subset while maximizing f.



Our interest in submodular function maximization stems from the hypothesis that the data tiling problem
from the Spartan project [7] exhibits submodular properties.

The classic submodular optimization problem requires random access to all input data. This may not
be feasible for our application. In that case, an online algorithm, or a streaming algorithm such as that of
Badanidiyuru et al. [48] could give us the desired outcome, at a modest cost to the optimality guarantee.

We will also consider parallelizing the optimization step in order to mitigate possible long execution
times, and the effect on the approximation ratio of such an approach. Given that users’ code does not always
match the capabilities of the available hardware, if our first objectives proceed smoothly, we may investigate
alternative expression tree optimizations.

3 Proposed Research

Phylanx proposes to create a Spartan-like tool targeted to HPC systems using the HPX runtime. Our compute
graph interpreter will compare Spartan’s greedy scheduling algorithm against a scheduler using a greedy
submodular optimization algorithm. The applied statistical computing interpreter will provide users the
ability to implement NumPy-styled expression-graphs using Python or C/C++. Expression graphs will be
serialized and sent to an HPX-enabled interpreter for lazy optimization and evaluation.

Spartan’s tiled array optimizer uses a greedy selection algorithm, informed by data access patterns
present in the user-submitted expression graph, to find a “best layout” format for an array tile stored on
a locale. Spartan’s tiled array optimizer provides no optimality guarantees.

Matroid constrained submodular functions provide a mathematical construct for describing diminishing
returns. Submodularity-based techniques provide a mathematically provable guarantee of optimality ap-
proaching (1 — 1/e) in machine learning problem domains and in sensor placement problems [49, 48, 50]
Given a graph representation of a user’s computation and a model of the cost of constituent operations [35],
a submodular driven version of the tiled array optimizer would be able to select array tile storage format
based on the diminishing return valuation related to a particular format given previously-selected storage
formats and user-selected access operations. Submodularity can also be extended into the scheduling of op-
erations represented in the user’s compute graph by greedy prioritization of distributed operations informed
by a diminishing return associated with operator performance. Including a mathematician with a strong
background in combinatorics into our team of researchers will ensure a solid theoretical background for ap-
plying submodular functions to our optimization strategies. Including a computer scientist with significant
array-based compilation and DSL technology expertise will ensure choice of good optimization strategies.

Spartan makes 50+ of the most commonly employed NumPy functions available for use on distributed
arrays, and sizes and locates the data on these arrays based on the kinds of operations which will be applied
to the data [51]. Beyond that, the HPX interpreter will optimize the user’s expression graph, construct cost
models of constituent operations, and determine array data layout and indexing scheme using a submodular
optimization technique. Submodular optimization exhibits a diminishing return property which has demon-
strated usefulness in several learning and summarization problems. Submodular optimization will be used
to select distributed array layout based upon array access patterns (constraints) encoded by the users com-
pute graph. Data layout and tiling schemes will extend Spartan’s dense and sparse column/row formats by
including the space filling curves (Peano, Z-order, Hilbert) storage options.

A mixture of algorithms have been selected to demonstrate the platform’s goal of achieving a general
purpose solution. The platform will provide implementation of the 3 benchmarks mentioned in the Spartan
paper as well as 3 additional benchmarks that have been selected for their domain specificity in text, image,
and graph applications. The platform will provide an implementation of the following benchmarks: (1)
Cholesky Decomposition, is an algorithm with O(N?3) complexity and very strong data dependencies; (2)
Singular Value Decomposition, which is a very fundamental algorithm in scientific and statistical comput-
ing; (3) Logistic Regression with Conjugate Gradient, is a representative algorithm from the family of
linear models used in statistics; (4) Latent Dirichlet Allocation, an algorithm popular for it’s ability to iden-
tify themes associated with a large set of documents; (5) the basic neural network algorithm, underlying



the family or related algorithms popularized by the deep learning community; (6) inspired by GraphBLAS,
Jaccard Index and breadth-first-search (BFS) will be provided.

