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Executive Summary
• While evaluating new partitioning library in Flash-X…
• Removing “not needed” communication code led to a 

slowdown in computation
• We developed a set of Jupyterlab Python scripts that utilize 

Pandas and Plotly to automate the generation of distribution 
and correlation visualizations for better understanding of 
performance behavior

• In this process, we discovered and removed/mitigated two 
additional performance limiting bottlenecks for performance 
tuning
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Introduction
• Multiphysics simulations and HPC platforms have many 

degrees of freedom leading to high complexity
• Optimization search space is huge, compilers make 

conservative assumptions (do no harm)
• Modifying code by hand – even changes as simple as 

removing a function call – can have negative unintended 
(and unexpected) performance consequences

• Pulling on the loose thread can be a rabbit hole…and/or 
lead to other insights (apologies for mixed metaphors)
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Flash-X Anomaly
• Flash-X: newer descendant of FLASH – a multiphysics, 

multicomponent code
• Fortran implementation
• Base discretization in Flash-X is Eulerian, with 3 flavors of 

management for the discretized mesh
– Uniform
– Two different AMR methods, Paramesh and (now) AMReX

• Integration of AMReX revealed vestigial/superfluous 
communication routine from Paramesh implementation

• Removing them reduced communication cost, but increased
(unrelated?) computation cost by more than 20% in some cases
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Sod Shock Tube, Weak Scaling Setup

High Density Low Density

Base Sod setup Changing setup for twice 
as many nodes (replicate once)

Changing setup for n times
as many nodes (replicate n times)
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Perfect weak scaling 
scenario – extend the 
domain perpendicular to the 
discontinuity



Flash-X AMR Partitioning Overview
• Paramesh is only AMR support in 

FLASH, Flash-X added new support for 
AMReX

• All blocks are identical in #cells along 
each dimension, and all blocks are 
organized  in an octree. (AMReX allows 
for irregular cells, but not needed in 
this case)

• Parallelism provided by MPI, load 
balancing provided by Morton ordering

• Original task: integrate, evaluate 
AMReX in Flash-X and compare with 
Paramesh (work is still ongoing)
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Figure: A 2D slice of the initial 3D mesh for the Sod shock tube problem. Each of the outlined squares represents a block of 163 computational cells.



Systems Evaluated
• Summit: IBM® POWER9™ at ORNL, 200 

PFLOP/s
– 4,608 IBM POWER System AC922 nodes
– Two IBM POWER9 processors, 42 total 

compute cores and six NVIDIA Volta V100 
accelerators, 512 GB of DDR4 per node 

• Theta: Cray® XC40 at ANL, 12 PFLOP/s
– 4,392 Cray XC40 nodes
– One Intel Phi Knights Landing (KNL) 7230 with 

64 compute cores, shared L2 cache of 32 MB 
(1 MB L2 cache shared by two cores), 16 GB of 
high-bandwidth in-package memory, 192 GB 
of DDR4 RAM per node 

– Cache mode used for all experiments
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Figure: https://www.alcf.anl.gov/alcf-resources/theta

Figure: h8ps://www.olcf.ornl.gov/olcf-resources/



Performance Anomaly
• Paramesh grid routine: 
mpi_amr_boundary_block_info
– Collects some information about the faces of blocks that coincide 

with the boundary of the simulation domain, and makes this global 
information available as a heap-allocated array on each rank

– Called once each time that the AMR grid has changed
– Allowed specialized handling of boundary conditions…but -
– Result never used (not used in current version of code)

• To reduce global communication overhead and improve 
performance, it was removed

• Performance got worse…?
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mpi_amr_boundary_block_info
• Allocates scratch space that is some multiple of the number of 

local blocks that have any of their neighboring blocks on the 
boundary

• Collective operations to share this information globally
• In total, six scratch arrays are allocated, some of which persist 

through the evolution step
• In brief: relevant portions of the routine are

1. Allocations
2. Global collective operations
3. Memory is freed

• These allocations are sized by the number of blocks, therefore can 
have odd sizes – each rank can be different size
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Result From Removing Call
• Performance anomaly first discovered on Theta
• Time spent in communication routines decreased as expected, but…
• Overall evolution time (total simulation time) increased non-trivially, in some 

instances by as much as 20% or more
• The degradation in performance was observed in the routine that computes 

Riemann states. This is a completely local routine, essentially an expensive 
stencil calculation, that has nothing whatsoever to do with communication

