An Autonomic Performance
Environment for Exascale

Kevin A. Huck!, Nick Chaimov!, Allen D. Malony',
Sameer Shende!, Allan Porterfield?, Rob Fowler?

'University of Oregon, Eugene, Oregon, USA
RENCI, Chapel Hill, North Carolina, USA

APEX and Autonomics

* Performance awareness and performance adaptation

* Top down and bottom up performance mapping / feedback

— Make node-wide resource utilization data and analysis, energy
consumption, and health information available 1n real time

— Associate performance state with policy for feedback control

* APEX introspection

— OS (LXK) track system resource assignment, utilization, job
contention, overhead

— Runtime (HPX) track threads, queues, concurrency, remote
operations, parcels, memory management

— ParalleX, DSLs and legacy codes allow language-level
performance semantics to be measured

An Autonomic Performance Environment for Exascale

APEX Design

APEX Intros tion

e g

g e [ECE]

Cy Llll\/'

o
|

/Applicalion

HPX | &= "-\.PEX Stdtg,

| == __>— | Toolkat

—— . o~ ._-
-

\. == - —

meta evenlts

actuators ~—z" (" i, ¢ S
:/ . Inggered /\ Periodic P

\ APEX Pollcv i

An Autonomic Performance Environment for Exascale

APEX Global Design

Node | . Node N
‘ | z .

An Autonomic Performance Environment for Exascale

APEX Introspection

* APEX collects data through “inspectors”

— Synchronous uses an event API and event “listeners”
 Initialize, terminate, new thread
* Timer start, stop, yield, resume

» Sampled value (counters from HPX-5, HPX-3)
* Custom events (meta-events)

— Asynchonous do not rely on events, but occur periodically

* APEX exploits access to performance data from
lower stack components
— Reading from the RCR blackboard (i.e., power, energy)

— “Health™ data through other interfaces (e.g., /proc/stat
from current systems)

An Autonomic Performance Environment for Exascale

RCR: Resource Centric Reflection

* Performance introspection across layers to enable
dynamic, adaptive operation and decision control

* Extends previous work on building decision support
instrumentation (RCR71oolkit) for introspective
adaptive scheduling

 Daemon monitors shared, non-core resources

* Real-time analysis, raw/processed data published to
shared memory region, clients subscribe

» Utilized at lower levels of the OpenX stack

* APEX introspection and policy components will
access and evaluate

An Autonomic Performance Environment for Exascale

APEX Event Listeners

* Profiling listener
— Start event: take timestamp, return profiler handle

— Stop event: take timestamp, put profiler object in a queue
for back-end processing, return

— Sample event: put the sample 1n the queue

— Consumer thread: process profiler objects and samples to
build statistical profile (in HPX-3, processed as a thread/
task)

* Concurrency listener
— Start event: push timer ID on stack
— Stop event: pop timer ID off stack

— Consumer thread: periodically log current timer for each
thread, output report at termination

An Autonomic Performance Environment for Exascale

APEX Policy Listener

Policies are rules that decide on outcomes based on
observed state

— Triggered policies are invoked by introspection API
events

— Periodic policies are run periodically

Polices are registered with the Policy Engine

— Applications, runtimes, and/or OS register callback
functions

Callback functions define the policy rules
— “If x <y then...”

Enables runtime adaptation using introspection data
— Engages actuators across stack layers
— Could also be used to involve online auto-tuning support

An Autonomic Performance Environment for Exascale

APEX Global View

* All APEX introspection 1s collected locally
— However, 1t 1s not limited to a single-node view
* (Global view of introspection data and interactions

— Take advantage of the distributed runtime support
« HPX3, HPXS5, MPI, ...

* API provided for back-end implementations

— apex_global get value() — each node gets data to be
reduced, optional RDMA put (push model)

— apex_global reduce() — optional RDMA get (pull model),
node data 1s aggregated at root node, optional broadcast
back out

* Can extend global view to policies

An Autonomic Performance Environment for Exascale

APEX Examples

« HPX-3 1-D stencil code

* HPX-5 Single-source-shortest-path benchmark
« HPX-5 LULESH kernel

 HPX-3 miniGhost kernel

* All experiments conducted on Edison
— Cray XC30 @ NERSC.gov

— 5576 nodes with two 12-core Intel "Ivy Bridge"
processors at 2.4 GHz

— 48 threads per node (24 physical cores w/hyperthreading)

— Cray Aries interconnect with Dragonfly topology with
23.7 TB/s global bandwidth