As with any high performance computing project, computing speed and efficiency are primary goals.
To that end, we will incorporate periodic performance regression testing with APEX and TAU, tracking
design implementations to validate expected performance gains. New APEX policies will be developed
to steer the HPX runtime with respect to communication efficiency, auto-chunking of parallel loops and
guided execution policy selection. We hypothesize that the benchmark applications and the execution graph
optimizer will also benefit from dynamic adaptation and feedback and control policies.

In summary, this project will provide an implementation of Spartan and three of its benchmarks that will
make use of a greedy submodular optimizer, will make use of space-filling curves where such optimization
is beneficial and appropriate, and implement three benchmarks not covered by Spartan. The use of dynamic,
runtime-based adaptation through application specific policies in APEX will complement the implemented
static optimizations.

The broader research goals of the Phylanx project are to:

e cnable best possible performance capabilities for array-based big-data applications, both current and
future,

e develop and deliver a practical and easy to use computing framework for future practical big-data
analysis, and

e provide programming methods, environments, and tools for effective means of expressing array-
based big-data applications for portable HPC system execution.

3.1 Proposed System Architecture

In the context of Phylanx, we will rely on the HPX runtime system which is an example of what we call a
‘target independent programming’ system. The programmers define the parallelism in the program, not just
how one might want to exploit the machine. This is specified in an abstract way in which units of work are
scheduled by explicitly describing data dependencies between them to the underlying runtime system. In
response, the system creates a dynamic task graph corresponding to the real data dependencies as extracted
from the algorithms. The task graph is then scheduled — either automatically or based on additional informa-
tion as provided by the expression tree annotations, runtime based information, or extracted from a machine
learning module — and run on the available computational resources with the best possible performance. The
system does this in a way which maximizes the use of the available memory hierarchies and the use of the
available heterogeneous resources.

One of the main goals of the Phylanx project is to develop a software infrastructure for efficiently
processing large amounts of array data. We envision for this infrastructure to be designed as a set of software
libraries bridging the gap which today exists between two traditional ways of processing “Big Data.” On one
hand, in academia and the high-performance community, we have seen the implementation of distributed
algorithms using hand-crafted solutions in C/C++ using MPI. These code are usually fairly efficient, but
often difficult to write and to maintain. On the other hand many companies have created their own software
ecosystem. Prominent examples for this are Google’s MapReduce [52], or Apache’s Hadoop, Spark, and
Flink projects [2, 3]. These frameworks provide an interface which is simpler and promises automatic
scheduling, data distribution, and fault tolerance. Unfortunately, these systems often lack scalability with
the CPU as the bottleneck [53, 54].

We propose to build a system which exposes a library of high-performance algorithmic primitives which
will be dynamically tied together at runtime to achieve the desired effect. The system will use a higher-
level description of the desired data processing algorithm in Python, possibly syntactically derived from
the well-known NumPy and SymPy Python libraries [55, 56]. The user produces a set of NumPy/SymPy-
style expressions in accordance to the required data processing algorithms. In addition to the elementary
operations as provided by NumPy arrays (numeric operations, array transformations, etc.), we will design
and develop higher-level algorithmic blocks as described in Section 3.2 which the user can employ.



As a first step in the processing, the Phylanx libraries will create a storable (as a file) representation of the
expression tree corresponding to the original set of Python expressions. This expression tree serves several
purposes: a) it provides a possible API for other potential tools, such a GUIs or direct C++ applications
which produce such expression trees as part of their workflow; b) it will be used as the medium connecting
the Python front-end library with a C++ framework which Phylanx will design and which will serve as
the platform to optimize the expression tree and—given the appropriate data sets—to perform the required
operations; and c) it provides a means of archiving arbitrarily complex expression trees for later use. The
nodes of the expression tree will represent operations to perform on the data arrays which are produced
either by an input operation or by a preceding computational step. These dependencies are represented by
the edges of the expression tree. Phylanx will identify, select, and develop a set of operations it makes
available to the user as the possible building blocks for the overall algorithm he/she wants to implement.

