TAU Performance System® .

University of Oregon e

Robust HPC Application Measurement and Runtime
Measurement with TAU Optimization with APEX

The TAU Performance System® is a portable profiling and tracing toolkit for The Autonomic Performance Environment for eXascale (APEX) is a runtime
performance analysis of parallel programs written in Fortran, C, C++, UPC, loadable library that provides performance measurement and runtime

Java, Python, and utilizing all major programming models such as MPI, adaptation for HPC applications. APEX was originally designed for

SHMEM, OpenMP/ACC/CL, CUDA, HIP, SYCL, and Pthreads. TAU (Tuning asynchronous multi-tasking runtimes (HPX) but also works with both

and Analysis Utilities) can gather performance information through conventional parallel models and asynchronous task schedulers. APEX focuses
Instrumentation of functions, methods, basic blocks, and statements as well on the task dependency graph, not calling context tree. APEX supports HPX,
as event-based sampling. The API also provides selection of profiling groups C/C++ threads, OpenMP, OpenACC, Kokkos, Raja, CUDA, HIP, SYCL, StarPU,
for organizing and controlling instrumentation. The instrumentation can be and we are currently integrating Iris and PARSEc. Runtime adaptation is
inserted in the source code using LLVM compiler plugins, dynamically using provided by search algorithms such as Nelder Mead, simulated annealing,
binary modification, at runtime in the Java Virtual Machine, or manually using genetic search, hill climbing or other parametric search methods.

the instrumentation API or PerfStubs. Many new features and optimizations
were recently added to TAU, including support for the new exascale system
architectures and their preferred programming models. The new features
include a new plugin APl and several plugins, support for the Kokkos and

Kokkos example: mdrange gemm 900x900 with exhaustive and
Simulated annealing search:

) ’ KoRos K “pr K 65M -
- - . - 950m ' 4 4 4 4 A A A A A A A A 42 A Response (tlme)
Raja profiling interfaces, updated support for Python, PyTorch, TensorFlow, = Yy yyyyyyyyyyy , — Exhaustive Search: Using
. . . _ cxstora s o Tk [I The tuning knobs (tiling factors) window size of 2, tiling
550 ’ . . :)
and Horovod, and removed threading limitations. " 2 converges on black dimensions
S , T — - s ssa v Exploring block, grid sizes 16 0f(32,16,1) and grid
X dimensions (29,57,1), the
Ca‘"lp)::play Options Varsinn o K | defaults are (16,2,1) and
........ (57,450,1) respectively. The
Height Value: . .
e s cone e ,_ o E—— e = runtime improved from a
Color value: Exclusive ~ GET_TIME OF...~ b e int apex_preload_ in(int, char**, cha |
ot e « (by Color Metric N N X X X T R baseline of 3.95 seconds to 3.04
eeeeee DI CUDA [1:1:00000] 541065216 N 1 Y R seconds using cached tuning
B oA 1100019 5610552 results.
e s e convergence
T EToreeat wiokatte 2 o Simulated Annealing: Using
ssworer AAUnes. GFul ScreanAA = g | window size of 2, tiling
Fonisize Rl - ULy TPy ey —— Response (time) converges on block
. - s B GL Info " . : ' . ore . .
W e R M ‘ o P LB pmerrryr— The tuning knobs (tiling factors) dlrnerysmns'of (32,16,1) and
J o= o — P grid dimensions (29,57,1), the
MEtrIEZTIME_ Profile view - e ———————————————————— s [S ‘ . teal o snn i titlbbetblind n i mon e e Explorlng blOCk, gnd sizes 16 (57,1!-50,]:) reSpeCtlvely. The
Value: Exclusive d | : O : ol e fenossirin ~ K | 29 runtime improved from a
e | s s o e ' baseline of 3.95 seconds to
std. Dev. i - Ty - . : . :
e (Wil s -TM'. AR Vampir: https://vampir.eu 3.17 seconds using runtime
Max | s 000 s WTE W — CPU Thread 00 FPp e r—— | | simulated annealing. Cached
nocﬂlg [o ([N S - S B IO O OO O results were equivale nt to
[oo s b (K - Tl s
hode 1 e 1] L - T"' i B o CUDA [1:1:00000] 541065216 exhaustive tuning.
node2 T e e ([N » . CUA 1100007 54106522
hode3 | T a1l SETEEEE———— 2 | ETYREEEE
hode 4 — =Wl e . . T —
nodes | — —1 | Vampir trace viewer E o

