
APEX/HPX Integration Specification for Phylanx

Kevin A. Huck (PI), Allen D. Malony, and Monil Mohammad Alaul Haque

Oregon Advanced Computing Institute for Science and Society (OACISS)
at the University of Oregon,

in collaboration with Louisiana State University and
the University of Arizona

March 1, 2019

Project: Phylanx
Project Title: An Asynchronous Distributed C++ Array Processing Toolkit
Period: 1 July 2018 – 28 February 2019
PI: Kevin A. Huck
Contract Number: FA8075-14-D-0002-0007, TAT 15-1158
Subcontract Number: S901070BAH
Project Number: 09003-0725
Institute: University of Oregon

Oregon Advanced Computing Institute for Science and Society
470 Streisinger Hall
5294 University Of Oregon
Eugene OR 97403-5294

1

Contents

1 Introduction 2
1.1 Usage in the Phylanx Project . 3
1.2 APEX Introspection . 3
1.3 APEX Runtime Adaptation . 4

2 HPX Integration - Technical details 4
2.1 Overview . 4
2.2 APEX code in HPX . 4
2.3 HPX code in APEX . 6
2.4 OTF2, TAU integration with APEX . 7

3 Relevant APEX Configuration Options 8

4 Relevant APEX Runtime Options 9

5 Traveler-Gantt Visualization & Analysis 10
5.1 Critical Path Analysis . 10

6 APEX Policies 11
6.1 Parcel Coalescing . 12
6.2 Direct Actions . 13

7 Continuous Integration Efforts 15
7.1 Buildbot Services . 15
7.2 Performance Regression Testing . 17

A Web Links to Relevant Technology 22

B Code Listings 23

1 Introduction

This document summarizes and describes how APEX is integrated into the Phylanx project.
Specifically, this document describes how it integrates with HPX – a key dependency of the
Phylanx ecosystem.

The APEX (Autonomic Performance Environment for eXascale) library provides a novel
approach to performance observation, measurement, analysis and runtime decision making
in order to optimize performance. The particular challenges of accurately measuring the per-
formance characteristics of HPX applications (as well as other asynchronous multitasking
runtime architectures) required a new approach to parallel performance observation. The
standard model of multiple operating system processes and threads observing themselves
in a first-person manner while writing out performance profiles or traces for offline analysis
does not adequately capture the full execution context, nor provide opportunities for run-
time adaptation within HPX applications. APEX includes methods for information sharing

2

between the layers of the software stack, from the hardware through operating and runtime
systems. The performance measurement components incorporate relevant information across
stack layers, with merging of third-person performance observation of node-level and global
resources, remote processes, and both operating and runtime system threads. For a complete
description of APEX, see [4].

In short, APEX is an introspection and runtime adaptation library for asynchronous mul-
titasking runtime systems. However, APEX is not only useful for AMT/AMR runtimes - it
can be used by any application wanting to perform runtime adaptation to deal with heteroge-
neous and/or variable environments. Used with the HPX runtime, APEX has demonstrated
accurate and useful performance measurement at large scales [3], and has been instrumental
in performance measurement and adaptation for applications built with HPX.

1.1 Usage in the Phylanx Project

The goal of the Phylanx project is to provide a general purpose solution for computations
of distributed arrays for applied statistics on distributed high performance computing re-
sources. Phylanx builds upon Spartan, Theano and TensorFlow in an effort to generalize
away low-level operations and support distributed computing. The system will decompose
array computations into a predefined set of parallel operations and employ algorithms that
optimize execution and data layout based on a user-provided expression graph in the form of
a Python application. Using hints and annotations provided by the user and the subsequent
optimization steps, the expression graph (or abstract syntax tree, AST) will be passed to the
HPX runtime which schedules work and infers the data layout on the provided computing
resources. Early results [7] have been promising, and as the Phylanx project evolves, we
expect to see significant progress as support is added for large distributed computations on
heterogeneous hardware.

Because APEX provides performance measurement and runtime feedback/control of HPX
applications, it is a natural fit to assist in providing tuning and optimization support for
the Phylanx project. The remainder of this section will describe APEX at a high level,
and the remainder of the document will describe both the integration of APEX within the
HPX ecosystem and the contributions from the University of Oregon to the Phylanx project
during the current project period. We conclude this report with a description of Continuous
Integration efforts implemented by the University of Oregon in Section 7.

1.2 APEX Introspection

APEX provides a synchronous API for measuring actions within a runtime. The API includes
methods for timer start/stop, as well as sampled counter values. APEX is designed to be
integrated into a runtime, library and/or application and provide performance introspection
for the purpose of runtime adaptation. While APEX can provide rudimentary post-mortem
performance analysis measurement, there are many other performance measurement tools
that perform that task much better (such as TAU). That said, APEX includes an event
listener that integrates with the TAU measurement system, so APEX events can be forwarded
to TAU and collected in a TAU profile and/or trace to be used for post-mortem performance

3

analysis. We describe the integration of APEX into HPX in Sections 2, 3, and 4. We also
describe the visualization and analysis efforts specific to the Phylanx project in Section 5.

1.3 APEX Runtime Adaptation

APEX provides a mechanism for dynamic runtime behavior, either for autotuning or adap-
tation to a changing computation environment. The infrastructure within APEX that pro-
vides the adaptation is the Policy Engine, executing policies either periodically or triggered
by events. The policies have access to the performance state as observed and updated by
the APEX introspection API. APEX is integrated with Active Harmony to provide dynamic
search for autotuning. We describe the development of new APEX policies for the Phylanx
project in Section 6.

