
Performance Debugging and Tuning of Flash-X with
Data Analysis Tools
Kevin Huck*, Xingfu Wu†, Anshu Dubey†, An6goni Georgiadou‡, J. Aus6n Harris‡, Tom Klostermann†,
MaChew TrappeC*, Klaus Weide†

0000-0001-7064-8417
Email: khuck@cs.uoregon.edu
* University of Oregon, †Argonne Na6onal Laboratory, ‡Oak Ridge Na6onal Laboratory

mailto:khuck@cs.uoregon.edu

Performance Debugging and Tuning of
Flash-X with Data Analysis Tools

Kevin Huck *, Xingfu Wu†, Anshu Dubey†, Antigoni
Georgiadou‡, J. Austin Harris‡, Tom Klostermann†, Matthew

Trappett*, Klaus Weide†

khuck@cs.uoregon.edu

• University of Oregon, †Argonne National Laboratory,
‡Oak Ridge National Laboratory

RESOURCE & APPL ICATION PRODUCTIVITY THROUGH
COMPUTAT ION , I NFORMAT ION , AND DATA SC I ENCE

SCIDAC4 INSTITUTE

RAPIDS

SC22 | Dallas, TX | hpc accelerates. ProTools Workshop, Nov. 13 2022 2

mailto:khuck@cs.uoregon.edu

Executive Summary
• While evaluating new partitioning library in Flash-X…
• Removing “not needed” communication code led to a

slowdown in computation
• We developed a set of Jupyterlab Python scripts that utilize

Pandas and Plotly to automate the generation of distribution
and correlation visualizations for better understanding of
performance behavior

• In this process, we discovered and removed/mitigated two
additional performance limiting bottlenecks for performance
tuning

SC22 | Dallas, TX | hpc accelerates. ProTools Workshop, Nov. 13 2022 3

Introduction
• Multiphysics simulations and HPC platforms have many

degrees of freedom leading to high complexity
• Optimization search space is huge, compilers make

conservative assumptions (do no harm)
• Modifying code by hand – even changes as simple as

removing a function call – can have negative unintended
(and unexpected) performance consequences

• Pulling on the loose thread can be a rabbit hole…and/or
lead to other insights (apologies for mixed metaphors)

SC22 | Dallas, TX | hpc accelerates. ProTools Workshop, Nov. 13 2022 4

Flash-X Anomaly
• Flash-X: newer descendant of FLASH – a multiphysics,

multicomponent code
• Fortran implementation
• Base discretization in Flash-X is Eulerian, with 3 flavors of

management for the discretized mesh
– Uniform
– Two different AMR methods, Paramesh and (now) AMReX

• Integration of AMReX revealed vestigial/superfluous
communication routine from Paramesh implementation

• Removing them reduced communication cost, but increased
(unrelated?) computation cost by more than 20% in some cases

SC22 | Dallas, TX | hpc accelerates. ProTools Workshop, Nov. 13 2022 5

https://flash-x.org

https://flash-x.org/

Sod Shock Tube, Weak Scaling Setup

High Density Low Density

Base Sod setup Changing setup for twice
as many nodes (replicate once)

Changing setup for n times
as many nodes (replicate n times)

SC22 | Dallas, TX | hpc accelerates. ProTools Workshop, Nov. 13 2022 6

Perfect weak scaling
scenario – extend the
domain perpendicular to the
discontinuity

Flash-X AMR Partitioning Overview
• Paramesh is only AMR support in

FLASH, Flash-X added new support for
AMReX

• All blocks are identical in #cells along
each dimension, and all blocks are
organized in an octree. (AMReX allows
for irregular cells, but not needed in
this case)

• Parallelism provided by MPI, load
balancing provided by Morton ordering

• Original task: integrate, evaluate
AMReX in Flash-X and compare with
Paramesh (work is still ongoing)

SC22 | Dallas, TX | hpc accelerates. ProTools Workshop, Nov. 13 2022 7

Figure: A 2D slice of the initial 3D mesh for the Sod shock tube problem. Each of the outlined squares represents a block of 163 computational cells.