https://tau.uoregon.edu https://github.com/UO-OACISS/apex

User Space Monitoring with ZeroSum Software Sustainability Updates:
Heterogeneous High Performance Computing (HPC) systems are highly PythOn 3.1 2, PerfStu bS, and TaskStubs

specialized, complex, powerful, and expensive systems. Efficient utilization of
these systems requires monitoring tools to confirm that users have configured
their jobs, workflows, and applications correctly to consume the limited
allocations they have been awarded. Historically system monitoring tools are
designed for — and only available to — system administrators and facilities
personnel to ensure that the system is healthy, utilized, and operating within
acceptable parameters. However, there is a demand for user space monitoring
capabillities to address the configuration validation and optimization problem. We
developed a prototype tool, ZeroSum, designed to provide user space monitoring
of application processes, lightweight processes (threads), and hardware
resources on heterogeneous, distributed HPC systems.

NN\ " NN N "\ M\

PerfStubs is a “frictionless” instrumentation library and provides a plugin interface
for performance tools. It can be disabled at configuration or run time, and it is
integrated into several libraries as a git submodule: CAMTIMERS, PETSc,
Ginkgo, ADIOSZ2. Provides runtime integration with TAU & APEX.

TaskStubs is a similarly designed instrumentation library for asynchronous
tasking runtimes. We are working on integration with several libraries as a git
submodule: IRIS, PaRSEC, StarPU. Provides runtime integration with APEX.
Python updates: Python 3.12 introduced a new, low-overhead tracing callback
interface, PerfStubs is being extended to support it, provide PyTorch, Spark, and
TensorFlow support, and have backwards compatibility for older runtime versions.

LWP | Type stime | utime | nvctx | ctx | CPUs LWP | Type stime | utime | nvctx | ctx | CPUs LWP | Type stime | utime | nvctx | ctx | CPUs Runtime distribution in seconds, Runtime distribution in seconds, Left exam ple. AP EX prOfI le OUtpUt
18351 | Main' 1.54 | 15.17 | 332905 | 1838 | 1 18552 | Main' 3.13 | 88.40 5 704 | 1-7 18948 | Main' 3.07 | 88.57 21386 |1 one thread per core . . .
18356 | ZeroSum 0.42 1.10 194 | 1007 | 1 18561 | ZeroSum 0.79 2.64 2279 | 7 18954 | ZeroSum 0.71 2.57 22917 P two threads percore fro m th e XG C FU S I O n S I m U latl O n
18385 | Other 0.00 0.00 0 41 | 1-127% 18588 | Other 0.00 0.00 0 41 | 1-127% 18981 | Other 0.00 0.00 0| 41| 1-127% . o
defaul h i
18405 | OpenMP | 0.31 | 13.09 | 232689 501 18589 | OpenMP | 1.10 | 90.00 9| 716 | 1-7 18992 | OpenMP | 1.18 | 96.36 04222 W default I with zerosum W defauit W with zerosum runnin g on FrO nter. CAM TI M E RS
18407 | OpenMP 0.44 | 12.93 | 353365 1|1 18590 | OpenMP 1.10 | 93.00 8 724 | 1-7 18993 | OpenMP 1.14 | 96.50 1(391 |3 275 57.6
18408 | OpenMP | 0.21 | 1322 | 92528 301 18591 | OpenMP | 1.07 | 90.52 9| 692 |17 18994 | OpenMP | 1.18 | 96.46 03814 1o as e events are p assed to TAU an d APEX
18409 | OpenMP 0.47 | 12.93 | 394014 10 | 1 18592 | OpenMP 1.10 | 89.83 14 766 | 1-7 18995 | OpenMP 1.11 | 93.89 0324 |5 ’ '
18410 | OpenMP 0.37 | 13.03 | 302371 711 18593 | OpenMP 1.10 | 90.48 7 728 | 1-7 18996 | OpenMP 1.14 | 93.29 01370 |6 27.4 57.4 1
18411 | OpenMP 0.41 | 12.97 | 348829 10 | 1 18594 | OpenMP 1.10 | 91.93 300 | 849 | 1-7 18997 | OpenMP 1.14 | 95.54 208 | 358 | 7 27.35 57.3 th ro u g h P e rfStu bs’ a n d th e p rOfI le
Table 1: Frontier results, default configuration. findicates Table 2: Frontier results, configuration requesting 7 cores Table 3: Frontier results, configuration requesting 7 . 1
that the main thread is also an OpenMP thread. }indicates per process. findicates that the main thread is also an cores per process and binding OpenMP threads to cores. 273 57.1 INC l u d €S measureme nt Su p po rt
that the first core of each L3 region was set aside for system OpenMP thread. }indicates that the first core of each L3 re- tindicates that the main thread is also an OpenMP thread. 27.25 57 . . .
processes, not all threads in the sequence 1-127 are allowed gion was set aside for system processes, not all threads in }indicates that the first core of each L3 region was set aside 27.2 p Fovi d ed by TA U / A P EX INC l u d N g
but summarized for brevity in the table (see LWP 51274 in the sequence 1-127 are allowed but summarized for brevity ~ for system processes, not all threads in the sequence 1-127 715 26.9
Listing 2). in the table (see LWP 51274 in Listing 2). are allowed but summarized for brevity in the table (see ' 56.8 KO kkOS, M P I ’ H I P AP I Ca l. IS a n d
LWP 51274 in Listing 2). 27.1 56.7