2 HPX Integration - Technical details

2.1 Overview

The original APEX implementation was designed to work with multiple asynchronous mul-
titasking runtimes. At the time of its inception, that included HPX (LSU), HPX-5 (Indiana
University), C++ std::async() threads, OpenMP [1], and others. However, the HPX
implementation was unique in that the asynchronous behavior inside APEX was also im-
plemented with HPX. The intention was that the HPX runtime would have control over
the asynchronous background behavior within APEX. For that reason, the APEX and HPX
code bases are closely tied together, and in fact have circular dependencies. The following
subsections describe the manner in which APEX is used in HPX, and HPX is used in APEX.

2.2 APEX code in HPX

For the most part, APEX measurement is integrated into HPX in two ways – APEX
timers are integrated into the task scheduler, and APEX counters are integrated into the
HPX performance counters (see https://stellar-group.github.io/hpx/docs/sphinx/

latest/html/manual/optimizing_hpx_applications.html for details on the HPX per-
formance counters).

APEX is initialized and finalized in HPX using a scoped variable technique – the APEX
support is contained in a class called hpx::util::apex wrapper init, as shown on lines
121–133 of Listing 10. The object is constructed during initialization of hpx::run or start()

(see Listing 1). When the apex object declared on line 631 goes out of scope, apex::finalize()
will be called. The implementation of the APEX wrapper classes is provided in Appendix
B, in code listings for apex.hpp and apex.hpp.

628 // Setup all internal parameters of the resource_partitioner

rp.configure_pools ();

630

util:: apex_wrapper_init apex(argc , argv);

632

// Initialize and start the HPX runtime.

4

https://stellar-group.github.io/hpx/docs/sphinx/latest/html/manual/optimizing_hpx_applications.html
https://stellar-group.github.io/hpx/docs/sphinx/latest/html/manual/optimizing_hpx_applications.html

634 LPROGRESS_ << "run_local: create runtime";

Listing 1: APEX initialization in HPX.

When an HPX thread (aka task) is constructed, an hpx::util::apex task wrapper ob-
ject is constructed, is stored in the HPX thread using a std::shared ptr<apex::task wrapper>,
and is destroyed when the thread is destroyed, or when APEX has released the shared
pointer after asynchronous background processing. When the HPX thread is executed
by the thread scheduler, the thread is measured using APEX timers. The APEX timers
are wrapped in an object of type hpx::util::apex wrapper as a scoped variable in the
hpx::threads::detail::scheduler loop() method, as shown in Listing 2. If an HPX
thread is interrupted without termination, then APEX will not increase the counter for the
number of times that thread type was executed (i.e. the task timer will be yielded instead
of stopped). Regardless, on either a stop() or yield() call, APEX will take timestamps
and provide them to the APEX back end for asynchronous processing.

#if defined(HPX_HAVE_APEX)

666 // get the APEX data pointer , in case we are resuming the

// thread and have to restore any leaf timers from

668 // direct actions , etc.

670 // the address of tmp_data is getting stored

// by APEX during this call

672 util:: apex_wrapper apex_profiler(thrd ->get_apex_data ());

674 thrd_stat = (*thrd)();

676 if (thrd_stat.get_previous () == terminated) {

apex_profiler.stop();

678 // just in case , clean up the now dead pointer.

thrd ->set_apex_data(nullptr);

680 } else {

apex_profiler.yield ();

682 }

#else

684 thrd_stat = (*thrd)();

#endif

Listing 2: APEX timer in HPX.

HPX counters can be periodically queried by an application, and when they are, APEX
will also store the counter value. In hpx::util::query counters::print value(), the
APEX API call apex::sample value() is executed to store the value, as shown in Listing
3.

124 template <typename Stream >

void query_counters :: print_value(Stream* out , std:: string const& name ,

126 performance_counters :: counter_value const& value , std:: string

const& uom)

{

128 error_code ec(lightweight); // do not throw

double val = value.get_value <double >(ec);

130

5

if(!ec) {

132 #ifdef HPX_HAVE_APEX

apex:: sample_value(name.c_str(), val);

Listing 3: APEX counter in HPX.

2.3 HPX code in APEX

The APEX measurement library was designed to handle synchronous tasks as quickly and
efficiently as possible, to reduce overhead or perturbing the application being measured.
For that reason, building a performance profile at runtime is a task that is handled asyn-
chronously, on a background thread. When timers and counters are observed by the APEX
API, they are placed on an internal asynchronous lock-free queue for processing. When
measuring runtimes other than HPX, the background processing happens with a C++
std::thread object. However, in the HPX integration we wanted to schedule the updating
of statistics as a background task. In the standard case, a semaphore is used to signal the
background thread to wake up and process tasks. In the HPX integration, APEX will ran-
domly (0.1% of the time) fire off an HPX task to process the HPX thread after stopping a
timer. This is done to avoid scheduling background work until there is a significant amount
of work to be done, to avoid scheduling overhead. The scheduling logic is shown in Listing
4. The HPX action apex schedule process profiles is shown in Listing 5.

1460 inline void profiler_listener :: push_profiler(int my_tid ,

std:: shared_ptr <profiler > &p) {

1462 // if we aren’t processing profiler objects , just return.

if (! apex_options :: process_async_state ()) { return; }

1464 #ifdef APEX_TRACE_APEX

if (p->get_task_id ()->name == "apex:: process_profiles") { return;

}

1466 #endif

thequeue ()->enqueue(p);

1468

#ifndef APEX_HAVE_HPX

1470 // Check to see if the consumer is already running , to avoid calling

// "post" too frequently - it is rather costly.