Systems Evaluated
• Summit: IBM® POWER9™ at ORNL, 200

PFLOP/s
– 4,608 IBM POWER System AC922 nodes
– Two IBM POWER9 processors, 42 total

compute cores and six NVIDIA Volta V100
accelerators, 512 GB of DDR4 per node

• Theta: Cray® XC40 at ANL, 12 PFLOP/s
– 4,392 Cray XC40 nodes
– One Intel Phi Knights Landing (KNL) 7230 with

64 compute cores, shared L2 cache of 32 MB
(1 MB L2 cache shared by two cores), 16 GB of
high-bandwidth in-package memory, 192 GB
of DDR4 RAM per node

– Cache mode used for all experiments

SC22 | Dallas, TX | hpc accelerates. ProTools Workshop, Nov. 13 2022 8

Figure: https://www.alcf.anl.gov/alcf-resources/theta

Figure: h8ps://www.olcf.ornl.gov/olcf-resources/

Performance Anomaly
• Paramesh grid routine:
mpi_amr_boundary_block_info
– Collects some information about the faces of blocks that coincide

with the boundary of the simulation domain, and makes this global
information available as a heap-allocated array on each rank

– Called once each time that the AMR grid has changed
– Allowed specialized handling of boundary conditions…but -
– Result never used (not used in current version of code)

• To reduce global communication overhead and improve
performance, it was removed

• Performance got worse…?
SC22 | Dallas, TX | hpc accelerates. ProTools Workshop, Nov. 13 2022 9

mpi_amr_boundary_block_info
• Allocates scratch space that is some multiple of the number of

local blocks that have any of their neighboring blocks on the
boundary

• Collective operations to share this information globally
• In total, six scratch arrays are allocated, some of which persist

through the evolution step
• In brief: relevant portions of the routine are

1. Allocations
2. Global collective operations
3. Memory is freed

• These allocations are sized by the number of blocks, therefore can
have odd sizes – each rank can be different size

SC22 | Dallas, TX | hpc accelerates. ProTools Workshop, Nov. 13 2022 10

Result From Removing Call
• Performance anomaly first discovered on Theta
• Time spent in communication routines decreased as expected, but…
• Overall evolution time (total simulation time) increased non-trivially, in some

instances by as much as 20% or more
• The degradation in performance was observed in the routine that computes

Riemann states. This is a completely local routine, essentially an expensive
stencil calculation, that has nothing whatsoever to do with communication

• Behavior was reproducible not only on the same number of MPI ranks and
therefore the same problem, but also across the entire weak scaling study

• On Summit the effect is more subtle, but exists
• Behavior not due to variability inherent in the platforms or because of workload

differences at different times
SC22 | Dallas, TX | hpc accelerates. ProTools Workshop, Nov. 13 2022 11

Debugging Approach – TAU
• TAU Performance System – University of Oregon
• Tuning and Analysis Utilities (28+ year project)
• Integrated performance toolkit:

– Multi-level performance instrumentation
– Highly configurable
– Widely ported performance profiling / tracing system
– Portable (java, python) visualization / exploration / analysis tools

• Supports all major HPC programming models
– MPI/SHMEM, OpenMP/ACC, CUDA, HIP, OneAPI, Kokkos...

• Flash-X already integrated with TAU, so logical choice
SC22 | Dallas, TX | hpc accelerates. ProTools Workshop, Nov. 13 2022 12

Trace comparison – TAU data in Vampir

SC22 | Dallas, TX | hpc accelerates. ProTools Workshop, Nov. 13 2022 13

Trace comparison between orig (above 3meline, le6 profile) and nocall (bo:om 3meline, right profile) Flash-X on Summit,
visualized in Vampir. The red regions represent 3me spent in MPI_Allreduce.

Early

Early

Late

Late

Needed: Analysis Tools
• Need to quickly and easily visualize the distributions, correlations

of timers/metrics in the performance data
• Vampir, ParaProf, PerfExplorer all have limitations (license limit,

capability, scale/age respectively) for runs with 2688+ processes
• Python provides nice set of tools to prototype with

– Pandas
– Plotly
– JupyterLab

• TAU has a Python data parser that loads the data into DataFrames
• See https://github.com/Flash-X/SC-22-artifacts for notebooks used

in this study

SC22 | Dallas, TX | hpc accelerates. ProTools Workshop, Nov. 13 2022 14

https://github.com/Flash-X/SC-22-artifacts

Step 1: Which counters?
• Collected several PAPI

counters from multiple runs
• Which counter(s) are

correlated with time
(and/or each other)?

• PAPI_L1_DCM,
PAPI_RES_STL*

• Also collected
PAPI_TOT_INS

SC22 | Dallas, TX | hpc accelerates. ProTools Workshop, Nov. 13 2022 15

*Only available on Theta

Evolution – High Level Timer

SC22 | Dallas, TX | hpc accelerates. ProTools Workshop, Nov. 13 2022 16

Summit run with 2688 MPI ranks shown. Almost no variability in
evolution suggests that MPI collective synchronization is aligning
all ranks – we need a lower level timer to tease apart MPI and
actual computation. There’s also an increase in total instructions –
what caused that?

