SSgtaees.
- o,
A SCZZ
l.. .. :
geat,e.. Dallas,
TX qccelerqtes.

Performance Debugging and Tuni *
Data Analysis Tools - —

khuck@cs.uoregon.edu

mailto:khuck@cs.uoregon.edu

Performance Debugging and Tuning of

Flash-X with Data Analysis Tools

Kevin Huck *, Xingfu Wu®, Anshu Dubey®, Antigoni
Georgiadou?, J. Austin Hargﬁis*, Tom Klostermann™, Matthew
Trappett’, Klaus Weide'

7"RA PIDS/ khuck@cs.uoregon.edu

* University of Oregon, TArgonne National Laboratory,
+Oak Ridge National Laboratory

Argonne @ Q| oo oneon #OAK RIDGE

NATIONAL LABORATORY National Laboratory

SC22 | Dallas, TX | hpc accelerates. ProTools Workshop, Nov. 13 2022 2

Office of

, U.S. DEPARTMENT OF
ENERGY science

mailto:khuck@cs.uoregon.edu

Executive Summary

* While evaluating new partitioning library in Flash-X...

* Removing “not needed” communication code led to a
slowdown in computation

 We developed a set of Jupyterlab Python scripts that utilize
Pandas and Plotly to automate the generation of distribution
and correlation visualizations for better understanding of
performance behavior

* |n this process, we discovered and removed/mitigated two
additional performance limiting bottlenecks for performance
tuning

SC22 | Dallas, TX | hpc accelerates. ProTools Workshop, Nov. 13 2022

Introduction

* Multiphysics simulations and HPC platforms have many
degrees of freedom leading to high complexity

* Optimization search space is huge, compilers make
conservative assumptions (do no harm)

* Modifying code by hand — even changes as simple as
removing a function call — can have negative unintended
(and unexpected) performance consequences

e Pulling on the loose thread can be a rabbit hole...and/or
lead to other insights (apologies for mixed metaphors)

SC22 | Dallas, TX | hpc accelerates. ProTools Workshop, Nov. 13 2022

Flash-X Anomaly

* Flash-X: newer descendant of FLASH — a multiphysics,
multicomponent code

. . https://flash-x.org
* Fortran implementation

 Base discretization in Flash-X is Eulerian, with 3 flavors of
management for the discretized mesh
— Uniform
— Two different AMR methods, Paramesh and (now) AMReX

* Integration of AMReX revealed vestigial/superfluous
communication routine from Paramesh implementation

 Removing them reduced communication cost, but increased
(unrelated?) computation cost by more than 20% in some cases

SC22 | Dallas, TX | hpc accelerates. ProTools Workshop, Nov. 13 2022)

xxxxxxxxxx

https://flash-x.org/

Sod Shock Tube, Weak Scaling Setup

Perfect weak scaling
scenario — extend the
domain perpendicular to the
discontinuity

I EENIAA Low Density

Base Sod setup Changing setup for twice Changing setup for n times
as many nodes (replicate once) as many nodes (replicate n times)

SC22 | Dallas, TX | hpc accelerates. ProTools Workshop, Nov. 13 2022 6 -

Flash-X AMR Partitioning Overview

DB: sod_hdf5_chk_0000

Paramesh is only AMR support in
FLASH, Flash-X added new support for
AMReX

All blocks are identical in #cells along
each dimension, and all blocks are
organized in an octree. (AMReX allows
for irregular cells, but not needed in
this case)

Parallelism provided by MPI, load
balancing provided by Morton ordering

Original task: integrate, evaluate
AMReX in Flash-X and compare with
Paramesh (work is still ongoing)

Figure: A 2D slice of the initial 3D mesh for the Sod shock tube problem. Each of the outlined squares represents a block of 163 computational cells.

