Projecting Performance Data Over Simulation
Geometry Using SOSflow and Alpine

Chad Wood

University of Oregon

Matthew Larsen
Lawrence Livermore National

Alfredo Gimenez
Lawrence Livermore National

Eugene, OR, United States Laboratory Laboratory
cdw@cs.uoregon.edu Livermore, CA Livermore, CA
larsen30@lInl.gov gimenez1@llnl.gov
Cyrus Harrison Todd Gamblin Allen Malony
Lawrence Livermore National Lawrence Livermore National University of Oregon
Laboratory Laboratory Eugene, OR
Livermore, CA Livermore, CA malony@cs.uoregon.edu
harrison37@llnl.gov gamblin2@lInl.gov

ABSTRACT

The performance of HPC simulation codes is often tied to their
simulated domains; e.g., properties of the input decks, boundaries
of the underlying meshes, and parallel decomposition of the simu-
lation space. A variety of research efforts have demonstrated the
utility of projecting performance data onto the simulation geom-
etry to enable analysis of these kinds of performance problems.
However, current methods to do so are largely ad-hoc and limited
in terms of extensibility and scalability. Furthermore, few meth-
ods enable this projection online, resulting in large storage and
processing requirements for offline analysis. We present a general,
extensible, and scalable solution for in-situ (online) visualization
of performance data projected onto the underlying geometry of
simulation codes. Our solution employs the scalable observation
system SOSflow with the in-situ visualization framework Alpine to
automatically extract simulation geometry and stream aggregated
performance metrics to respective locations within the geometry
at runtime. Our system decouples the resources and mechanisms
to collect, aggregate, project, and visualize the resulting data, thus
mitigating overhead and enabling online analysis at large scales.
Furthermore, our method requires minimal user input and modifi-
cation of existing code, enabling general and widespread adoption.

KEYWORDS
sos, sosflow, alpine, hpc, performance, visualization, in situ

ACM Reference Format:

Chad Wood, Matthew Larsen, Alfredo Gimenez, Cyrus Harrison, Todd
Gamblin, and Allen Malony. 2017. Projecting Performance Data Over Sim-
ulation Geometry Using SOSflow and Alpine. In Proceedings of 4th Interna-
tional Workshop on Visual Performance Analysis, Denver, CO, November 2017
(VPA’17), 8 pages.

https://doi.org/10.1145/nnnnnnn.nnnnnnn

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

VPA’17, November 2017, Denver, CO

© 2017 Copyright held by the owner/author(s).

ACM ISBN 978-x-xxxx-Xxxx-X/YY/MM.

https://doi.org/10.1145/nnnnnnn.nnnnnnn

Figure 1: Loops (left) and maximum backlog (right) from one
cycle of 512 KRIPKE ranks distributed to 32 nodes.

1 INTRODUCTION

Projecting application and performance data onto the scientific
domain allows for the behavior of a code to be perceived in terms of
the organization of the work it is doing, rather than the organization
of its source code. This perspective can be especially helpful [14]
for domain scientists developing aspects of a simulation primarily
for its scientific utility, though it can also be useful for any HPC
developer [13] engaged with the general maintenance requirements
of a large and complicated codebase.

There have been practical challenges to providing these oppor-
tunities for insight. Extracting the spatial descriptions from an
application traditionally has relied on hand-instrumenting codes
to couple a simulation’s geometry with some explicitly defined
performance metrics. Performance tool wrappers and direct source-
instrumentation need to be configurable so that users can disable
their invasive presence during large production runs. Because it
involves changes to the source code of an application, enabling or
disabling the manual instrumentation of a code often involves full
recompilation of a software stack. Insights gained by the domain
projection are limited to what was selected a priori for contextual-
ization with geometry.

Without an efficient runtime service providing an integrated con-
text for multiple sources of performance information, it is difficult
to combine performance observations across several components

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

VPA’17, November 2017, Denver, CO

during a run. Further limiting the value of the entire exercise, per-
formance data collected outside of a runtime service must wait to
be correlated and projected over a simulation’s geometry during
post-mortem analysis. Projections that are produced offline cannot
be used for application steering, online parameter tuning, or other
runtime interactions that include a human in the feedback loop.
Scalability for offline projections also becomes a concern, as the
potentially large amount of performance data and simulation ge-
ometry produced and operated over in a massively parallel cluster
now must be integrated and rendered either from a single point or
within an entirely different allocation.