1472 if(! consumer_task_running.test_and_set(memory_order_acq_rel)) {

queue_signal.post();

1474 }

#else

1476 // only fire off an action 0.1% of the time.

static int thresh = RAND_MAX /1000;

1478 if (std::rand() < thresh) {

apex_schedule_process_profiles ();

1480 }

#endif

1482 }

Listing 4: Signaling APEX background processing.

1632 #ifdef APEX_HAVE_HPX

HPX_DECLARE_ACTION(

6

1634 APEX_TOP_LEVEL_PACKAGE :: profiler_listener :: process_profiles_wrapper ,

apex_internal_process_profiles_action);

1636 HPX_ACTION_HAS_CRITICAL_PRIORITY(apex_internal_process_profiles_action);

HPX_PLAIN_ACTION(

1638 APEX_TOP_LEVEL_PACKAGE :: profiler_listener :: process_profiles_wrapper ,

apex_internal_process_profiles_action);

1640

void apex_schedule_process_profiles () {

1642 if(get_hpx_runtime_ptr () == nullptr) return;

if(! thread_instance :: is_worker ()) return;

1644 if(hpx_shutdown) {

APEX_TOP_LEVEL_PACKAGE :: profiler_listener ::

process_profiles_wrapper ();

1646 } else {

if(! consumer_task_running.test_and_set(memory_order_acq_rel)) {

1648 apex_internal_process_profiles_action act;

try {

1650 hpx:: apply(act , hpx:: find_here ());

} catch (...) {

1652 // During shutdown , we can’t schedule a new task ,

// so we process profiles ourselves.

1654 profiler_listener :: process_profiles_wrapper ();

}

1656 }

}

1658 }

Listing 5: Scheduling APEX background processing with an HPX action.

2.4 OTF2, TAU integration with APEX

The APEX synchronous API implements an event listener design. When timers are started
and stopped, and when counters are sampled, those events are passed on to additional listener
objects that can perform optional functionality within APEX. Two such items are OTF2
trace processing and TAU profiling and/or tracing support. The OTF2 listener object is
used to interact with the OTF2 library API and generate an event trace for post-processing.
The TAU listener is similar, it is used to interact with the TAU measurement library and
generate either a TAU profile or trace for post-processing. In this way, APEX operates
as instrumentation glue between asynchronous tasking runtimes and measurement libraries
that are not currently capable of measuring asynchronous, pre-emptive runtimes. See the
Sections 3 and 4 for details on how to utilize these integrated measurement libraries. To use
TAU integration at runtime, the tau exec wrapper script is used to preload TAU libraries.
For example, to launch the Phylanx LRA example with TAU support, see Listing 6. In this
example, TAU will generate a profile from the APEX timer calls, and will also enable event
based sampling to measure code executed outside of HPX threads. For more details on using
tau exec, see the TAU documentation at http://tau.uoregon.edu.

export APEX_TAU =1

2 tau_exec -T pthread -ebs ./ lra_csv

Listing 6: Using tau exec to add TAU measurement support to APEX.

7

http://tau.uoregon.edu

3 Relevant APEX Configuration Options

The full configuration and build process for the Phylanx and HPX projects are beyond the
scope of this document. For up-to-date instructions, please refer to the Phylanx Github.com
project repository (https://github.com/STEllAR-GROUP/phylanx/wiki/Build-Instructions).
To enable APEX support in the Phylanx project, HPX needs to be configured and built with
APEX. For example, if the regular HPX CMake configuration commands are those shown in
Listing 7, adding APEX support is as simple as Listing 8. For more advanced (and useful)
support, the full complement of APEX options is shown in Listing 9.

cmake \

2 -DCMAKE_CXX_COMPILER =/usr/bin/clang++ \

-DCMAKE_C_COMPILER =/usr/bin/clang -DCMAKE_BUILD_TYPE=Release \

4 -DBOOST_ROOT =/opt/local -DHPX_WITH_MALLOC=system \

-DHWLOC_ROOT =/opt/local -DCMAKE_INSTALL_PREFIX =/opt/local/hpx \

6 /Users/user/src/hpx

Listing 7: HPX configuration without APEX.

cmake \

2 -DCMAKE_CXX_COMPILER =/usr/bin/clang++ \

-DCMAKE_C_COMPILER =/usr/bin/clang -DCMAKE_BUILD_TYPE=Release \

4 -DBOOST_ROOT =/opt/local -DHPX_WITH_MALLOC=system \

-DHWLOC_ROOT =/opt/local -DCMAKE_INSTALL_PREFIX =/opt/local/hpx \

6 -DHPX_WITH_APEX=TRUE \

/Users/user/src/hpx

Listing 8: Simple HPX configuration with APEX.

cmake \

2 -DCMAKE_CXX_COMPILER =/usr/bin/clang++ \

-DCMAKE_C_COMPILER =/usr/bin/clang -DCMAKE_BUILD_TYPE=Release \

4 -DBOOST_ROOT =/opt/local -DHPX_WITH_MALLOC=system \

-DHWLOC_ROOT =/opt/local -DCMAKE_INSTALL_PREFIX =/opt/local/hpx \

6 -DHPX_WITH_APEX=TRUE \

-DAPEX_WITH_ACTIVEHARMONY=TRUE \

8 -DACTIVEHARMONY_ROOT =/opt/local/activeharmony /4.6 \

-DAPEX_WITH_OTF2=TRUE \

10 -DOTF2_ROOT =/opt/local/otf2 /2.1 \

-DAPEX_WITH_PAPI=TRUE \

12 -DPAPI_ROOT =/opt/local/papi /5.6.0 \

/Users/user/src/hpx

Listing 9: Complete HPX configuration with APEX.