An Autonomic Performance Environment for Exascale

Concurrency Throttling for Performance

 Heat diffusion 14 stenci HPX-3

140

* 1D stencil code

 Data array x P
partitioned 1nto
chunks

(0]
o

(o))
o

Runtime (s)

N B
o o

o

1 23 45 6 7 8 91011121314151617 18 19 20 21 22 23 24

¢ 1 IlOde Wlth Number of Worker Threads
no hyperthreading

* Performance increases to a point with increasing
worker threads, then decreases

An Autonomic Performance Environment for Exascale

Concurrency Throttling for Performance

° RCgIOIl Of . 1d_stencil

. 123 S
maximum o o E
performance £ » = g
. S e 2
correlates with = » &
V)
thread queue 20 . éﬂ

length I'untlme 1234567 8 9101112131415161718192021222324

Number of Worker Threads
performance counter

— Represents # tasks currently waiting to execute

* Could do introspection on this to control
concurrency throttling policy (*work 1n progress)

An Autonomic Performance Environment for Exascale

Concurrency

1d stencil Baseline

100,000,000 elements, 1000 partitions

50

0 e 48 worker threads

45 -
a0 !
35 -
30 —/\/
25 H |

20 f

15

Where

I (with

1 hyperthreading)

* Actual concurrency
much lower

— Implementation 1s
memory bound

o 1 sl & | * Large variation in
concurrency over

Power

calculation
takes place

time
0 . .
e threa%c’%aeg 138 secs — Tasks waiting on
. primary_namespélclﬁ_service_a%tzi(;er: E d prlor taSkS tO
T e ol daafon 5o vent-generated ¢omplete
Gartition, data s metrics

An Autonomic Performance Environment for Exascale

Concurrency

1d_stencil w/optimal # of Threads

100,000,000 elements, 1000 partitions

12

10 | -

Time power

thread cap

other m—
primary_namespace_service_action
primary_namespace_bulk_service_action
hpx::lcos::local::dataflow::execute
do_work_action

partition_data

300

0
61 secs

Power

12 worker threads

Greater proportion
of threads kept
busy

— Less interference
between active
threads and
threads waiting
for memory

Much faster

— 61 sec. vs 138
sec.

An Autonomic Performance Environment for Exascale

Concurrency

1d stencil Adaptation with APEX

100,000,000 elements, 1000 partitions

Time power

thread cap

other m—
primary_namespace_service_action
primary_namespace_bulk_service_action
hpx::lcos::local::dataflow::execute
do_work_action

partition_data

64 secs

300

Power

Initially 48 worker
threads

Discrete hill
climbing search to
minimize average
#of pending tasks

Converges on 13
(vs. optimal of 12)

Nearly as fast as
optimal
— 64 seconds vs.
61 seconds

An Autonomic Performance Environment for Exascale

Throughput Adaptation

Single Source, Shortest Path (SSSP) graph search benchmark
— Graph500.org benchmark kernel (http:/www.graph500.org)

Large graph loaded, a point 1s selected at random and the
shortest path between it and all other points is found

— Random4-n.10 dataset, runs for 60 seconds of timed searches
Throughput is the metric of interest, not time to completion
10 nodes, 24 threads per node (no hyperthreading)

— Graph is distributed across nodes

APEX policy rule:
— #callsto handle queue action() used as “throughput” metric
— Adjust thread concurrency to maximize throughput
— Use Active Harmony for optimization search
* Parallel Rank Order search strategy

HPX-5 implementation

An Autonomic Performance Environment for Exascale

250
200
3
o 150
o
5
(&)
S 100
O
All 240 threads
are busy
0

1962 searches
performed in
60 seconds

SSSP Baseline

50 |

Time 60 sec

dimacssenddistaction power ———

dimacschecksumaction thread cap ——

handlequeueaction gtepsvisitvertexaction m—

ssspdcprocessvertexaction probeDEFAULT

ssspdeletequeuesaction mmmm= gtepssenddistaction =

callssspaction = dimacsvisitvertexaction
ssspvisitvertexaction initvertexdistanceaction
resetvertexaction m— other
IcowaitPINNED sendterminationcountaction
hpxlcosetactionPINNED gtepscalculateaction