• Behavior was reproducible not only on the same number of MPI ranks and 
therefore the same problem, but also across the entire weak scaling study

• On Summit the effect is more subtle, but exists
• Behavior not due to variability inherent in the platforms or because of workload 

differences at different times
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Debugging Approach – TAU
• TAU Performance System – University of Oregon
• Tuning and Analysis Utilities (28+ year project)
• Integrated performance toolkit:

– Multi-level performance instrumentation
– Highly configurable
– Widely ported performance profiling / tracing system
– Portable (java, python) visualization / exploration / analysis tools

• Supports all major HPC programming models
– MPI/SHMEM, OpenMP/ACC, CUDA, HIP, OneAPI, Kokkos...

• Flash-X already integrated with TAU, so logical choice
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Trace comparison – TAU data in Vampir
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Trace comparison between orig (above 3meline, le6 profile) and nocall (bo:om 3meline, right profile) Flash-X on Summit, 
visualized in Vampir. The red regions represent 3me spent in MPI_Allreduce. 

Early

Early

Late

Late



Needed: Analysis Tools
• Need to quickly and easily visualize the distributions, correlations 

of timers/metrics in the performance data
• Vampir, ParaProf, PerfExplorer all have limitations (license limit, 

capability, scale/age respectively) for runs with 2688+ processes
• Python provides nice set of tools to prototype with

– Pandas
– Plotly
– JupyterLab

• TAU has a Python data parser that loads the data into DataFrames
• See https://github.com/Flash-X/SC-22-artifacts for notebooks used 

in this study
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Step 1: Which counters?
• Collected several PAPI 

counters from multiple runs
• Which counter(s) are 

correlated with time 
(and/or each other)?

• PAPI_L1_DCM, 
PAPI_RES_STL*

• Also collected 
PAPI_TOT_INS
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*Only available on Theta



Evolution – High Level Timer
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Summit run with 2688 MPI ranks shown. Almost no variability in 
evolution suggests that MPI collective synchronization is aligning 
all ranks – we need a lower level timer to tease apart MPI and 
actual computation. There’s also an increase in total instructions –
what caused that?



Breaking Down Evolution
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MPI busy waiting at synchronization is cause of increased instructions



Correlation With MPI_Allreduce
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Adding Sampling to Dig Deeper
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Original

No call



Performance Conclusions
• High conten6on for memory subsystem from concurrent 

processes
• Main computaDon is aggressively using ALLOCATABLE 

array variables and ALLOCATE/DEALLOCATE operaDons
• Manual analysis determined that array variables in the 

Riemann computaDon don’t change over Dme –
consistent size per process

• Replace them with arrays that are allocated once and 
reused/saved (configuraDon named ”staDc”)
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Single Node Performance on Theta
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Reduction in L1_DCM, Resource Stalls
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Reserving a Core for the OS
• Determined that lowest rank process on each node is this outlier!
• ALCF has instructions on reserving a core for the OS (specialization)
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😎

Change from 64 ranks per node 
to 63 ranks per node, reserving 
one core for OS



Final Results: Theta
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10% faster than baseline with one less core

20% less
time in max

75% less
Ome in max

Overall faster with less contention, and a more balanced load

10% more
time on average…

67% less
time on average…



Related Work
• Many ad-hoc Python solutions to similar data analysis 

problems
• PerfExplorer – uses Octave/R, Weka but not performant 

(Java), not as flexible
• Hatchet – GraphFrame data model – same analysis in this 

paper could be done with Hatchet data
• Load balance analysis not new in HPC, but Python, Plotly, 

JupyterLab introduces ease, flexibility, extensibility
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Conclusions, Future Work
• Removing communication code led to a slowdown in 

computation
• We developed a set of Jupyterlab Python scripts that utilize 

Pandas and Plotly to automate the generation of distribution 
and correlation visualizations for better understanding of 
performance behavior

• In this process, we discovered and removed or mitigated two 
additional performance limiting bottlenecks for performance 
tuning

• Still working on AMReX optimizations to help it benefit from 
regular mesh in Flash-X
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Relevant Links
• Flash-X Project Website: https://flash-x.org
• Flash-X source code: https://github.com/Flash-X/Flash-X
• TAU Website: https://tau.uoregon.edu
• TAU GitHub mirror: https://github.com/UO-OACISS/tau2
• Presented Scripts and Results: https://github.com/Flash-

X/SC-22-artifacts
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