The HPX configuration process will automatically clone the APEX code repository and
include it in the HPX code base. APEX will be built as a dependent library of the HPX
library. The APEX configuration options are:

• HPX WITH APEX (default:FALSE) Include APEX support in HPX

• APEX WITH ACTIVEHARMONY (default:FALSE) Include Active Harmony policy/tuning
support in APEX

8

https://github.com/STEllAR-GROUP/phylanx/wiki/Build-Instructions

• ACTIVEHARMONY ROOT Path to Active Harmony installation

• APEX WITH OTF2 (default:FALSE) Include OTF2 trace library support in APEX

• OTF2 ROOT Path to OTF2 installation

• APEX WITH PAPI (default:FALSE) Include PAPI hardware counter support in APEX

• PAPI ROOT Path to OTF2 installation

4 Relevant APEX Runtime Options

The APEX library has a large number of runtime options, however only a few of them are
relevant for the Phylanx project. The runtime options of interest are listed here. To set
them, set them as environment variables before running the Phylanx application.

• APEX DISABLE (default:0) Enable/Disable the APEX library entirely. When disabled,
APEX will not be initialized, no measurements will be made, no output given. All
APEX API calls will return immediately.

• APEX PROCESS ASYNC STATE (default:1) Disable the APEX profile statistics computa-
tion, to reduce overhead. Useful when collecting a trace without a profile, or when
passing events on to TAU.

• APEX TAU (default:0) Enable/Disable the TAU integration.

• APEX OTF2 (default:0) Enable/Disable the OTF2 trace collection.

• APEX POLICY (default:1) Enable/disable the APEX policies.

• APEX SCREEN OUTPUT (default:0) Enable/disable a report of HPX tasks measured by
APEX.

• APEX TASKGRAPH OUTPUT (default:0) Enable/disable the collection of a Graphviz (Dot)
style taskgraph of HPX/Phylanx task types.

• APEX PAPI METRICS (default:) Enable additional PAPI hardware counter metrics

• APEX OUTPUT FILE PATH (default:./) The location where output files will be written

• APEX OTF2 ARCHIVE PATH (default:OTF2 archive) The location where OTF2 traces will
be written

• APEX OTF2 ARCHIVE NAME (default:APEX) The name of the OTF2 file.

9

5 Traveler-Gantt Visualization & Analysis

Our Phylanx collaborators at the University of Arizona have been developing the Traveler-
Gantt tool for trace visualization and analysis. The Traveler-Gantt tool is a web-based
redesign of Ravel [6], a tool designed for MPI applications and extended to Charm++ ap-
plications [5]. Traveler-Gantt is one of the project outcomes for the Phylanx project.

APEX measures Phylanx applications using the integrated HPX instrumentation. Using
the available OTF2 trace file output support, APEX can generate trace files that can be
interactively explored with Traveler-Gantt. Figure 1 shows a Phylanx trace loaded into the
Traveler-Gantt user interface. A longer discussion of Traveler-Gantt will be provided by the
Arizona team in their reporting, as well as in the common Phylanx reports from all three
Universities. Briefly, the user interface includes a full trace timeline across the bottom of the
window, and a zoomed-in region showing task dependencies in the majority of the window.

Figure 1: An APEX trace of the LRA Phylanx application visualized in Traveler-Gantt.

5.1 Critical Path Analysis

One key goal for the Traveler-Gantt effort is to provide a measure of critical path analysis
for Phylanx applications. This analysis is needed to help find and determine the cause of
regions of low concurrency in Phylanx applications. As a requirement for that effort, APEX
was extended to generate globaly unique identifiers (GUIDs) for all tasks in the execution.
When an HPX task is constructed, its GUID and parent GUID are recorded so that the trace
contains the task dependency relationships for all tasks. The Traveler-Gantt application then
visually links the tasks with black lines. Figure 2 shows the user interface view when a task

10

is selected in Traveler-Gantt – all of the parent tasks leading up to that task are highlighted
with lines of increasing thickness as the dependency chain goes deeper.

Figure 2: Critical path visualization in Traveler-Gantt. When the Phylanx primitive task
representing a dot product is selected, its color changes to gold and the task hierarchy
showing tasks dependent on that task are highlighted.

Showing another example in finer detail, the subfigures in Figure 3 Show different states
of the Traveler-Gantt GUI when interacting with the APEX data. Subfigure 3a shows a
zoomed-in region of the ALS algorithm implemented in Phylanx. After clicking on one task
once 3b, the task details are shown, its color changes to gold, and the parent dependency
chain is highlighted. Clicking on the task a second time shows all sibling tasks for all parents
in the dependency chain 3c. Clicking on the task a third time returns all of the parent-
child relationship lines to the GUI 3d. Traveler-Gantt shows great promise in helping to
understand critical path dependencies between tasks, and future work should allow us to
automatically determine the causes of low concurrency in HPX.

6 APEX Policies

During this phase of the Phylanx project, the University of Oregon team has worked with the
Louisiana State University team to investigate polices to help with runtime optimization of
parameters in the HPX runtime or the Phylanx library. Two different policies are described
below.