S

An Autonomic Performance Environment for Exascale

2500
2000
1500
o
=
(@)
o
1000
500
0
240W
per node

O

UNIVERSITY
OF OREGON

SSSP with Throughput Policy

2500
200 <4 2000
Co
2 150 H 4 1500
5 &
S =
-}
S 100 1000 D?
o) — 1
o "
A\ I = = = - = N - = B TR [T e e
Only 61 threads 5o | i T ! ey 17 500
(6 on 9 nodes,
7 on 1 nodes) 0
are busy Time 60 secs
dimacschecksumaction power ——
handlequeueaction thread cap ——
ssspdcprocessvertexaction gtepsvisitvertexaction m— 150W
ssspdeletequeuesaction gtepssenddistaction d
6929 searches callssspaction initvertexdistanceaction mmmmm | PCT NOAC
ssspvisitvertexaction probeDEFAULT mwmmm
edgelistfromfileaction m— other
pe rfO rmed resetvertexaction m— sendterminationcountaction
IcowaitPINNED gtepscalculateaction
|n 60 Seconds hpxIcosetactionPINNED dimacssenddistaction
hpx143fixDEFAULT dimacsvisitvertexaction

An Autonomic Performance Environment for Exascale

UNIVERSITY
OF OREGON

SSSP with Throughput Policy

_1 -4 18000

200 |- 4 16000

4 14000
L>)\ fl —
© 150 | 4 12000 32
9 <
5 4 10000 2
Q | o
|] e
3 100 ‘ 8000 £

Used in policy

to optimize the
number of active
threads (queue 0

50 |

. _ Time 60 secs
contains vertices ‘Nmacschecksumaction Throughput ——
to explore) handlequeueaction thread cap ——
ssspdcprocessvertexaction gtepsvisitvertexaction m— 150W
ssspdeletequeuesaction gtepssenddistaction d
6929 sea rche S callssspaction initvertexdistanceaction =mmmm | PCT NOAC
ssspvisitvertexaction probeDEFAULT mmmm
edgelistfromfileaction m— other
p e rfO rme d ? resetvertexaction m— sendterminationcountaction
IcowaitPINNED gtepscalculateaction
|n 60 SeCOI’]dS hpxlcosetactionPINNED dimacssenddistaction
hpx143fixDEFAULT _— dimacsvisitvertexaction

O

UNIVERSITY
OF OREGON

An Autonomic Performance Environment for Exascale

SSSP Performance Explanation

* Less threads = less contention for task yield locks (network)
* Tasks yield when waiting on network (network bound)
* Threads contend waiting on remote actions

Searches Done 1962 6929 353.16%

TEPS Cycles 6.91756E+12 2.81473E+12 40.69%
(Traversed Instructions 3.17485E+12 2.01608E+12, 63.50%
Edges L2 Cache Misses 7986640437 8570692088/ 107.31%

Per Second) 1pc 0.458955 0.716263 156.06%
INS/L2TCM 397.52 235.23] 59.17%
min_TEPS 7.23E+04 9.47E+04 130.87%
median TEPS 1.36E+05 4.95E+05| 365.01%
max_TEPS 2.51E+05 7.63E+05 303.36%

An Autonomic Performance Environment for Exascale

Throttling for Power

* Livermore Unstructured Lagrangian Explicit Shock
Hydrodynamics (LULESH)

— Proxy application in DOE co-design efforts for exascale
— CPU bounded in most implementations (use HPX-5)

* Develop an APEX policy for power
— Threads are idled in HPX to keep node under power cap
— Use hysteresis of last 3 observations
— If Power < low cap W) increase thread cap
— If Power > high cap) decrease thread cap

 HPX thread scheduler modified to idle/activate threads per cap

* Test example:

— 343 domains, nx = 48, 100 iterations
— 16 nodes of Edison, Cray XC30
— Baseline vs. Throttled (200W per node high power cap)

LULESH image, source: Hydrodynamics Challenge Problem, Lawrence Livermore National Laboratory. Technical Report, LLNL-TR-490254

An Autonomic Performance Environment for Exascale

LULESH Baseline

800

700

600

500

400

Concurrency

300 -

200
No power cap

No thread cap 100 F
768 threads 0

aprun

Avg. 247 Watts/node
~360 kiloJoules total

~91 seconds total
~74 seconds HPX tasks

Time 91secs
MonoQresultaction
PosVelsendsaction power ———
PosVelresultaction thread cap ——
SBNSresultaction hpxlcosetactionPINNED
SBN1resultaction SBN3sendsaction s
advanceDomainaction probeDEFAULT
IcogetPINNED other
hpx143fixDEFAULT _n— MonoQsendsaction