SC22 | Dallas, TX | hpc accelerates. ProTools Workshop, Nov. 13 2022

Summit: IBM® POWER9™ at ORNL, 200
PFLOP/s

— 4,608 IBM POWER System AC922 nodes

— Two IBM POWERS9 processors, 42 total
compute cores and six NVIDIA Volta V100
accelerators, 512 GB of DDR4 per node

Theta: Cray® XC40 at ANL, 12 PFLOP/s
— 4,392 Cray XC40 nodes

— One Intel Phi Knights Landing (KNL) 7230 with
64 compute cores, shared L2 cache of 32 MB
(1 MB L2 cache shared by two cores), 16 GB of
high-bandwidth in-package memory, 192 GB
of DDR4 RAM per node

— Cache mode used for all experiments

Figure: https://www.alcf.anl.gov/alcf-resqurces/theta

Performance Anomaly

 Paramesh grid routine:
mpi amr boundary block info

— Collects some information about the faces of blocks that coincide
with the boundary of the simulation domain, and makes this global
information available as a heap-allocated array on each rank

— Called once each time that the AMR grid has changed
— Allowed specialized handling of boundary conditions...but -
— Result never used (not used in current version of code)

* To reduce global communication overhead and improve
performance, it was removed

 Performance got worse...?

SC22 | Dallas, TX | hpc accelerates. ProTools Workshop, Nov. 13 2022

mpi_amr_boundary_block info

* Allocates scratch space that is some multiple of the number of
local blocks that have any of their neighboring blocks on the
boundary

* Collective operations to share this information globally

* In total, six scratch arrays are allocated, some of which persist
through the evolution step

* In brief: relevant portions of the routine are
1. Allocations

2. Global collective operations
3. Memoryis freed

 These allocations are sized by the number of blocks, therefore can
have odd sizes — each rank can be different size

SC22 | Dallas, TX | hpc accelerates. ProTools Workshop, Nov. 13 2022 10 _

xxxxxxxxxx

Result From Removing Call

Performance anomaly first discovered on Theta

Time spent in communication routines decreased as expected, but...

Overall evolution time (total simulation time) increased non-trivially, in some
instances by as much as 20% or more

The degradation in performance was observed in the routine that computes
Riemann states. This is a completely local routine, essentially an expensive
stencil calculation, that has nothing whatsoever to do with communication

Behavior was reproducible not only on the same number of MPI ranks and
therefore the same problem, but also across the entire weak scaling study

On Summit the effect is more subtle, but exists

Behavior not due to variability inherent in the platforms or because of workload
differences at different times

SC22 | Dallas, TX | hpc accelerates. ProTools Workshop, Nov. 13 2022

Debugging Approach — TAU

 TAU Performance System — University of Oregon
* Tuning and Analysis Utilities (28+ year project) %
* Integrated performance toolkit:

— Multi-level performance instrumentation

— Highly configurable

— Widely ported performance profiling / tracing system

— Portable (java, python) visualization / exploration / analysis tools
e Supports all major HPC programming models

— MPI/SHMEM, OpenMP/ACC, CUDA, HIP, OneAPI, Kokkos...

* Flash-X already integrated with TAU, so logical choice

SC22 | Dallas, TX | hpc accelerates. ProTools Workshop, Nov. 13 2022 12 _

xxxxxxxxxx

Trace comparison — TAU data in Vampir

| Comparison View

L)
Edit Chart Filter Window Help

°
File
=

BuwieRe3
O0...undinraces o2
... withoutnrace..

E-W-A-2-

= 13&955!139.135.
. 084S s

138,965

138,975

138,985

138,995

139,015

139,035

139,055

139,075 139,085

139,005 139,025 “"139,045 139,065 139,095 139,105

138,955 139,125

» Rank:0
» Rank:2 E
» Rank:4. E
» Rank:6 E
» Rank:8 -
»Rankil0 -
»Ranki12 -
»Rankild -
»Rankil6 -
»Rankil8 -
»Ranki20 -
»Ranki22 -
»Ranki24 -
»Rank:26 -
»Rank:28 -
»Rank:30 -
»Rank:32 -
»Rank:34 -
»Rank:36 -
»Rank:38 -
»Rank:40 -

Early

» Rank:0. E
» Rank:2 E
» Rank:4. =
» Rank:6. &
» Rank:8 =
»Rank:10 -
»Rankil2 -
»Rank:ld -
»Rank:l6 -
»Rank:18 -
»Ranki20 -
»Ranki22 -
»Rank:24
»Rank:26 I
» Rank:28
» Rank:30
» Rank:32
» Rank:34
»Rank:36 -
»Rank:38 -
»Rank:d0 -

14755

Z

7.7085
7.379s

139.11s

4.4935
2.4925
4.0625

x " mary.
139,135 All Processes, Accumulated Inclusive Time per Function
5.05 255 0.0

*++ custom:evolution

*** custom:Hydro

4+ custom:compute flux...
*** custom:hy_computeFl...

