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APEX and Autonomics

* Performance awareness and performance adaptation

* Top down and bottom up performance mapping / feedback

— Make node-wide resource utilization data and analysis, energy
consumption, and health information available 1n real time

— Associate performance state with policy for feedback control

* APEX introspection

— OS (LXK) track system resource assignment, utilization, job
contention, overhead

— Runtime (HPX) track threads, queues, concurrency, remote
operations, parcels, memory management

— ParalleX, DSLs and legacy codes allow language-level
performance semantics to be measured
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APEX Design

APEX Intros tion
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APEX Global Design
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APEX Introspection

* APEX collects data through “inspectors”

— Synchronous uses an event API and event “listeners”
 Initialize, terminate, new thread
* Timer start, stop, yield, resume

» Sampled value (counters from HPX-5, HPX-3)
* Custom events (meta-events)

— Asynchonous do not rely on events, but occur periodically

* APEX exploits access to performance data from
lower stack components
— Reading from the RCR blackboard (i.e., power, energy)

— “Health™ data through other interfaces (e.g., /proc/stat
from current systems)
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RCR: Resource Centric Reflection

* Performance introspection across layers to enable
dynamic, adaptive operation and decision control

* Extends previous work on building decision support
instrumentation (RCR71oolkit) for introspective
adaptive scheduling

 Daemon monitors shared, non-core resources

* Real-time analysis, raw/processed data published to
shared memory region, clients subscribe

» Utilized at lower levels of the OpenX stack

* APEX introspection and policy components will
access and evaluate
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APEX Event Listeners

* Profiling listener
— Start event: take timestamp, return profiler handle

— Stop event: take timestamp, put profiler object in a queue
for back-end processing, return

— Sample event: put the sample 1n the queue

— Consumer thread: process profiler objects and samples to
build statistical profile (in HPX-3, processed as a thread/
task)

* Concurrency listener
— Start event: push timer ID on stack
— Stop event: pop timer ID off stack

— Consumer thread: periodically log current timer for each
thread, output report at termination
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APEX Policy Listener

Policies are rules that decide on outcomes based on
observed state

— Triggered policies are invoked by introspection API
events

— Periodic policies are run periodically

Polices are registered with the Policy Engine

— Applications, runtimes, and/or OS register callback
functions

Callback functions define the policy rules
— “If x <y then...”

Enables runtime adaptation using introspection data
— Engages actuators across stack layers
— Could also be used to involve online auto-tuning support
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APEX Global View

* All APEX introspection 1s collected locally
— However, 1t 1s not limited to a single-node view
* (Global view of introspection data and interactions

— Take advantage of the distributed runtime support
« HPX3, HPXS5, MPI, ...

* API provided for back-end implementations

— apex_global get value() — each node gets data to be
reduced, optional RDMA put (push model)

— apex_global reduce() — optional RDMA get (pull model),
node data 1s aggregated at root node, optional broadcast
back out

* Can extend global view to policies

An Autonomic Performance Environment for Exascale



APEX Examples

« HPX-3 1-D stencil code

* HPX-5 Single-source-shortest-path benchmark
« HPX-5 LULESH kernel

 HPX-3 miniGhost kernel

* All experiments conducted on Edison
— Cray XC30 @ NERSC.gov

— 5576 nodes with two 12-core Intel "Ivy Bridge"
processors at 2.4 GHz

— 48 threads per node (24 physical cores w/hyperthreading)

— Cray Aries interconnect with Dragonfly topology with
23.7 TB/s global bandwidth
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Concurrency Throttling for Performance

 Heat diffusion 14 stenci HPX-3
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* 1D stencil code
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* Performance increases to a point with increasing
worker threads, then decreases
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Concurrency Throttling for Performance

° RCgIOIl Of . 1d_stencil
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Number of Worker Threads
performance counter

— Represents # tasks currently waiting to execute

* Could do introspection on this to control
concurrency throttling policy (*work 1n progress)
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Concurrency
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Concurrency

1d_stencil w/optimal # of Threads

100,000,000 elements, 1000 partitions

12

10 | -

Time power

thread cap

other m—
primary_namespace_service_action
primary_namespace_bulk_service_action
hpx::lcos::local::dataflow::execute
do_work_action

partition_data

300

0
61 secs

Power

12 worker threads

Greater proportion
of threads kept
busy

— Less interference
between active
threads and
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Much faster

— 61 sec. vs 138
sec.
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Concurrency