asynchronous GPU activity.

miniQMC time distributions executed 10 times using one OpenMP thread
per core (left). In this comparison, the distribution of times with ZeroSum
is noisier, but there is no significant observation of measurable overhead.

Three different configurations of miniQMC on Frontier, using 8 MPI ranks and 7 OpenMP threads per rank, 8 cores reserved
for the system. The first launch is with without specifying the number of cores per process to srun, the second launch does
specify the core count but doesn’t use OpenMP binding settings. The third launch binds the threads to cores in a spread

: : - The right figure shows the time distributions using two OpenMP threads
configuration. The nvctx value represents the number of non-voluntary context switches, and ctx represents the number of , : S : ; ‘ .) . .
volungtary context switches (yieldi) By using the correct srun configurgtion settings and the correct%penMP binding, thread per core. In this comparison, the distribution of times with ZeroSum is Integration example: APEX measurement of the IRIS runtime executing an Bty

contention is reduced and performance is improved overall. bothhnoijier and lpnget; tailed, and does Zlhow an gbservation of LU factorization with the MatRIS library. In addition to the IRIS tasks and
SYEUSELE S CloeU e NI S80I, O Tt commands, APEX can measure the back-end activity on either CPU or GPU,

Deadlock detection example, when running XGC on Perlmutter with 512 MPI ranks. A code change including the OpenMP and CUDA/HIP/SYCL kernels and data transfers.

created a ”corner case” deadlock possibility where an MPI rank could skip a function call
containing an MPI collective as an optimization. Unfortunately, the other MPI ranks in that
communicator waited at the MPI call for ranks that were never going to arrive. ZeroSum detected
this deadlock, and automatically gathered a stack trace for all ranks, and Python post-processing
visualized where the two code paths diverged.

eeeee

threads: 1.0
time: 5.577667683

MemFlush

calls: 1.
threads: 1.0

https://github.com/UO-OACISS/perfstubs
https://github.com/UO-OACISS/zerosum https://github.com/khuck/taskStubs

SciDAC Institute for Computer Science, Data, and Artificial In "

Ar onne é BERKELEY ERSITY or . _ T - UNIVERSITY OF
gNATIONAL LABORATORY Tt EIAWARE <\/< I(I tWa I"e ‘:9 NLAga é!gmgg University O OREGON

OAK RIDGE g@/ﬁ.‘é

National Laboratory

®. U.S. DEPARTMENT OF Office of

; i EN ERGY Science

)

Brookhaven Ko UNIVERSITY of - _
- Lawrence Livermore THE OHIO STATE
National Laboratory UF [FLORIDA Zyrance Livemon 1 01110 ST

www.sci.utah.edu

https://tau.uoregon.edu/
https://github.com/UO-OACISS/apex
https://github.com/UO-OACISS/zerosum
https://github.com/UO-OACISS/perfstubs
https://github.com/khuck/taskStubs
https://vampir.eu/

