
Cl[ia]ngWrap: Wrapping
libraries with libclang

Kevin Huck, University of Oregon
h/t Alister Johnson, University of Oregon

Quick poll
• C++ familiarity
• It’s roots as “C with classes”
• First C++ compilers just did C++ → C conversion, then compilation of the C

• Template comfort level
• Super powerful, yet super confusing
• Enables generic “container” classes…among other things

• Systems programming in general
• How *nix based systems are built
• …with C, by and large. It’s the lowest common denominator

Motivation

• Want to measure application
• Application uses a library that is

not instrumented
• Sampling is an option (not

discussed here)
• May not have debug symbols

• …What about measuring every
call into that external library?
• …Without modifying the

application or the library?

Application library

Measurement
Tool

Figure: ADIOS2 tutorial example, measured by TAU, visualized with Vampir Trace Viewer

System tricks to wrap libraries
• A symbol can only be defined once in an executable/application
• Weak symbols
• “Default” implementation of a function, can be overridden at link/runtime
• Requires cooperation of the library developer (very rare) – MPI is an example

• Static linking
• Linker option: --wrap symbol
• Use a wrapper function for symbol. Any undefined reference to symbol will be resolved

to "__wrap_symbol". Any undefined reference to "__real_symbol" will be resolved to
symbol. (source: man page for ld)
• Have to specify for every…single…function…in…the…API...

• Dynamic linking tricks (linker order, LD_PRELOAD)

Existing (automated) solutions (examples)
• TAU wrapper

• Uses PDT (Program Database Toolkit), based on EDG 4.0 parser
• Lindlan, K. A., Cuny, J., Malony, A. D., Shende, S., Mohr, B., Rivenburgh, R., & Rasmussen, C. (2000,

November). A tool framework for static and dynamic analysis of object-oriented software with
templates. In SC'00: Proceedings of the 2000 ACM/IEEE Conference on Supercomputing (pp. 49-
49). IEEE.

• https://www.cs.uoregon.edu/research/tau/downloads.php
• Depends on ability to parse the API header

• Gotcha
• Poliakoff D., LeGendre M. (2019) Gotcha: An Function-Wrapping Interface for HPC Tools. In:

Bhatele A., Boehme D., Levine J., Malony A., Schulz M. (eds) Programming and Performance
Visualization Tools. ESPT 2017, ESPT 2018, VPA 2017, VPA 2018. Lecture Notes in Computer
Science, vol 11027. Springer, Cham. https://doi.org/10.1007/978-3-030-17872-7_11

• https://github.com/LLNL/GOTCHA
• Depends on the ability to extract symbols from library
• User has to write…all the code.

https://www.cs.uoregon.edu/research/tau/downloads.php
https://doi.org/10.1007/978-3-030-17872-7_11
https://github.com/LLNL/GOTCHA

API Compatibility vs. ABI Compatibility
• API – Application Programming Interface
• What the human programs against
• Header file, documentation

• ABI – Application Binary Interface
• What the compiler generates
• Actual symbols and function types in the library – the “mangled” name

• ABI != API
• For (lots) more, see https://gcc.gnu.org/onlinedocs/gcc/C_002b_002b-Dialect-

Options.html and https://gcc.gnu.org/onlinedocs/libstdc++/manual/abi.html
(and that’s just GCC’s documentation…but most compilers depend on the
system installed libc, libstdc, libc++ libstdc++…which for Linux is GCC.) Distro
vendors also adress this problem, see
https://developers.redhat.com/blog/2015/02/05/gcc5-and-the-c11-abi/)

Sidebar…

https://gcc.gnu.org/onlinedocs/gcc/C_002b_002b-Dialect-Options.html
https://gcc.gnu.org/onlinedocs/libstdc++/manual/abi.html
https://developers.redhat.com/blog/2015/02/05/gcc5-and-the-c11-abi/

Problem with existing solutions
• Assumption: C binding rules

• Symbol name == function name …no? (see previous slide)
• Doesn’t take into consideration C++ name mangling

• C++ requires name “mangling” to allow for function overloading
template <> std::string Attribute<char>::Name() const;
_ZNK6adios29AttributeIcE4NameB5cxx11Ev
template <> std::string Attribute<signed char>::Name() const;
_ZNK6adios29AttributeIaE4NameB5cxx11Ev
• Hidden/implied “this” pointer for member functions (conceptually like “self” in Python)

• Fortran is another issue, but an easier case to manage
• Symbols are case-insensitive in the language, but symbols are not!
• May require include 0, 1, 2 underscores at the beginning of the symbol

• Decent overview of mangling:
• https://en.wikipedia.org/wiki/Name_mangling

• ABI has to match perfectly (-ish?), or function wrapper won’t get called!
• Mangled name has to match perfectly, or wrapper will call the wrong library function!

(hint: bad things happen)

https://en.wikipedia.org/wiki/Name_mangling

Proposed solution: libclang based approach
• Extract symbols from library using nm utility (limited to functions in a user-specified C++ namespace)
• Demangle symbols in library, find function name and number of arguments, put them in a map
• Parse API header AST using libclang (parser for clang++)
• Could mangle AST names…but “that way be dragons” (no “standard” algorithm for mangling)
• Match header declarations with demangled symbols (harder than it sounds, unfortunately)

• Make const style consistent (const Foo & or Foo const &) …compiler’s choice, sadly
• Expand aliases (using Foo = std::vector<std::string>;)
• Standardize std::string usage (it gets expanded in the symbol name – see box below)
• Allow the user to specify any other typename mappings as necessary (MPI_Comm ->
ompi_communicator_t*)

• Match function name and number of arguments…. (improves chances of “perfect” match)
• …then do a string alignment search to find the “best” match (with heuristic based scores)

• Generate library to wrap API
• Relies on dlopen(), dlsym() to call actual functions

• LD_PRELOAD or link with wrapper library (instead of / before actual library) – remember, symbols can
only be defined once

std::string is:
std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > …or…
std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> >

Example

Template instantiations/specializations

secret.h

secret.cpp
app.cpp

Example: Symbols extracted from library

(and so on…)

nm libsecret.so | grep " [TW] " | grep "_Z"

What does libclang give us? (and much more…)

secret.h

Helper code in wrapper
(fyi, ‘MARKER’ is just a printf debug helper)

Example: wrapped class template function

Can be any tool, not just TAU →

Example wrapped template method

Algorithm: https://www.geeksforgeeks.org/sequence-alignment-problem/ (slightly modified/debugged)

https://www.geeksforgeeks.org/sequence-alignment-problem/

Config file

Extra symbols to map

Everything libclang needs

Types to try for template expansion/specialization

Types to try for template expansion/specialization
(another example)

Selective wrapping,
some TAU options

Final thoughts
• Not sure this is all that much more useful than Gotcha…
• Demangled symbol (usually) has the full signature, but…

• Missing return type sometimes (assume void?)
• Missing const on some arguments (why?)
• Member function…or just a function (do we need a “this” pointer?) (debatable…)
• Distinguishing between namespaces and classes (does it matter? See above)

• Gotcha is a little more manual, but that could be automated, too J
• Cl[ia]ngWrap could automate the generation of the Gotcha code

• Cl[ia]ngWrap makes handling/parsing return types and arguments “easier” (but
not easy)
• As long as string alignment matches correctly, all good (if not…boom!)