11

(a) Zoomed in region of the ALS application. (b) A Phylanx primitive is selected, showing
the previous pre-empted instances of the task
in gold as well as the tasks that depend on
the result of this task.

(c) The primitive is selected with a second
mouse click, indicating the sibling tasks of
all parent tasks in the dependency chain.

(d) Clicking the task a third time restores all
task dependency relationships in the GUI.

Figure 3: ALS Critical Path visualization in the Traveler-Gantt GUI.

6.1 Parcel Coalescing

Lightweight tasks in distributed HPX applications produce high volumes of fine-grained
communication. HPX uses a Parcel Coalescing technique, as shown in Figure 4, to reduce
communication overhead. The technique depends upon two parameters, the number of
parcels to accumulate before transmission and a timeout interval value if that number of
parcels is not reached. The number of parcels to accumulate and the coalescing interval have
a significant impact on performance. Recent research by the HPX team [8] has demonstrated
a positive correlation between task overhead (network overhead) and overall execution time.

Rather than perform an exhaustive search for the best parameter values, we defined a
Parcel Coalescing Policy with the option to trigger the policy periodically or based on an
event (for example, every 5000 messages). It can start with a default, random, or user
provided starting values for the interval and the number of messages to coalesce.

The callback function for the policy is a call to Active Harmony with the APEX sampled
counter value of network overhead (as the dependent variable) and the current values of the
timeout interval and number of messages (as independent variables). Active harmony ob-

12

Figure 4: The parcel coalescing algorithm in HPX.

serves the dependent variable to change the value of the two independent variables, searching
for the minimal dependent value.

The subfigures in Figure 5 represent the impact of the policy on a synthetic benchmark
where the policy is triggered every 5000 message send events. It shows the convergence of
the two coalescing parameters and the subsequent reduction in network overhead.

6.2 Direct Actions

In task-based runtimes, one challenge is to find the minimum amount of work size of work
(measured as either number of instructions or time to execute) to decide whether a new task
will be generated for the work or the current task will immediately execute the work. Creating
more tasks will provide more parallelism but an excessive amount of small tasks will generate
scheduler overhead. The challenge is to find the “work size” threshold at runtime as it varies
from application-to-application and architecture-to-architecture. For Phylanx the threshold
should be defined and tuned for every primitive instance, each of which is represented by
a node in the abstract syntax tree (AST). The policy will search for a threshold value for
every primitive instance providing optimal performance. Every primitive instance launches
its own policy and the policy observes the execution time for that instance and decides an
optimal value which will theoretically provide faster execution.

A policy was constructed to search for the optimal threshold for each primitive, driven

13

(a) Evolution of the number of messages coalescing parameter.

(b) Evolution of the interval coalescing parameter.

(c) Evolution of the observed network overhead counter in HPX.

Figure 5: Effectiveness of the APEX parcel coalescing policy in HPX.

by the time it takes to execute each primitive. If we compare the impact of the policy with
näıvely executing all tasks asynchronously, the policy provides roughly a 30-40% improve-
ment. We also compared this adaptive APEX policy with setting a fixed threshold which we
call a basic policy. We have used the LSU cluster ROSTAM which has Intel Xeon processors
for these experiments. Figure 6 compares the basic policy and APEX policy. It shows that
in 15 out of 49 cases, the Apex policy outperforms the basic policy. However, the difference
between APEX and basic policy is not significant.

We investigated this issue by changing the fixed threshold in the basic policy and observed
the changes, as shown in Figure 7. The x-axis of the ALS graph is the lower and upper
threshold combination. As the comparison graph suggests, if the lower threshold is higher
than 100ms the impact of changing the threshold is not significant. As long as the lower
threshold is above 100ms, changing the threshold does not have an effect, and it also suggests

14

Figure 6: Comparing the basic implementation with the APEX policy.

Figure 7: Parametric study of lower and upper threshold values for direct action execution.

the threshold can be any value without impacting performance significantly. As we expect to
see a correlation between the architecture and task size, now we are planning to experiment
with other architectures to observe the effect on performance.

7 Continuous Integration Efforts

The Phylanx project uses continuous integration (CI) services wherever possible. The main
source code repositories for HPX and Phylanx use various automated build-and-test systems
to try to prevent the introduction of software errors or regressions of previously fixed bugs.
However, for practicality concerns, the main CI solutions enabled only cover a limited set
of unit tests. Larger integrated tests for the Phylanx project are necessary, and so at the
University of Oregon, we have configured and enabled two CI solutions for both correctness
and performance regression testing.

7.1 Buildbot Services

The University of Oregon team has set up a Buildbot service on a collection of compute
servers hosted at the university. Buildbot is an open source framework for automating soft-
ware build, test, and release processes [2]. The first server of note is the Buildbot service
for testing just the APEX library. The Buildbot service monitors the Github.com APEX
source code repository, and when new modifications are pushed to the repository the service
launches combinations of build configurations designed to test different combinations that

15

might reveal software errors. Figure 8 shows a screen shot of the APEX Buildbot server
running on the server hosted at the University of Oregon. Both Debug and Release configu-
rations are tested, and with different combinations of optional APEX dependencies. For the
tested configurations, only one architecture (x86 64) is tested.

Figure 8: Screen capture of the APEX Buildbot server showing a subset of build configura-
tions.

