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Executive Summary

* While evaluating new partitioning library in Flash-X...

* Removing “not needed” communication code led to a
slowdown in computation

 We developed a set of Jupyterlab Python scripts that utilize
Pandas and Plotly to automate the generation of distribution
and correlation visualizations for better understanding of
performance behavior

* |n this process, we discovered and removed/mitigated two
additional performance limiting bottlenecks for performance
tuning
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Introduction

* Multiphysics simulations and HPC platforms have many
degrees of freedom leading to high complexity

* Optimization search space is huge, compilers make
conservative assumptions (do no harm)

* Modifying code by hand — even changes as simple as
removing a function call — can have negative unintended
(and unexpected) performance consequences

e Pulling on the loose thread can be a rabbit hole...and/or
lead to other insights (apologies for mixed metaphors)
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Flash-X Anomaly

* Flash-X: newer descendant of FLASH — a multiphysics,
multicomponent code

. . https://flash-x.org
* Fortran implementation

 Base discretization in Flash-X is Eulerian, with 3 flavors of
management for the discretized mesh
— Uniform
— Two different AMR methods, Paramesh and (now) AMReX

* Integration of AMReX revealed vestigial/superfluous
communication routine from Paramesh implementation

 Removing them reduced communication cost, but increased
(unrelated?) computation cost by more than 20% in some cases
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Sod Shock Tube, Weak Scaling Setup

Perfect weak scaling
scenario — extend the
domain perpendicular to the
discontinuity

I EENIAA Low Density

Base Sod setup Changing setup for twice Changing setup for n times
as many nodes (replicate once) as many nodes (replicate n times)
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Flash-X AMR Partitioning Overview

DB: sod_hdf5_chk_0000

Paramesh is only AMR support in
FLASH, Flash-X added new support for
AMReX

All blocks are identical in #cells along
each dimension, and all blocks are
organized in an octree. (AMReX allows
for irregular cells, but not needed in
this case)

Parallelism provided by MPI, load
balancing provided by Morton ordering

Original task: integrate, evaluate
AMReX in Flash-X and compare with
Paramesh (work is still ongoing)

Figure: A 2D slice of the initial 3D mesh for the Sod shock tube problem. Each of the outlined squares represents a block of 163 computational cells.
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Summit: IBM® POWER9™ at ORNL, 200
PFLOP/s

— 4,608 IBM POWER System AC922 nodes

— Two IBM POWERS9 processors, 42 total
compute cores and six NVIDIA Volta V100
accelerators, 512 GB of DDR4 per node

Theta: Cray® XC40 at ANL, 12 PFLOP/s
— 4,392 Cray XC40 nodes

— One Intel Phi Knights Landing (KNL) 7230 with
64 compute cores, shared L2 cache of 32 MB
(1 MB L2 cache shared by two cores), 16 GB of
high-bandwidth in-package memory, 192 GB
of DDR4 RAM per node

— Cache mode used for all experiments

Figure: https://www.alcf.anl.gov/alcf-resqurces/theta



Performance Anomaly

 Paramesh grid routine:
mpi amr boundary block info

— Collects some information about the faces of blocks that coincide
with the boundary of the simulation domain, and makes this global
information available as a heap-allocated array on each rank

— Called once each time that the AMR grid has changed
— Allowed specialized handling of boundary conditions...but -
— Result never used (not used in current version of code)

* To reduce global communication overhead and improve
performance, it was removed

 Performance got worse...?
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mpi_amr_boundary_block info

* Allocates scratch space that is some multiple of the number of
local blocks that have any of their neighboring blocks on the
boundary

* Collective operations to share this information globally

* In total, six scratch arrays are allocated, some of which persist
through the evolution step

* In brief: relevant portions of the routine are
1. Allocations

2. Global collective operations
3. Memoryis freed

 These allocations are sized by the number of blocks, therefore can
have odd sizes — each rank can be different size
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Result From Removing Call

Performance anomaly first discovered on Theta

Time spent in communication routines decreased as expected, but...

Overall evolution time (total simulation time) increased non-trivially, in some
instances by as much as 20% or more

The degradation in performance was observed in the routine that computes
Riemann states. This is a completely local routine, essentially an expensive
stencil calculation, that has nothing whatsoever to do with communication

Behavior was reproducible not only on the same number of MPI ranks and
therefore the same problem, but also across the entire weak scaling study

On Summit the effect is more subtle, but exists

Behavior not due to variability inherent in the platforms or because of workload
differences at different times

SC22 | Dallas, TX | hpc accelerates. ProTools Workshop, Nov. 13 2022



Debugging Approach — TAU

 TAU Performance System — University of Oregon
* Tuning and Analysis Utilities (28+ year project) %
* Integrated performance toolkit:

— Multi-level performance instrumentation

— Highly configurable

— Widely ported performance profiling / tracing system

— Portable (java, python) visualization / exploration / analysis tools
e Supports all major HPC programming models

— MPI/SHMEM, OpenMP/ACC, CUDA, HIP, OneAPI, Kokkos...