An Autonomic Performance Environment for Exascale

5000

1 4000

1 3000

1 2000

1 1000

Power

LULESH Throttled by Power Cap

800 5000
700
- 4000
600
& 900 1 3000
& 5
= B =
§ 400 g?
S 3001 -+ 2000
200 | B - e
200W power cap 1 1000
L aprun
768 threads 100 - 4P
ime SCCS
Avg' 186 WattS/nOde PgsB\IQelresu:taction " rijower _—
. 3 tacti t —_—
~280 kiloJoules total SBN1F2§ﬂItggt=82 . PosVeIsenE%cé@E —
. ! e
~ advanceDongggHgR — P CogeBﬁgslgrr]\dsaction —
94 SeCOndS tota IcogetPINNED s other
~ beDEFAULT M d i
77 seconds HPX tasks hox IA3fxDEFAULT s M%nn%%srzguﬁggﬂgﬂ

An Autonomic Performance Environment for Exascale

LULESH Performance Explanation

* 768 vs. 220 threads (after throttling)
e 360 kJ vs. 280 kJ total energy consumed (~22% decrease)
e 75.24 vs. 77.96 seconds in HPX (~3.6% increase)

* Big reduction 1n yielded action stalls (in thread scheduler)
— Less contention for network access

* Hypothesis: LULESH implementation i1s showing signs of
being network bound - spatial locality of subdomains 1s not

maintained during decomposition

Metric Baseline Throttled % Difference
Cycles 1.11341E+13 3.88187E+12 34.865%
Instructions 7.33378E+12 5.37177E+12 73.247%
L2 Cache Misses 8422448397 3894908172 46.244%
IPC 0.658677 1.38381 210.089%
INS/L2CM 870.742 1379.18 158.391%

An Autonomic Performance Environment for Exascale

Throttling for Power

° MlanhOSt MiniGhost - Single Node - Strong Scaling
(40 variables - 20 time steps - 200x200x200 - 10% reduction)
— Mantevo finite ¢
. . . 14 —f— HPX
different miniapp ol e
_ Implements a 10 Theoretical Peak

difference stencil
across homogenous

3D domain : //

— Ported to HPX-3 P —
from OpenMP+MPI Number of Cors

— HPX-3 has better * Diminishing returns with added

performance than cores per node |
OpenMP version — Can throttle for energy without

substantial performance impact

GFLOPS
=4 o co

An Autonomic Performance Environment for Exascale

Concurrency

50

45

40 |

35

MiniGhost Baseline

300

~

1
Power

Time

power
thread cap

other

hpx_main
continuation::async

An Autonomic Performance Environment for Exascale

o
92 seconds
total runtime

26

O

UNIVERSITY
OF OREGON

MiniGhost Throttled

50

45 | -

40 .

35 -
30 .

25 .

Concurrency

Time

power
thread ca
200 Watt power cap othor
hpx_main
continuation::async

An Autonomic Performance Environment for Exascale

300

Power

0
103 seconds

total runtime

12% slower, 33% less power

O

UNIVERSITY
OF OREGON

Future Work, Discussion

Conduct more robust experiments and at larger scales on
different platforms

More, better policy rules
— Runtime and operating system
— Application and device-specific (*in progress)
— Global policies (*in progress)
Multi-objective optimization
Integration into HPX-5, HPX-3 code bases
API refinements for general purpose usage
Global data exchange — who does it, and when?

“MPMD” processing — how to (whether to?) sandbox
APEX

Source code: https://github.com/khuck/xpress-apex

An Autonomic Performance Environment for Exascale

Acknowledgements

Support for this work was provided through Scientific Discovery
through Advanced Computing (SciDAC) program funded by U.S.
Department of Energy, Office of Science, Advanced Scientific
Computing Research (and Basic Energy Sciences/Biological and
Environmental Research/High Energy Physics/Fusion Energy Sciences/
Nuclear Physics) under award numbers DE-SC0008638, DE-
SC0008704, DE- FG02-11ER26050 and DE-SC0006925.

Sandia National Laboratories 1s a multi-program laboratory managed
and operated by Sandia Corporation, a wholly owned subsidiary of
Lockheed Martin Corporation, for the U.S. DOE’s National Nuclear
Security Administration under contract DE- AC04-94AL85000.

This research used resources of the National Energy Research Scientific
Computing Center, a DOE Office of Science User Facility supported by
the Office of Science of the U.S. Department of Energy under Contract
No. DE-AC02-05CH11231.

Sandia
National
Laboratories

An Autonomic Performance Environment for Exascale