As a second step in the processing, the Phylanx pipeline will analyze the expression tree in order to find
an optimal data layout (tiling) and data distribution over a set of compute nodes for the input, intermediate,
and output data, ensuring an optimized execution time (aiming at minimizing communication overheads, uti-
lizing cache hierarchies of the target architecture, and best possible utilization of vector pipelines, etc.). This
process should also identify the number of compute nodes necessary to perform the required operation on a
cluster of a given architecture. We propose to perform research with the goal to develop a better optimiza-
tion algorithm than implemented by Spartan [7], as Spartan’s tiled array optimizer provides no optimality
guarantees. For this we plan to employ submodularity based techniques which provide a mathematically
provable guarantee of optimality approaching (1 —1/e) in machine learning problem domains and in sensor
placement problems [49, 48, 50]. This processing step will be implemented as a C++ module using the HPX
runtime system which enables wide parallelization capabilities necessary for running such algorithms in a
distributed setting. We expect for this processing step to generate an optimized and annotated expression
tree similar to the one produced by step one. The optimization process itself may turn out to be very time
consuming, thus having the ability to store and archive a preprocessed (and optimized) representation of the
optimized set of numeric expressions will be very useful.

The third and central step in the processing interprets (and executes) the annotated expression tree. This
step involves loading the (input) data in accordance with the data layout and distribution as determined from
optimizing the expression tree during the second step. For the scheduling and execution, we propose to
utilize the distributed dataflow-style scheduling and execution facilities as provided by HPX. This will auto-
matically make sure that tasks (nodes on the expression tree) will be scheduled and run only if all dependent
data has been produced (as defined by the edges of the expression tree). Each node of the expression tree
represents a task which has to be performed on one or more input arrays and produces output arrays as
mandated by the initial expression provided by the user. The task is executed next to where the data is
located in the system as soon as all the input data arrays have been made available by their producing tasks.
No global barrier-synchronization is performed as the computation is fully driven by the availability of the
data required for a particular execution step. Generally, HPX moves the work to the data (e.g. schedules
a task at the locality where the data is located, thus by properly tiling and distributing the data across the
system we automatically achieve load balancing as the algorithmic nodes will execute code close to where
the corresponding data is located.

Special consideration will be given to input/output operations. These tasks will read/write the data based
on the required data layout as described by the annotated expression tree. Input/output will be integrated
into HPX’s dataflow scheduling in a way allowing to make other work depending on it. The data read from
external storage will be directly placed in the memory of the node. We will use existing HPX facilities such
as the hpx: :partitioned_vector and the HPX co-array implementation [57] to store the distributed
arrays in memory and for higher-dimensional data handling and SPMD style data processing. This simplifies
the use of standards conforming algorithms as provided by HPX. We also plan to create new HPX distributed
data storage containers as necessary and add support for data layouts based on space filling curves.

One of the central research topics of Phylanx will be the design and implementation of the algorithmic
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blocks of which the initial expressions can be built. Those blocks have to be sufficiently fine-grained for
them to be usable as building blocks of more complex algorithms, but on the other hand should be as
coarse-grained as possible to be able to encapsulate sufficient amount of data processing needed for the data
processing algorithms to be built (see Section 3.2). During the research for Phylanx, a list of building blocks
to be discovered and used to implement those benchmarks. Those building blocks will utilize and extend on
HPX’s existing parallel algorithm and distributed data structures modules.

In all of the design and development of the Phylanx software infrastructure, we plan to maximize the
re-use of already existing libraries. Notable examples of such libraries are HDF5 [58] we plan to use as the
main data representation format and the well known C++ Hypertable library [59] for distributed persistent
data access. For highly efficient dense and sparse linear algebra, we will investigate using one (or more) of
the related existing modern C++ libraries, such as Eigen [60], Blaze [61], and SuiteSparse [62].

3.2 The Six Benchmarks of Phylanx

We propose to focus on developing six benchmarks: Cholesky Decomposition, Singular Value Decompo-
sition, Logistic Regression with Conjugate Gradient, Latent Dirichlet Allocation, Neural Networks, and
Jaccard Index and BFS from GraphBLAS. Those will be used as the driving applications and proof of
concept applications for the Phylanx framework.

We intend to replicate and enhance the functionality of Spartan across three of the twelve Spartan algo-
rithms by making use of (1) submodular algorithms, and (2) cache-oblivious algorithms.