For the Phylanx project, the University of Oregon is also hosting a Buildbot service.
The Phylanx project has a number of software dependencies (all of which also have software
dependencies), so the service is configured to monitor both the HPX and Phylanx source
code repositories. When new code is pushed to those repositories (after having gone through
an automated CI process configured for those repositories), the UO Buildbot service will
check out the latest code for Phylanx, HPX, Blaze, BlazeTensor, and Pybind (all of which
are software dependencies of the project). Each component will be configured and compiled,
and then the final build of Phylanx will run the full suite of unit tests. Only if the entire
process completes error-free will the build be considered successful. For the full integration
build tests, three different architectures are tested – Intel Broadwell (x86 64), IBM POWER8
(ppc64le), and Intel MIC Knights Landing (knl). The x86 64 and knl builds use GNU 7.1
compilers, whereas the ppc64le build uses LLVM/Clang 7.0 (formerly 5.0) compilers. This
combination provides a broad suite of configurations, and due to the fluid nature of software

16

development, rarely results in successful builds. Figures 9 and 10 show the Phylanx Buildbot
server in action. Regardless of build success, an IRC channel monitored by the Phylanx team
are notified, the web status is updated, and developers are emailed results. Monitoring the
Buildbot results has found many software defects that would otherwise gone unnoticed until
potentially triggered by a user.

Figure 9: Screen capture of Buildbot server executing a build after code commit to the
Phylanx code repository.

7.2 Performance Regression Testing

Because Phylanx is intended to be a highly performant library, the development team needs
a way to confirm that software modifications do not degrade the overall performance. For
that reason, the University of Oregon has configured and hosted a nightly performance
regression test. Implemented with a handful of Linux shell scripts launched as a cron job at
midnight, the Phylanx code base and all software dependencies are downloaded, configured,
built and then run through a parametric test suite to capture performance data. Phylanx

17

Figure 10: Screen capture of Buildbot server details while executing a build for the x86 64
platform using GCC 7 compilers.

and HPX are configured with APEX support, and at runtime the TAU Performance System
is used to capture performance profiles of the applications. The profiles are stored in the
TAUdb database, and using an automated analysis script, the PerfExplorer application will
generate a sequence of analysis graphs including the historical performance of each tested
algorithm as well as scaling charts for each algorithm. There is even a runtime breakdown
of the algorithms, showing where time is spent in either HPX tasks measured by APEX
or the HPX runtime as measured by TAU event-based sampling. Figure 11 shows a screen
capture of the Phylanx nightly regression server, with results dating back to early September,
2018. Figure 12 shows the benefit of the performance regression testing. Some time around
January 4, 2019, a performance bug was introduced into (or exposed in) the ALS algorithm.
Subsequent analysis using the APEX and TAU performance measurement tools and the
Traveler-Gantt and Vampir trace analysis tools showed that a modification to HPX caused
idle threads to go to sleep and wait to be notified when new work is available. Unfortunately,
the sleeping threads were not awakened in a timely manner. Figure 13 shows some visual

18

evidence of the threads not waking up, in Vampir (zoomed in to show about 6 seconds
of time). The top trace timeline (white background) is with the idle backoff enabled, the
bottom trace (blue background) is with the idle backoff disabled. You can clearly see that the
algorithm is dominated with fork-join behavior, and with the idle backoff the threads are not
continuing their work in a timely manner. This particular slowdown was the result of another
performance bug that has yet to be fixed - the region of low concurrency in the algorithm
is an instance where the Blaze library is performing a sequential matrix multiply operation
(that take about .4 seconds each) instead of a parallel one. We are still investigating that
performance bug.

Figure 11: Screen capture of the Phylanx nightly regression testing result web server.

19

Figure 12: Performance trend for the ALS application, showing the performance bug exposed
near the end of December 2018, and resolved near the end of January, 2019.

References

[1] Md Abdullah Shahneous Bari, Nicholas Chaimov, Abid M Malik, Kevin A Huck, Barbara
Chapman, Allen D Malony, and Osman Sarood. Arcs: Adaptive runtime configuration
selection for power-constrained openmp applications. In 2016 IEEE International Con-
ference on Cluster Computing (CLUSTER), pages 461–470. IEEE, 2016.

[2] Dustin J. Mitchell Brian Warner. Buildbot : The Continuous Integration Framework,
2019. https://buildbot.net, Accessed: 2019-02-25.

[3] Thomas Heller, Bryce Adelstein Lelbach, Kevin A Huck, John Biddiscombe, Patricia
Grubel, Alice E Koniges, Matthias Kretz, Dominic Marcello, David Pfander, Adrian
Serio, et al. Harnessing billions of tasks for a scalable portable hydrodynamic simulation
of the merger of two stars. The International Journal of High Performance Computing
Applications, page 1094342018819744, 2019.

[4] Kevin A Huck, Allan Porterfield, Nick Chaimov, Hartmut Kaiser, Allen D Malony,
Thomas Sterling, and Rob Fowler. An autonomic performance environment for exas-
cale. Supercomputing frontiers and innovations, 2(3):49–66, 2015.

20

https://buildbot.net

Figure 13: Before-and-after views of the Phylanx ALS application as captured by APEX
and visualized in Vampir.

[5] Katherine E Isaacs, Abhinav Bhatele, Jonathan Lifflander, David Böhme, Todd Gamblin,
Martin Schulz, Bernd Hamann, and Peer-Timo Bremer. Recovering logical structure from
charm++ event traces. In SC’15: Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, pages 1–12. IEEE, 2015.