Breaking Down Evolution

SC22 | Dallas, TX | hpc accelerates. ProTools Workshop, Nov. 13 2022 17

MPI busy waiting at synchronization is cause of increased instructions

Correlation With MPI_Allreduce

440

442

444

446

448

450

280

300

320

340

440 445 450

20

40

60

80

280 300 320 340 20 40 60 80

Method
orig
nocall

Correlation of timers using Inclusive TIME

*** custom:evolution*** custom:RiemannState MPI_Allreduce()

**
*

cu
st

om
:e

vo
lu

ti
on

**
*

cu
st

om
:R

ie
m

an
nS

ta
te

M
PI

_A
llr

ed
uc

e(
)

SC22 | Dallas, TX | hpc accelerates. ProTools Workshop, Nov. 13 2022 18

Adding Sampling to Dig Deeper

SC22 | Dallas, TX | hpc accelerates. ProTools Workshop, Nov. 13 2022 19

Original

No call

Performance Conclusions
• High conten6on for memory subsystem from concurrent

processes
• Main computaDon is aggressively using ALLOCATABLE

array variables and ALLOCATE/DEALLOCATE operaDons
• Manual analysis determined that array variables in the

Riemann computaDon don’t change over Dme –
consistent size per process

• Replace them with arrays that are allocated once and
reused/saved (configuraDon named ”staDc”)

SC22 | Dallas, TX | hpc accelerates. ProTools Workshop, Nov. 13 2022 20

Single Node Performance on Theta

SC22 | Dallas, TX | hpc accelerates. ProTools Workshop, Nov. 13 2022 21

Reduction in L1_DCM, Resource Stalls

SC22 | Dallas, TX | hpc accelerates. ProTools Workshop, Nov. 13 2022 22

Reserving a Core for the OS
• Determined that lowest rank process on each node is this outlier!
• ALCF has instructions on reserving a core for the OS (specialization)

SC22 | Dallas, TX | hpc accelerates. ProTools Workshop, Nov. 13 2022 23

😎

Change from 64 ranks per node
to 63 ranks per node, reserving
one core for OS

Final Results: Theta

SC22 | Dallas, TX | hpc accelerates. ProTools Workshop, Nov. 13 2022 24

10% faster than baseline with one less core

20% less
time in max

75% less
Ome in max

Overall faster with less contention, and a more balanced load

10% more
time on average…

67% less
time on average…

Related Work
• Many ad-hoc Python solutions to similar data analysis

problems
• PerfExplorer – uses Octave/R, Weka but not performant

(Java), not as flexible
• Hatchet – GraphFrame data model – same analysis in this

paper could be done with Hatchet data
• Load balance analysis not new in HPC, but Python, Plotly,

JupyterLab introduces ease, flexibility, extensibility

SC22 | Dallas, TX | hpc accelerates. ProTools Workshop, Nov. 13 2022 25

Conclusions, Future Work
• Removing communication code led to a slowdown in

computation
• We developed a set of Jupyterlab Python scripts that utilize

Pandas and Plotly to automate the generation of distribution
and correlation visualizations for better understanding of
performance behavior

• In this process, we discovered and removed or mitigated two
additional performance limiting bottlenecks for performance
tuning

• Still working on AMReX optimizations to help it benefit from
regular mesh in Flash-X

SC22 | Dallas, TX | hpc accelerates. ProTools Workshop, Nov. 13 2022 26

Relevant Links
• Flash-X Project Website: https://flash-x.org
• Flash-X source code: https://github.com/Flash-X/Flash-X
• TAU Website: https://tau.uoregon.edu
• TAU GitHub mirror: https://github.com/UO-OACISS/tau2
• Presented Scripts and Results: https://github.com/Flash-

X/SC-22-artifacts

SC22 | Dallas, TX | hpc accelerates. ProTools Workshop, Nov. 13 2022 27

https://flash-x.org/
https://github.com/Flash-X/Flash-X
https://tau.uoregon.edu/
https://github.com/UO-OACISS/tau2
https://github.com/Flash-X/SC-22-artifacts

Acknowledgements
The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory (“Argonne”).
Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. The
U.S. Government retains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license in said
article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on
behalf of the Government. The Department of Energy will provide public access to these results of federally sponsored research
in accordance with the DOE Public Access Plan. http://energy.gov/downloads/doe-public-access-plan.

Parts of this research was supported by the Exascale Computing Project (17-SC-20-SC), a joint project of the U.S. Department of
Energy’s Office of Science and National Nuclear Security Administration, responsible for delivering a capable exascale
ecosystem, including software, applications, and hardware technology, to support the nation’s exascale computing imperative.

This research used resources of the Oak Ridge Leadership Computing Facility at the Oak Ridge National Laboratory, which is
supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC05-00OR22725.

SC22 | Dallas, TX | hpc accelerates. ProTools Workshop, Nov. 13 2022 28