3.2.1 Cholesky Decomposition

Cholesky Decomposition is a well-studied and tested algorithm in distributed computing. The algorithm
has an O(IN3) complexity with strong inner data dependencies. Cholesky will motivate the performance
study of the underlying distributed storage data structures and their associated communication costs. This
algorithm has been studied in [7, 63].

3.2.2 Singular Value Decomposition

Singular Value Decomposition is a fundamental algorithm in scientific and statistical computing. Like
Cholesky, the algorithm is well-studied and it’s performance characteristics are equally well understood.
It provides a mechanism for studying data layout, exercising the memory hierarchy, and BLAS operations.
A version of this algorithm implemented in this platform provides a reusable capability for several other
statistical algorithms.

3.2.3 Logistic Regression w/Conjugate Gradient

Logistic regression is an introductory classifier representative of a family of linear models used in statis-
tical computing. Conjugate Gradient exercises the functionality of the code in many important ways. For
this reason it is being considered as a replacement for the HPL benchmark currently used by Top500.org
to classify supercomputers [64, 65]. The proposed benchmark is called HPCG. While the actual HPCG
benchmark cannot be made part of this proposal (the code design is fixed), we do intend to make our CG
benchmark resemble it as closely as possible. As noted by the advocates of the HPCG benchmark, CG
tests sparse matrix-vector multiplication, vector updates, global dot products. local symmetric Gauss-Seidel
smoothing, and sparse triangular solves (as part of the Gauss-Seidel smoother). Logistic Regression opti-
mized using Conjugate Gradient, will provide a well-understood benchmark for performance that can be
compared against Spartan and other tuned implementations.

3.2.4 Latent Dirichlet Allocation with hyper parameter optimization

Latent Dirichlet Allocation (LDA) is an algorithm popular in the natural language processing community.
LDA is described in the literature as a 3-level hierarchical Bayesian model. Training the algorithm can
be achieved using Bayesian techniques. Collapsed Gibbs sampling is a preferred technique that has been
studied for distributed training. This algorithm was selected to demonstrate system performance on text
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analysis problems, Bayesian statistical problems, and the randomized nature (Markov Chain Monte Carlo
or simply MCMC) of the Gibbs sampling algorithm. For a description of this algorithm, see [66, 67, 68].

3.2.5 Neural Networks

Training neural networks is the most computational expensive aspect of using this particular family of classi-
fication algorithms. The algorithm makes heavy use of dense-matrix, dense-matrix multiply; dense-matrix,
dense-vector multiply; dense-vector, and dense-vector multiply operations. Scaling the training process to
several machines is an area of significant commercial investment. This algorithm is the starting point for
deep learning and provides an opportunity to study how to scale some of the more popular optimization
algorithms (Stochastic gradient descent, L-BFGS, or fmin-cg) to an HPC environment (see also: [69, 70]).

3.2.6 Jaccard Index and BFS using GraphBLAS primitives

The Jaccard index is a graph algorithm for measuring similarity between two vertices. Jaccard Index has
been presented as a candidate application for benchmarking GraphBLAS operations (Graph500, GAP, HPC
Graph Analysis, Kepner and Gilbert). This algorithm provides an opportunity to study sparsity, concurren-
cy/parallelism, communication-avoidance, and data locality trade-offs. Jaccard Index will test Phylanx’s
ability to operate efficiently on a variety of sparse matrix/vector data sets and operations. Specifically, a Jac-
card Index implementation will test the following GraphBLAS kernels [71, 72, 73, 74]: SpGEMM, SpMYV,
SpEWiseX. Users should be capable of implementing these kernels, and others, at a high-level. The Phylanx
platform provides a novel environment to study the possibility of supporting GraphBLAS operations given
the other algorithms that have been proposed. For the Jaccard Index, we wish to compute the overlap in an
unweighted, undirected graph, represented as a symmetric, sparse, N x N matrix. The Jaccard index for a

|N(2)NN(y)| : :
\N(;)m Where N () is the set of neighbors of z.

pair of vertices, x and y, is as follows: J,, = Z

While this project focuses on arrays and not graphs, a sparse N x N matrix can be used to represent
a graph of NV nodes. In this context, BFS is a sparse matrix, sparse vector multiply which is important for
many algorithms. BFS is difficult to implement efficiently because it is typically communication intensive
when performed in a distributed setting. BFS is also important for calculating spanning forests, maximum

flows, betweenness centrality, etc.