[6] Katherine E Isaacs, Peer-Timo Bremer, Ilir Jusufi, Todd Gamblin, Abhinav Bhatele,
Martin Schulz, and Bernd Hamann. Combing the communication hairball: Visualizing
parallel execution traces using logical time. IEEE transactions on visualization and
computer graphics, 20(12):2349–2358, 2014.

[7] R Tohid, Bibek Wagle, Shahrzad Shirzad, Patrick Diehl, Adrian Serio, Alireza Kheirkha-
han, Parsa Amini, Katy Williams, Kate Isaacs, Kevin Huck, et al. Asynchronous exe-
cution of python code on task based runtime systems. arXiv preprint arXiv:1810.07591,
2018.

[8] Bibek Wagle, Samuel Kellar, Adrian Serio, and Hartmut Kaiser. Methodology for adap-
tive active message coalescing in task based runtime systems. In 2018 IEEE International
Parallel and Distributed Processing Symposium Workshops (IPDPSW), pages 1133–1140.
IEEE, 2018.

21

A Web Links to Relevant Technology

1. Phylanx – A Distributed Array Toolkit , The project web page for the Phylanx project
http://phylanx.stellar-group.org

2. Phylanx source code, The code repository for the Phylanx project
https://github.com/STEllAR-GROUP/phylanx

3. HPX – High Performance ParalleX , The project web page for the HPX project
http://stellar-group.org/libraries/hpx

4. HPX source code, The code repository for the HPX project, a build dependency of
Phylanx
https://github.com/STEllAR-GROUP/hpx

5. APEX source code, The code repository for APEX, an optional build dependency of
HPX
https://github.com/khuck/xpress-apex

6. OTF2 source code, The project web page for OTF2, an optional build dependency of
APEX
https://www.vi-hps.org/projects/score-p/

7. Active Harmony source code, The project web page for Active Harmony, an optional
build dependency of APEX
https://www.dyninst.org/harmony

8. TAU – Tuning and Analysis Utilities , The project web page for the TAU Performance
System, a profiling and tracing toolkit integrated with APEX
http://tau.uoregon.edu

9. TAU source code Public mirror of the TAU source code
https://github.com/UO-OACISS/tau2

10. Traveler-Gantt source code, The code repository for Traveler-Gantt, an OTF2 visual-
ization tool for APEX traces of HPX applications
https://github.com/hdc-arizona/traveler-gantt

11. APEX Buildbot Server , The web address of the APEX Buildbot server
http://ktau.nic.uoregon.edu:8010

12. APEX Buildbot Scripts source code, The scripts used to build Phylanx and all its
dependencies for the Buildbot services
https://github.com/khuck/phylanx-buildbot-scripts

13. Phylanx Buildbot Server , The web address of the Phylanx Buildbot server
http://ktau.nic.uoregon.edu:8020

14. Buildbot Source Code,
https://buildbot.net

22

http://phylanx.stellar-group.org
https://github.com/STEllAR-GROUP/phylanx
http://stellar-group.org/libraries/hpx
https://github.com/STEllAR-GROUP/hpx
https://github.com/khuck/xpress-apex
https://www.vi-hps.org/projects/score-p/
https://www.dyninst.org/harmony
http://tau.uoregon.edu
https://github.com/UO-OACISS/tau2
https://github.com/hdc-arizona/traveler-gantt
http://ktau.nic.uoregon.edu:8010
https://github.com/khuck/phylanx-buildbot-scripts
http://ktau.nic.uoregon.edu:8020
https://buildbot.net

15. Phylanx Nightly Regression Tests , The web address for the Phylanx nightly regression
test results
http://www.nic.uoregon.edu/ khuck/regression/phylanx

B Code Listings

// Copyright (c) 2007 -2016 Hartmut Kaiser

2 //

// Distributed under the Boost Software License , Version 1.0. (See

accompanying

4 // file LICENSE_1_0.txt or copy at http :// www.boost.org/LICENSE_1_0.txt)

6 #pragma once // prevent multiple inclusions of this header file.

8 #include <hpx/config.hpp >

#include <hpx/runtime/get_locality_id.hpp >

10 #include <hpx/util/thread_description.hpp >

#include <hpx/runtime/get_num_localities.hpp >

12 #include <hpx/runtime/startup_function.hpp >

14 #ifdef HPX_HAVE_APEX

#include "apex_api.hpp"

16 #include <memory >

#include <cstdint >

18 #include <string >

typedef std:: shared_ptr <apex:: task_wrapper > apex_task_wrapper;

20 #else

typedef void* apex_task_wrapper;

22 #endif

24 namespace hpx { namespace util

{

26 #ifdef HPX_HAVE_APEX

28 static void hpx_util_apex_init_startup(void)

{

30 apex::init(nullptr , hpx:: get_locality_id (),

hpx:: get_initial_num_localities ());

32 }

34 inline void apex_init ()

{

36 hpx_util_apex_init_startup ();

//hpx:: register_pre_startup_function (& hpx_util_apex_init_startup);

38 }

40 inline void apex_finalize ()

{

42 apex:: finalize ();

}

44

HPX_EXPORT apex_task_wrapper apex_new_task(

23

http://www.nic.uoregon.edu/~khuck/regression/phylanx

46 thread_description const& description ,

std:: uint32_t parent_task_locality ,

48 threads :: thread_id_type const& parent_task);

50 inline apex_task_wrapper apex_update_task(apex_task_wrapper wrapper ,

thread_description const& description)

52 {

if (wrapper == nullptr) {

54 threads :: thread_id_type parent_task(nullptr);