1d stencil Adaptation with APEX
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Nearly as fast as
optimal
— 64 seconds vs.
61 seconds
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Throughput Adaptation

Single Source, Shortest Path (SSSP) graph search benchmark
— Graph500.org benchmark kernel (http:/www.graph500.org)

Large graph loaded, a point 1s selected at random and the
shortest path between it and all other points is found

— Random4-n.10 dataset, runs for 60 seconds of timed searches
Throughput is the metric of interest, not time to completion
10 nodes, 24 threads per node (no hyperthreading)

— Graph is distributed across nodes

APEX policy rule:
— #callsto handle queue action() used as “throughput” metric
— Adjust thread concurrency to maximize throughput
— Use Active Harmony for optimization search
* Parallel Rank Order search strategy

HPX-5 implementation
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SSSP with Throughput Policy
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SSSP with Throughput Policy
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SSSP Performance Explanation

* Less threads = less contention for task yield locks (network)
* Tasks yield when waiting on network (network bound)
* Threads contend waiting on remote actions

Searches Done 1962 6929 353.16%

TEPS Cycles 6.91756E+12 2.81473E+12  40.69%
(Traversed Instructions 3.17485E+12 2.01608E+12,  63.50%
Edges L2 Cache Misses 7986640437 8570692088/ 107.31%

Per Second) 1pc 0.458955 0.716263 156.06%
INS/L2TCM 397.52 235.23] 59.17%
min_TEPS 7.23E+04 9.47E+04 130.87%
median TEPS 1.36E+05 4.95E+05| 365.01%
max_TEPS 2.51E+05 7.63E+05 303.36%
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Throttling for Power

* Livermore Unstructured Lagrangian Explicit Shock
Hydrodynamics (LULESH)

— Proxy application in DOE co-design efforts for exascale
— CPU bounded in most implementations (use HPX-5)

* Develop an APEX policy for power
— Threads are idled in HPX to keep node under power cap
— Use hysteresis of last 3 observations
— If Power < low cap W) increase thread cap
— If Power > high cap ) decrease thread cap

 HPX thread scheduler modified to idle/activate threads per cap

* Test example:

— 343 domains, nx = 48, 100 iterations
— 16 nodes of Edison, Cray XC30
— Baseline vs. Throttled (200W per node high power cap)

LULESH image, source: Hydrodynamics Challenge Problem, Lawrence Livermore National Laboratory. Technical Report, LLNL-TR-490254
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LULESH Baseline
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LULESH Throttled by Power Cap
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LULESH Performance Explanation

* 768 vs. 220 threads (after throttling)
e 360 kJ vs. 280 kJ total energy consumed (~22% decrease)
e 75.24 vs. 77.96 seconds in HPX (~3.6% increase)

* Big reduction 1n yielded action stalls (in thread scheduler)
— Less contention for network access

* Hypothesis: LULESH implementation i1s showing signs of
being network bound - spatial locality of subdomains 1s not

maintained during decomposition

Metric Baseline Throttled % Difference
Cycles 1.11341E+13 3.88187E+12 34.865%
Instructions 7.33378E+12 5.37177E+12 73.247%
L2 Cache Misses 8422448397 3894908172 46.244%
IPC 0.658677 1.38381 210.089%
INS/L2CM 870.742 1379.18 158.391%
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Throttling for Power

° MlanhOSt MiniGhost - Single Node - Strong Scaling
(40 variables - 20 time steps - 200x200x200 - 10% reduction)
— Mantevo finite ¢
. . . 14 —f— HPX
different miniapp ol e
_ Implements a 10 Theoretical Peak

difference stencil
across homogenous

3D domain : //

— Ported to HPX-3 P —
from OpenMP+MPI Number of Cors

— HPX-3 has better * Diminishing returns with added

performance than cores per node |
OpenMP version — Can throttle for energy without

substantial performance impact

GFLOPS
=4 o co
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Concurrency
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MiniGhost Throttled
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Future Work, Discussion

Conduct more robust experiments and at larger scales on
different platforms

More, better policy rules
— Runtime and operating system
— Application and device-specific (*in progress)
— Global policies (*in progress)
Multi-objective optimization
Integration into HPX-5, HPX-3 code bases
API refinements for general purpose usage
Global data exchange — who does it, and when?

“MPMD” processing — how to (whether to?) sandbox
APEX

Source code: https://github.com/khuck/xpress-apex
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