3.3 Algorithmic Improvements

The Phylanx will perform research on how the algorithms listed in 3.2 can be advanced beyond what was
implemented in Spartan. We propose to improve those in two main directions: (1) by applying techniques
relying on submodularity and (2) by using cache-oblivious algorithms.

3.3.1 Submodular Algorithms

A submodular function maps subsets to real numbers such that adding an element has diminishing returns
as the base set grows. In particular, if F is a finite set and f : £ — R is a function, we define the
marginal contribution of element e € E to subset S C F as A(e|S) := f(SU{e}) — f(S). The function
is submodular if, for all e and all A C B C E — {e}, we have A(e|B) < A(e|A). Such functions arise
naturally in many optimization contexts. An integer-valued submodular function with unit increase is known
as a matroid. See Krause and Golovin [75] for an extensive discussion of submodular function maximization
and its applications in big data. Particularly promising for our plans are results on streaming submodular
optimization by Badanidiyuru et al. [48], on training data distribution by Wei et al. [76], and on document
summarization by Lin and Bilmes [77].

We will exploit the fact that the presence of submodularity opens up algorithmic techniques for otherwise
intractable problems. While exact solutions are still infeasible, constant-factor approximation algorithms
become available. Notably, the celebrated result of Nemhauser and Wolsey [46] provides an algorithm that
produces a set S with f(.S) within a (1 — 1/e) factor of the subset maximizing f.

The Spartan paper uses the greedy algorithm to select a data layout from operations users have annotated
to the distributed tiled array nodes in the compute graph. The greedy algorithm in the Spartan paper provides
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no guarantees of an optimal selection. The data layout automation can be framed into a submodular subset
selection problem to provide a guarantee of optimal (subset) selection.

3.3.2 Branch width and tangles

A popular measure for the complexity of the input to an optimization problem involving graphs is branch
width, a parameter that encodes how “tree-like” the input graph is. For low branch width, dynamic program-
ming techniques can often overcome the NP-hardness of a problem and provide an exact solution efficiently
(see e.g. [78]). For high branch width, a dual notion, that of a tangle, can be used to cluster the input, thus
decreasing communication between nodes. [79, 80]

Both notions are built around connectivity functions, which are symmetric, submodular functions. A
proof-of-concept paper on the use of tangles in image analysis was written by Diestel and Whittle [81].
Similar ideas could be explored for our data tiling problem.

3.3.3 Cache-Oblivious Algorithms

The idea behind cache-oblivious algorithms is efficient usage of processor caches and reduction of memory
bandwidth requirements. Both things are equally important for single-threaded algorithms, but especially
crucial for parallel algorithms, because available memory bandwidth is usually shared between hardware
threads and frequently becomes a bottleneck for scalability. Those algorithms are oblivious of particu-
lar cache hierarchy and cache parameters and make efficient use of whatever cache hierarchy/parameters.
Cache-oblivious algorithms perform well on a multilevel memory hierarchy without knowing any param-
eters of the hierarchy, only knowing the existence of a hierarchy [82]. An algorithm is cache oblivious if
no program variables dependent on hardware configuration parameters, such as cache size and cache-line
length need to be tuned to minimize the number of cache misses.

We propose to use space-filling curves (Peano, Z-order, Hilbert) as an internal representation because
it makes it possible to perform operations such as matrix multiplication without jumps in indexing. Thus,
it is able to get a performance benefit from the cache without specifically knowing the details of any ma-
chine’s cache structure. Other algorithms, like matrix transposition, sorting, or Jacobi pass filters have been
investigated and have been shown to be implementable using cache-oblivious algorithms as well [83, 84].

In Phylanx we propose to investigate the applicability of those techniques to the algorithms we will
implement.