PETFEIN ++* custom:Grid_conserv.
PRETSE + custom:amr_flux_con.
% custom:amr_flux_con.
0.349s | *+* custom:getFaceFlux ...
0.3245 | *+* custom:Driver_compu...
0.3225 | ** custom:Head
0.311s || *** custom:guardcell int
031s | ** custom:amr_guardce
0.154s || =+ custom:unsplitUpdat...
0.1325 | *** custom:update sol
0.1295 | *** custom:update sol

28.883 ms | MPI_Ssend()
15.272 ms | MPI_Waitall()

9.718 ms *** custom:guardcell Bal

9.538 ms | MPI_Barrier()

2.282 ms | *** custom:Grid_conserv...
1.923 ms | MPI_Bcast()
1
1

224 ms | *** custom:Grid_conserv.
187 ms | ##* custom:Grid_conserv...
580 s | *+** custom:I0_output
414 s |MPI_Irecv()

297 us
282 s
280 us
260 s
259 s
244 us
238 ps

25us

306 us | *** custom:Grid_updateR...

*** custom:Gravity poten.
4% custom:Particles_adv...
**+ custom:sourceTerms
*** custom:Grid_releaseT...
MPI_Comm_size()

*** custom:Grid_getTilel...
% custom:gr_freeComm...
MPI_Comm_rank()

7.708s
7.385

cton Summary

EEEE—— 1P Alrecy
e

% custom:

=+ custom:
% custol

9.695 ms *** custol

1.926 ms | MPI_Bcast()

*** custom:Driver_comp.
0225 || #+* custom:getFaceFlux...
0.1995 | *#* custom:Head

9.523 ms | MPI_Barrier()
2292 ms | *** custom:Grid_conser...

Al Processes, Accumulated Inclusive Time per Function
5.05 2.55 0.0s

volution
lydro
ce()

amr_flux_co...
mpute flu...

emannstat.

update solu...
pdate solu...

MPI_Ssend()
14.829 ms | MPI_Waitall()

281 s
275 us
268 s
255 s
235 ps
235 s

** custom:sourceTerms.

*++ custom:Grid_getTile...

Context View

Trace comparison between orig (above timeline, left profile) and nocall (bottom timeline, right profile) Flash-X on Summit,

visualized in Vampir. The red regions represent time spent in MPI_Allreduce.

SC22 | Dallas, TX | hpc accelerates. ProTools Workshop, Nov. 13 2022

O

UNIVERSITY
OF OREGON

Needed: Analysis Tools

* Need to quickly and easily visualize the distributions, correlations
of timers/metrics in the performance data

* Vampir, ParaProf, PerfExplorer all have limitations (license limit,
capability, scale/age respectively) for runs with 2688+ processes

* Python provides nice set of tools to prototype with
— Pandas

— Plotly
— JupyterlLab

* TAU has a Python data parser that loads the data into DataFrames

* See https://github.com/Flash-X/SC-22-artifacts for notebooks used
in this study

SC22 | Dallas, TX | hpc accelerates. ProTools Workshop, Nov. 13 2022 14

xxxxxxxxxx

https://github.com/Flash-X/SC-22-artifacts

=====

aaaaa

nnnnnnnnnnnnn

Step 1: Which counters?

CEEY

vewE

i 5 .

£ 20N T NSRS 1

o

4 g dy. e

N, Mt 4 ey

TR

ol

Collected several PAPI
counters from multiple runs

Which counter(s) are
correlated with time
(and/or each other)?

PAPI_L1 DCM,
PAPI_RES STL*

Also collected
PAPI_TOT INS

*Only available on Theta

SC22 | Dallas, TX | hpc accelerates. ProTools Workshop, Nov. 13 2022

2500
2000

1500

count

1000

500

200

150

count

100

50

Evolution — High Level Timer

Inclusive TIME (seconds)

440

10k

442 444 446

*** custom:evolution

448

Inclusive PAPI_L1_LDM

12k 14k

*** custom:evolution

16k

Method
ong
nocall

Method
i orig

nocall

Inclusive PAPI_TOT_INS

Method
_ orig
- nocall
250
200
& it
= 150 I 1‘
o L
Y 100 ‘
50 f I

2.3M 2.4M 2.5M 2.6M 2.7M
*** custom:evolution

Summit run with 2688 MPI ranks shown. Almost no variability in
evolution suggests that MPI collective synchronization is aligning
all ranks — we need a lower level timer to tease apart MPI and

actual computation. There’s also an increase in total instructions —
what caused that?