* Flash-X already integrated with TAU, so logical choice
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Trace comparison — TAU data in Vampir
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*++ custom:evolution

*** custom:Hydro

4+ custom:compute flux...
*** custom:hy_computeFl...

PETFEIN ++* custom:Grid_conserv.
PRETSE + custom:amr_flux_con.
% custom:amr_flux_con.
0.349s | *+* custom:getFaceFlux ...
0.3245 | *+* custom:Driver_compu...
0.3225 | ** custom:Head
0.311s || *** custom:guardcell int
031s | ** custom:amr_guardce
0.154s || =+ custom:unsplitUpdat...
0.1325 | *** custom:update sol
0.1295 | *** custom:update sol

28.883 ms | MPI_Ssend()
15.272 ms | MPI_Waitall()
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9.538 ms | MPI_Barrier()

2.282 ms | *** custom:Grid_conserv...
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306 us | *** custom:Grid_updateR...

*** custom:Gravity poten.
4% custom:Particles_adv...
**+ custom:sourceTerms
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MPI_Comm_size()

*** custom:Grid_getTilel...
% custom:gr_freeComm...
MPI_Comm_rank()
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9.695 ms *** custol
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** custom:sourceTerms.

*++ custom:Grid_getTile...

Context View

Trace comparison between orig (above timeline, left profile) and nocall (bottom timeline, right profile) Flash-X on Summit,

visualized in Vampir. The red regions represent time spent in MPI_Allreduce.
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Needed: Analysis Tools

* Need to quickly and easily visualize the distributions, correlations
of timers/metrics in the performance data

* Vampir, ParaProf, PerfExplorer all have limitations (license limit,
capability, scale/age respectively) for runs with 2688+ processes

* Python provides nice set of tools to prototype with
— Pandas

— Plotly
— JupyterlLab

* TAU has a Python data parser that loads the data into DataFrames

* See https://github.com/Flash-X/SC-22-artifacts for notebooks used
in this study

SC22 | Dallas, TX | hpc accelerates. ProTools Workshop, Nov. 13 2022 14
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Step 1: Which counters?

CEEY

vewE

i 5 .

£ 20N T NSRS 1

o

4 g dy. e

N, Mt 4 ey

TR

ol

Collected several PAPI
counters from multiple runs

Which counter(s) are
correlated with time
(and/or each other)?

PAPI_L1 DCM,
PAPI_RES STL*

Also collected
PAPI_TOT INS

*Only available on Theta
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Evolution — High Level Timer
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*** custom:evolution

Summit run with 2688 MPI ranks shown. Almost no variability in
evolution suggests that MPI collective synchronization is aligning
all ranks — we need a lower level timer to tease apart MPI and

actual computation. There’s also an increase in total instructions —
what caused that?
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Breaking Down Evolution
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Correlation With MPI Allreduce

Inclusive TIME (seconds)
Correlation of timers using Inclusive TIME

== e Method
i orig c 0 . - weee ® wswe Method
® o covmmmm | PSR- 5
200 nocall g 448 * orig
° * nocall
3 446
150 =
5 E 444
c 1%}
3 100 3 a2
o *
*
50 ¥ 440 e com— oo ° 00 0 C—
" £ a4
[ c— 8 s ’ Y
280 300 320 340 (9] 0 U] o
< B ] 4 sl
*** custom:RiemannState © o U s «
g 320 * 9
Q9 o
4
" g 300 .
Inclusive TIME (seconds) 2 .
3
Method ¥ 80° e
*
i orig
. e
nocall 80 0 .
150 - &
o) o
8
3 60 .
L 100 o
'3 =
g <‘ 40
o a a
50 s . e % o
20 g o e K4
g [ ] o 4
5 Ll 440 445 450 280 300 320 340 20 40 60 80
20 80 *** custom:evolution *** custom:RiemannState  MPI_Allreduce()

MPI_Allreduce()