4 Milestones

4.1 Year 1: Software Design, System Analysis, Prototypical implementation

During the first year of the project, a plurality of the effort will be directed towards designing and imple-
menting the Phylanx infrastructure with HPX, and providing high-level interfaces to the algorithms in C++
and/or Python.

Concepts Identify algorithmic blocks required to represent the applications to be implemented, as described
in Section 3.1.

Python layer Design and implement the first version of a Python layer producing an expression tree corre-
sponding to the provided set of Python expressions.

Optimizer Design and implement first version of optimizer for a subset of algorithmic blocks. This will
include a generation of performance assumptions, along with APEX policies to validate the assumptions
and/or re-evaluate the solution strategy if the performance assumptions are not met.

Algorithmic blocks Design and implement first algorithmic blocks with provable performance guarantees,
as described in 3.3.1.

HPX Adapt existing facilities in HPX to requirements of the rest of the framework, and create new parallel
algorithms and distributed data structures as needed. APEX will be fully integrated and policies enforced
for dynamic HPX behavior.
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Performance Analysis Establish performance regression testing for Phylanx, tracking progress as algorith-
mic blocks are implemented and evaluated. Periodic performance benchmarking of Phylanx components
and applications using APEX and TAU. Development of APEX policies for feedback and control of HPX
resources.

Benchmark Applications At least two benchmark targets will be prototyped during this period, including
a distributed linear algebra framework and the Logic Regression with Conjugate Gradient (HPCG); see
Section 3.2.3. Unit tests and correctness testing will validate results while performance regression testing
will validate implementation performance.

4.2 Year 2: Evaluation, Development, and Implementation of Software

The second year of the project will focus on the design and implementation of the remaining benchmark
applications, as well as refinement of the Phylanx infrastructure, HPX and APEX components. The sub-
modular optimization of execution graphs will be evaluated and refined for correctness and performance.

Python layer The Python layer will be evaluated and refined as necessary to support the requirements of
all of the benchmark applications and the framework in general.

HPX Tune runtime functionality based on first performance evaluations of implemented parts of the system.

Optimizer Evaluate and refine the optimizer for the subset of algorithmic blocks. Expand the evaluation to
include the additional benchmark applications developed in year 2.

Algorithmic blocks Evaluate and refine the algorithmic blocks as necessary to support the additional
benchmark applications.

Benchmark Applications Implement the remainder from the list of applications including Cholesky De-
composition 3.2.1, Singular Value Decomposition 3.2.2, Jaccard Index 3.2.6, Neural Networks 3.2.5 and
Latent Dirichlet Allocation 3.2.4.

Performance Analysis Continued performance regression testing for Phylanx. Continued performance
benchmarking of existing applications and performance evaluation of new application benchmarks using
APEX and TAU. Evaluation and refinement of APEX policies for feedback and control of HPX resources.

5 Broader Impacts

Phylanx has the potential to have an effect well beyond the field of Big Data. By providing scientist and
application developers with a sound framework for performing scalable statistical analysis on big data sets,
new types of applications will be able to be written and maintained. Phylanx is designed in such that user
code will be able to perform efficiently on current and future architecture as long as the runtime system is
maintained. This greatly reduces the maintenance burden and will increase the productivity of program-
mers in these fields. Phylanx will also have direct societal benefit as well. The lead institution resides in
an EPSCoR state. Funding this research fosters the growth and development of HPC in Louisiana. This
provides undergraduate, graduate, and post graduate opportunities to the citizens of Louisiana which is vital
to assist the State in fostering old and creating new industries with HPC technology. Phylanx in particular
lays a solid foundation for technology transfer from academia to industry. This project will help fill the
gap between academic innovation and commercial application, by creating a software layer that industrial
partners can feel confident relying on. Finally, Phylanx funds will support societal values by consciously
identifying and supporting under represented groups in STEM. The lead institution has a long track record
of hiring and training underrepresented minorities. Additionally, the LSU team will support the Beowulf
Bootcamp, an HPC summer camp for high school students and teachers. This week long course introduces
parallel programming, assembles a small cluster, and introduces students to application areas that depend
on HPC.
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6 Results from Prior NSF Support