SC22 | Dallas, TX | hpc accelerates. ProTools Workshop, Nov. 13 2022 _

UNIVERSITY
OF OREGON

250

200

150

count

100

50

count

Breaking Down Evolution

Inclusive PAPI_L1_LDM

ak : 8 10k
¥ custom:RiemannState

Inclusive PAPI_L1_LDM

500 = 2000

MPI_Allreduce()

SC22 | Dallas, TX | hpc accelerates.

Method
) I orig

nocall

Method
i orig
nocall

2500

ProTools Workshop, Nov. 13 2022

count

count

Inclusive PAPI_TOT_INS Inclusive TIME (seconds)

Method Method
. . L I orig | S S I orig
= .) nocall L gz nocall
500 200
400 150
300]
8 100
200 o
100 N o
1.6M 1.62M 1.64M 1.66M 1.68M 280 300 320 340

¥ custom:RiemannState *¥* custom:RiemannState

MPI busy waiting at synchronization is cause of increased instructions

Inclusive PAPI_TOT_INS Inclusive TIME (seconds)

Method Method
o I orig N I orig
e [nocall o) = nocall
S 150
150 J| ‘
| |
‘: 100 |
| £ |
100] 1 =
IS
] 8
50
50 1
0 - ullf, I 0 1l dll
100k 200k 300k 400k 500k 600k 20 40 60 80

MPI_Allreduce() MPI_Allreduce()

O

UNIVERSITY
OF OREGON

Correlation With MPI Allreduce

Inclusive TIME (seconds)
Correlation of timers using Inclusive TIME

== e Method
i orig c 0 . - weee ® wswe Method
® o covmmmm | PSR- 5
200 nocall g 448 * orig
° * nocall
3 446
150 =
5 E 444
c 1%}
3 100 3 a2
o *
*
50 ¥ 440 e com— oo ° 00 0 C—
" £ a4
[c— 8 s ’ Y
280 300 320 340 (9] 0 U] o
< B] 4 sl
*** custom:RiemannState © o U s «
g 320 * 9
Q9 o
4
" g 300 .
Inclusive TIME (seconds) 2 .
3
Method ¥ 80° e
*
i orig
. e
nocall 80 0 .
150 - &
o) o
8
3 60 .
L 100 o
'3 =
g <‘ 40
o a a
50 s . e % o
20 g o e K4
g [] o 4
5 Ll 440 445 450 280 300 320 340 20 40 60 80
20 80 *** custom:evolution *** custom:RiemannState MPI_Allreduce()

MPI_Allreduce()

O

UNIVERSITY
OF OREGON

SC22 | Dallas, TX | hpc accelerates. ProTools Workshop, Nov. 13 2022

Adding Sampling to Dig Deeper

Inclusive PAPI_L1_LDM

2,729,301,359
4,132,851,393
1,083,900,360
1,022,906,177

Name

O=*** custom:hy_getRiemannState.calculating
M [CONTEX -hy_getRiemannState.calculating
[SAMPLE] _ Gl___libc_free
E[SAMPLE] __Gl___libc_malloc
[SAMPLE] int_malloc

dtransverseflux_

I[SUMMARY] hy_datareconstructnormaldlr mh_
W [SUMMARY] hy_datareconstonestep_

B [SAMPLE] hy_slopelimiters_mc_

B [SUMMARY] pgf90_allocO4a_i8

Hl [SUMMARY] hy_getriemannstate_

B [SAMPLE] __memset_power8

Name
*** custom:hy_getRiemannState.calculating
a5 tRiemannState.calculating

- l
CI[SAMPLE] _ Gl I|bc free
E[SAMPLE] __GI___libc_malloc
SAMPLE] _int_malloc
M [SUMMARYT hy_upwindtransverseflux_