// doesn ’t matter which locality we use , the parent is null

56 return apex_new_task(description , 0, parent_task);

} else if (description.kind() == thread_description ::

data_type_description) {

58 return apex:: update_task(wrapper ,

description.get_description ());

60 } else {

return apex:: update_task(wrapper ,

62 description.get_address ());

}

64 }

66 inline apex_task_wrapper apex_update_task(apex_task_wrapper wrapper ,

char const* name)

{

68 if (wrapper == nullptr) {

apex_task_wrapper parent_task(nullptr);

70 return apex:: new_task(std:: string(name), UINTMAX_MAX ,

parent_task);

}

72 return apex:: update_task(wrapper , name);

}

74

/* This is a scoped object around task scheduling to measure the time

76 * spent executing hpx threads */

struct apex_wrapper

78 {

apex_wrapper(apex_task_wrapper data_ptr) : stopped(false), data_(

nullptr)

80 {

/* APEX internal actions are not timed. Otherwise , we would

82 * end up with recursive timers. So it’s possible to have

* a null task wrapper pointer here. */

84 if (data_ptr != nullptr) {

data_ = data_ptr;

86 apex:: start(data_);

}

88 }

~apex_wrapper ()

90 {

stop();

92 }

94 void stop() {

if(! stopped) {

24

96 stopped = true;

/* APEX internal actions are not timed. Otherwise , we would

98 * end up with recursive timers. So it’s possible to have

* a null task wrapper pointer here. */

100 if (data_ != nullptr) {

apex::stop(data_);

102 }

}

104 }

106 void yield() {

if(! stopped) {

108 stopped = true;

/* APEX internal actions are not timed. Otherwise , we would

110 * end up with recursive timers. So it’s possible to have

* a null task wrapper pointer here. */

112 if (data_ != nullptr) {

apex:: yield(data_);

114 }

}

116 }

118 bool stopped;

apex_task_wrapper data_;

120 };

122 struct apex_wrapper_init

{

124 apex_wrapper_init(int /*argc*/, char ** /*argv*/)

{

126 //apex::init(nullptr , hpx:: get_locality_id (),

// hpx:: get_initial_num_localities ());

128 hpx:: register_pre_startup_function (& hpx_util_apex_init_startup

);

}

130 ~apex_wrapper_init ()

{

132 apex:: finalize ();

}

134 };

#else

136 inline void apex_init () {}

inline void apex_finalize () {}

138

inline apex_task_wrapper apex_new_task(

140 thread_description const& description ,

std:: uint32_t parent_task_locality ,

142 threads :: thread_id_type const& parent_task) {return

nullptr ;}

144 inline apex_task_wrapper apex_update_task(apex_task_wrapper wrapper ,

thread_description const& description) {return nullptr ;}

146

inline apex_task_wrapper apex_update_task(apex_task_wrapper wrapper ,

25

148 char const* name) {return nullptr ;}

150 struct apex_wrapper

{

152 apex_wrapper(apex_task_wrapper data_ptr) {}

~apex_wrapper () {}

154 void stop(void) {}

void yield(void) {}

156 };

158 struct apex_wrapper_init

{

160 apex_wrapper_init(int argc , char **argv) {}

~apex_wrapper_init () {}

162 };

#endif

164 }}

Listing 10: hpx/util/apex.hpp

// Copyright (c) 2007 -2013 Kevin Huck

2 //

// Distributed under the Boost Software License , Version 1.0. (See

accompanying

4 // file LICENSE_1_0.txt or copy at http :// www.boost.org/LICENSE_1_0.txt)

//

6

#include <hpx/config.hpp >

8 #include <hpx/util/apex.hpp >

#include <hpx/runtime/threads/thread_helpers.hpp >

10 #include <hpx/runtime/threads/thread_data.hpp >

#include <hpx/runtime/find_localities.hpp >

12 #include <cstdint >

14 namespace hpx { namespace util

{

16 #ifdef HPX_HAVE_APEX

apex_task_wrapper apex_new_task(

18 thread_description const& description ,

std:: uint32_t parent_locality_id ,

20 threads :: thread_id_type const& parent_task)

{

22 static std:: uint32_t num_localities = hpx::

get_initial_num_localities ();

apex_task_wrapper parent_wrapper = nullptr;

24 // Parent pointers aren’t reliable in distributed runs.

if (parent_task != nullptr &&

26 num_localities == 1

/*hpx:: get_locality_id () == parent_locality_id */) {

28 parent_wrapper = parent_task.get()->get_apex_data ();

}

30 if (description.kind() ==

thread_description :: data_type_description) {

32 return apex:: new_task(description.get_description (),

26

UINTMAX_MAX , parent_wrapper);

34 } else {

return apex:: new_task(description.get_address (),

36 UINTMAX_MAX , parent_wrapper);

}

38 }

40 #endif

}}

Listing 11: hpx/util/apex.cpp

27

	Introduction
	Usage in the Phylanx Project
	APEX Introspection
	APEX Runtime Adaptation

	HPX Integration - Technical details
	Overview
	APEX code in HPX
	HPX code in APEX
	OTF2, TAU integration with APEX

	Relevant APEX Configuration Options
	Relevant APEX Runtime Options
	Traveler-Gantt Visualization & Analysis
	Critical Path Analysis

	APEX Policies
	Parcel Coalescing
	Direct Actions

	Continuous Integration Efforts
	Buildbot Services
	Performance Regression Testing

	Web Links to Relevant Technology
	Code Listings