PI, Hartmut Kaiser is the PI of the NSF funded projects APX: Accelerated ParalleX for Enhanced
Scaling AMR based Science (NSF grant 1117470, $550,000, 9/1/11 — 8/31/14), STAR: a Scalable
toolkit for Transformative Astrophysics Research (NSF grant 1240655, $550,000, 9/1/12 — 8/31/17),
and STORM: a Scalable Toolkit for an Open community supporting near Real-time high resolution
coastal Modeling (NSF grant 1339782, $2,999,894, 10/1/2014 — 9/30/2018). All those projects focus on
different aspects of expanding HPX and its use for scientific applications. APX focuses on improving the
class of adaptive mesh refinement applications. The STAR project applies HPX to a class of astrophysics
simulations of binary white dwarf systems. The STORM project applies HPX to ADCIRC, a storm surge
modeling and forecasting tool. Intellectual Merit: All projects focus on the interrelationship of parallelism
and overhead, ultimately determining the practical range of attainable scalability. They include immediate
impacts in advancing the specific science domain of numerical relativity and more broadly in those science
and engineering disciplines relying on both AMR and strong scaling. They broadly impact many problems
in physics and engineering which require the simultaneous solution of coupled systems of equations arising
from different physical processes which are typically governed by equations of various types (hyperbolic,
elliptical, and parabolic), and which require different discretization and numeric strategies for their solution,
so-called multi-physics modeling. Publications from those projects include [85, 86, 87, 13, 88] Broader
Impact: The research results and resources have been applied to the distance-learning course distributed live
to other national and international campuses to expand its content and extend its advanced topics section,
this in the short term, while motivating a new graduate level seminar course next year around its topic areas.

Co-PI Steven R. Brandt is funded by NSF for the project Using PDE Descriptions To Generate Code
Precisely Tailored to Energy-Constrained Systems Including Large GPU Accelerated Clusters (NSF
grant 1265449, $169,999 9/2013-8/2017). The goal of this work is to implement a framework which reads
a PDE description of a system written in a domain-specific language (DSL) and from that generates tuned
code targeting computing clusters with accelerated nodes. The project looked at a number of issues, includ-
ing energy, multiple discretization methods, and hybrid execution. Chemora (in prototype form) is being
developed under this project. One publication on the performance model is in print, [89] and two are under
review. An early overview of Chemora appeared in [90], and more recent work was presented at the Ein-
stein Toolkit Workshop [91]. There is a Chemora project page [92] and a publicly accessible repository at
https://bitbucket.org/chemora/chemoracode.

Co-PI Allen Malony received funding through SI2-SSI:Collaborative Research: A Glass Box Ap-
proach to Enabling Open, Deep Interactions in the HPC Toolchain; Grant No. OCI-1148346, $926,667;
K. Schwan (PI, GT), A. Malony (co-PI, UO), B. Chapman (co-PI, UH); 6/1/12 — 5/31/15. Intellectual merit:
Build integrated HPC development tools by exposing information between layers of the software stack, in-
cluding compiler, runtime system, and application performance measurement. Broader impact: Results are
being incorporated in the TAU Performance System and the OpenUH compiler framework and distributed
for broad use. The project contributed to the OpenMP Tools (OMPT) interface extensions to the pending
OpenMP 5.0 standard and implemented a dynamic OpenMP runtime framework with APEX. Publications:
[93, 94, 95, 96] Software artifacts: http://tau.uoregon.edu, https://github.com/khuck/xpress-apex. SI2-SSI.
Collaborative Research: A Software Infrastructure for MPI Performance Engineering: Integrating
MVAPICH and TAU via the MPI Tools Interface, Grant No: OCI-1450471. D. Panda (PI, OSU), S.
Shende (co-PI, UO), A. Malony (co-PI, UO); Amount: $1,200,000 subaward, 9/1/15 — 8/31/19. Intellectual
merit: Shares performance information between the MVAPICH?2 runtime system and the TAU Performance
System to create an adaptive runtime using the MPI-T interface. Broader impact: Develops MVAPICH
and TAU further. Results will be shared through SC and XSEDE conference tutorials and MVAPICH
community meetings. Publications: none to date. Software artifacts: http://tau.uoregon.edu
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