H [SUMMARY] hy_datareconstructnormaldir_mh_
l [SUMMARY] hy_datareconstonestep_

B [SUMMARY] pgf90_allocO4a_i8

M [SAMPLE] hy_slopelimiters_mc_

Hl [SUMMARY] hy_eigenvector_

M [SAMPLE] __memset_power8

SC22 | Dallas, TX | hpc accelerates. ProTools Workshop, Nov. 13 2022

Inclusive TIME v
254.807
251.571

68.855
65.834
29.298
24.84
13.62
9.42
8.67
8.49
4.978
4.95

Inclusive TIME V
261.464
257.779

67.794
67.32
29.07
27.75

13.5
9.24
8.88
8.34
5.28
5.22

402 237,051
D) 4G
146,145,069
133,127,855
139,025,309
76,135,675
83,204,722

Inclusive PAPI_L1_LDM

5,293,958,279
5,990,283,496
1,577,579,079
1,404,165,584

196 263,205
177,618,901
181,020,716
99,952,763
98,019,098

Inclusive (PAPI_L1_LDM / PAPI_TOT_INS)

Original

0.002
0.003
0.003
0.003
0.003
0.003
0.003
0.003
0.004
0.003
0.003
0.004

Inclusive (PAPI_L1_LDM / PAPI_TOT_INS)

No call

0.004
0.004
0.004
0.004
0.004
0.004
0.004
0.004
0.004
0.004
0.004
0.004

19

O

UNIVERSITY
OF OREGON

Performance Conclusions

* High contention for memory subsystem from concurrent
processes

* Main computation is aggressively using ALLOCATABLE
array variables and ALLOCATE/DEALLOCATE operations

* Manual analysis determined that array variables in the
Riemann computation don’t change over time —
consistent size per process

* Replace them with arrays that are allocated once and
reused/saved (configuration named "static”)

SC22 | Dallas, TX | hpc accelerates. ProTools Workshop, Nov. 13 2022

Single Node Performance on Theta

Inclusive TIME (seconds)

Method
B orig
nocall
30 - static

4 20
>
o
(&)
10
; — e
140 160 180 200

*¥x custom:RiemannState

SC22 | Dallas, TX | hpc accelerates. ProTools Workshop, Nov. 13 2022

count

Inclusive TIME (seconds)

40

30

20

10

M orig
nocall
static

20 40 60
MPI_Allreduce()

O

UNIVERSITY
oooooooo

Reduction in L1 DCM, Resource Sta

30

count

10

Inclusive TIME (seconds)

O Method

bl ths B orig
= nocall
static

— el

140 160 180 200

*** custom:RiemannState
Inciusive PAPI_L1_DCM

30

€ 20
=
o
o

10

%SOM 300M 350M 400M

*** custom:RiemannState

count

10

5

.

S]

450M

SC22 | Dallas, TX | hpc accelerates. ProTools Workshop, Nov. 13 2022

Method
B orig

nocall

static

Inclusive PAPI_TOT_INS

Method

B orig
nocall
static

2008

210B

2208
*** custom:RiemannState

Inclusive PAPI_RES_STL

o

T

50
40

30

count

20
10

OO.SB 1B 1.5B

2B

*** custom:RiemannState

2.58

22

Method

B orig
nocall
static

O

UNIVERSITY
OF OREGON

count

Reserving a Core for the OS

* Determined that lowest rank process on each node is this outlier!

* ALCF has instructions on reserving a core for the OS (specialization)

Inclusive TIME (seconds)

30

20

10

9 140 160 180

*** custom:RiemannState

el

200

Method
orig
nocall
static

—

Change from 64 ranks per node
to 63 ranks per node, reserving

one core for OS

count

count

Inclusive PAPI_RES_STL

Method

orig
60 L v < o 5 nocall
static

40

o
c
-]
=]
o

20

(1) —— — ..