O

UNIVERSITY
OF OREGON

SC22 | Dallas, TX | hpc accelerates. ProTools Workshop, Nov. 13 2022




Adding Sampling to Dig Deeper

Inclusive PAPI_L1_LDM

2,729,301,359
4,132,851,393
1,083,900,360
1,022,906,177

Name

O=*** custom:hy_getRiemannState.calculating
M [CONTEX -hy_getRiemannState.calculating
[SAMPLE] _ Gl___libc_free
E[SAMPLE] __Gl___libc_malloc
[SAMPLE] int_malloc

dtransverseflux_

I[SUMMARY] hy_datareconstructnormaldlr mh_
W [SUMMARY] hy_datareconstonestep_

B [SAMPLE] hy_slopelimiters_mc_

B [SUMMARY] pgf90_allocO4a_i8

Hl [SUMMARY] hy_getriemannstate_

B [SAMPLE] __memset_power8

Name
*** custom:hy_getRiemannState.calculating
a5 tRiemannState.calculating

- l
CI[SAMPLE] _ Gl I|bc free
E[SAMPLE] __GI___libc_malloc
SAMPLE] _int_malloc
M [SUMMARYT hy_upwindtransverseflux_

H [SUMMARY] hy_datareconstructnormaldir_mh_
l [SUMMARY] hy_datareconstonestep_

B [SUMMARY] pgf90_allocO4a_i8

M [SAMPLE] hy_slopelimiters_mc_

Hl [SUMMARY] hy_eigenvector_

M [SAMPLE] __memset_power8
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No call

0.004
0.004
0.004
0.004
0.004
0.004
0.004
0.004
0.004
0.004
0.004
0.004

19

O

UNIVERSITY
OF OREGON



Performance Conclusions

* High contention for memory subsystem from concurrent
processes

* Main computation is aggressively using ALLOCATABLE
array variables and ALLOCATE/DEALLOCATE operations

* Manual analysis determined that array variables in the
Riemann computation don’t change over time —
consistent size per process

* Replace them with arrays that are allocated once and
reused/saved (configuration named "static”)
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Single Node Performance on Theta
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Reduction in L1 DCM, Resource Sta
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count

Reserving a Core for the OS

* Determined that lowest rank process on each node is this outlier!

* ALCF has instructions on reserving a core for the OS (specialization)
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Final Results: Theta

Metric: TIME [0 64/ orig/tauprofile.xml - Mean Metric: TIME [ 64/orig/tauprofile.xml - Max
Value: Inclusive B 64/nocall/tauprofile.xml - Mean Value: Inclusive B 64/nocall/tauprofile.xml - Max
Units: seconds [ 64/static/tauprofile.xml - Mean Units: seconds [0 64/static/tauprofile.xml - Max
B 63r/static/tauprofile.xml - Mean B 63r/static/tauprofile.xml - Max
384.428 | | 384.429 | |

385.865 (100.374%) ———— et custom:evolution 385.867 (100.374%) |
353.142 (91.862%) ] ‘ 353.144 (91.862%) [ ]

346.631 (90.168%) | 346.632 (90. 168%) |
10% faster than baseline with one less core

152.478 ] 214.114 |
152.6 (100.08%) [ — . 214.903 (100.369%) =
166.564 (1(§9.238%) )E *** custom:RlemannState 20% Jess 184066 (85.966%) ]
10% more 168.42 (110.455%) — _ : 172.802 (80.706%) (—

. time In max
time on average...

46.432 ] 76.906 [ ]
47.074 (101.383% [ \1p1 Allreduce0 75% less  76.173 (99.046%) [
67% less 22.748 (48.992%) [ T - . . 28.322 (36.827%) [
15.415 (33.199%) W time In max 19.534 (25.4%) W

time on average...

Overall faster with less contention, and a more balanced load
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Related Work

* Many ad-hoc Python solutions to similar data analysis
problems

* PerfExplorer — uses Octave/R, Weka but not performant
(Java), not as flexible

* Hatchet — GraphFrame data model — same analysis in this
paper could be done with Hatchet data

* Load balance analysis not new in HPC, but Python, Plotly,
JupyterLab introduces ease, flexibility, extensibility
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Conclusions, Future Work

 Removing communication code led to a slowdown in
computation

 We developed a set of Jupyterlab Python scripts that utilize
Pandas and Plotly to automate the generation of distribution
and correlation visualizations for better understanding of
performance behavior

* In this process, we discovered and removed or mitigated two
additional performance limiting bottlenecks for performance
tuning

e Still working on AMReX optimizations to help it benefit from
regular mesh in Flash-X
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Relevant Links

Flash-X Project Website: https://flash-x.org
Flash-X source code: https://github.com/Flash-X/Flash-X

TAU Website: https://tau.uoregon.edu
TAU GitHub mirror: https://github.com/UO-OACISS/tau?2

Presented Scripts and Results: https://github.com/Flash-
X/SC-22-artifacts
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