0.5B 1B 1.58 2B

EE 23 “Ri i i
custom:RiemannState U,,
Inclusive TIME (seconds)
Method
orig
nocall

50 static

40
€

30 <
o

20 &

10

0 — ——

140 160 180 200

*** custom:RiemannState

SC22 | Dallas, TX | hpc accelerates. ProTools Workshop, Nov. 13 2022

30

20

60
40

20

0
0

Inclusive PAPI_L1_DCM

Method
orig
nocall
static

B p—
300M 350M 400M
***x custom:RiemannState
Inclusive TIME (seconds)
Method
I orig

nocall
static

i s A I O

20 40 60 80
MPI_Allreduce()

xxxxxxxxxx

Final Results: Theta

Metric: TIME [0 64/ orig/tauprofile.xml - Mean Metric: TIME [64/orig/tauprofile.xml - Max
Value: Inclusive B 64/nocall/tauprofile.xml - Mean Value: Inclusive B 64/nocall/tauprofile.xml - Max
Units: seconds [64/static/tauprofile.xml - Mean Units: seconds [0 64/static/tauprofile.xml - Max
B 63r/static/tauprofile.xml - Mean B 63r/static/tauprofile.xml - Max
384.428 | | 384.429 | |

385.865 (100.374%) ———— et custom:evolution 385.867 (100.374%) |
353.142 (91.862%)] ‘ 353.144 (91.862%) []

346.631 (90.168%) | 346.632 (90. 168%) |
10% faster than baseline with one less core

152.478] 214.114 |
152.6 (100.08%) [— . 214.903 (100.369%) =
166.564 (1(§9.238%))E *** custom:RlemannState 20% Jess 184066 (85.966%)]
10% more 168.42 (110.455%) — _ : 172.802 (80.706%) (—

. time In max
time on average...

46.432] 76.906 []
47.074 (101.383% [\1p1 Allreduce0 75% less 76.173 (99.046%) [
67% less 22.748 (48.992%) [T - . . 28.322 (36.827%) [
15.415 (33.199%) W time In max 19.534 (25.4%) W

time on average...

Overall faster with less contention, and a more balanced load

SC22 | Dallas, TX | hpc accelerates. ProTools Workshop, Nov. 13 2022

Related Work

* Many ad-hoc Python solutions to similar data analysis
problems

* PerfExplorer — uses Octave/R, Weka but not performant
(Java), not as flexible

* Hatchet — GraphFrame data model — same analysis in this
paper could be done with Hatchet data

* Load balance analysis not new in HPC, but Python, Plotly,
JupyterLab introduces ease, flexibility, extensibility

SC22 | Dallas, TX | hpc accelerates. ProTools Workshop, Nov. 13 2022 25

xxxxxxxxxx

Conclusions, Future Work

 Removing communication code led to a slowdown in
computation

 We developed a set of Jupyterlab Python scripts that utilize
Pandas and Plotly to automate the generation of distribution
and correlation visualizations for better understanding of
performance behavior

* In this process, we discovered and removed or mitigated two
additional performance limiting bottlenecks for performance
tuning

e Still working on AMReX optimizations to help it benefit from
regular mesh in Flash-X

SC22 | Dallas, TX | hpc accelerates. ProTools Workshop, Nov. 13 2022

Relevant Links

Flash-X Project Website: https://flash-x.org
Flash-X source code: https://github.com/Flash-X/Flash-X

TAU Website: https://tau.uoregon.edu
TAU GitHub mirror: https://github.com/UO-OACISS/tau?2

Presented Scripts and Results: https://github.com/Flash-
X/SC-22-artifacts

SC22 | Dallas, TX | hpc accelerates. ProTools Workshop, Nov. 13 2022 27

https://flash-x.org/
https://github.com/Flash-X/Flash-X
https://tau.uoregon.edu/
https://github.com/UO-OACISS/tau2
https://github.com/Flash-X/SC-22-artifacts

Acknowledgements

The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory (“Argonne”).
Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. The
U.S. Government retains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license in said
article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on
behalf of the Government. The Department of Energy will provide public access to these results of federally sponsored research
in accordance with the DOE Public Access Plan. http://energy.gov/downloads/doe-public-access-plan.

Parts of this research was supported by the Exascale Computing Project (17-SC-20-SC), a joint project of the U.S. Department of
Energy’s Office of Science and National Nuclear Security Administration, responsible for delivering a capable exascale
ecosystem, including software, applications, and hardware technology, to support the nation’s exascale computing imperative.

This research used resources of the Oak Ridge Leadership Computing Facility at the Oak Ridge National Laboratory, which is
supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC05-000R22725.

\ us.cenanruenror | Office o —= 3
DENERGY O ~7RAPIDS/ =(C 1=

EXASCALE COMPUTING PROJECT

SC22 | Dallas, TX | hpc accelerates. ProTools Workshop, Nov. 13 2022 28 _

xxxxxxxxxx