The overhead of manually instrumenting large complex codes
to extract meaningful geometries for use in performance analysis,
combined with the limited value of offline coorelation of a fixed
number of metrics, naturally limited the usage of scientific domain
projections for gaining HPC workflow performance insights.

1.1 Research Contributions

This paper describes the use of SOSflow [15] and Alpine to over-
come many prior limitations to projecting performance into the
scientific domain. The methods used to produce our results can be
implemented in other frameworks, though SOSflow and Alpine,
discussed in detail in later sections, are generalized and intention-
ally engineered to deliver solutions of the type presented here. This
research effort achieved the following:

e Eliminate the need to manually to capture geometry for
projections of Alpine-enabled workflows

e Activate or deactivate the capture of performance and scien-
tific domain data without requiring workflow recompilation

o Generalized filter to gather both static and dynamic spatial
data from various simulations

e Provide online observation of performance projected over
evolving geometries and metrics, along with automatic asyn-
chronous storage of data for offline analysis and archival

o Facilitate interactive selection of one or many performance
metrics and rendering parameters, adding dynamism to pro-
jections

o Enable simultaneous online projections from a common data
source

e In situ architecture supporting both current and future-scale
systems

2 RELATED WORK

Husain and Gimenez’s work on Mitos [7] and MemAxes [6] is
motivated similarly to ours. Mitos provides an integration API
for combining information from multiple sources into a coherent
memoized set for analysis and visualization, and MemAxes projects
correlated information across domains to explore the origins of
observed performance. SOSflow is being used in our research as an
integration API, but takes a differnt optimization path by providing
a general-purpose in situ (online) runtime.

Boehme’s Caliper [3] extracts performance data during execu-
tion in ways that serve a variety of uses, in much the same way
our efforts here are oriented. Caliper’s flexible data aggregation [4]
model can be used to filter metrics in situ, allowing for tractible
volumes of performance data to be made available for projections.

C. Wood et al.

Both ALPINE and Caliper provide direct services to users, also
serving as integration points for user-configurable services at run
time. Caliper is capable of deep introspection on the behavior of
a program in execution, yet is able to be easily disabled for pro-
duction runs that require no introspection and want to minimize
instrumentation overhead. ALPINE allows for visualization filters
to be compiled seperately from a user’s application and then intro-
duced into, or removed from, an HPC code’s visualization pipeline
with a simple edit to that workflow’s ALPINE configuration file.

BoxFish [8] also demonstrated the value of visualizing projec-
tions when interpreting performance data, adding a useful hierar-
chical data model for combining visualizations and interacting with
data.

SOSflow’s flexible model for multi-source online data collection
and analysis provides performance exploration opportunities using
both new and existing HPC tools.

3 SOSFLOW

To better understand the role played by SOSflow, it is useful to
examine its architecture. SOSflow is composed of four major com-
ponents:

e sosd : Daemons

e libsos : Client Library

e pub/sql : Data

e sosa : Analytics & Feedback

These components work together to provide extensive runtime ca-
pabilities to developers, administrators, and application end-users.
SOSflow runs within a user’s allocation, and does not require ele-
vated priveledges for any of its features.

3.1 SOSflow Daemons

Online functionality of SOSflow is enabled by the presence of a
user-space daemon. This daemon operates completely indepen-
dently from any applications, and does not connect into or utilize
any application data channels for SOSflow communications. The
SOSflow daemons are launched from within a job script, before
the user’s applications are initialized. These daemons discover and
communicate amongst each other across node boundaries within a
user’s allocation. When crossing node boundaries, SOSflow uses
the machine’s high-speed communication fabric. Inter-node com-
munication may use either MPI or EVPath as needed, allowing
for flexibility when configuring its deployment to various HPC
environments.

The traditional deployment of SOSflow will have a single dae-
mon instance running in situ for each node that a user’s appli-
cations will be executing on. This daemon is called the listener.
Additional resources can be allocated in support of the SOSflow
runtime as-needed to support scaling and to minimize perturba-
tion of application performance. One or more nodes are usually
added to the user’s allocation to host SOSflow aggregator daemons
that combine the information that is being collected from the in
situ daemons. These aggregator daemons are useful for providing
holistic unified views at runtime, especially in service to online
analytics modules. Because they have more work to do than the in
situ listener daemons, and also are a useful place to host analytics

Projecting Performance Data Over Simulation Geometry Using SOSflow and Alpine

IN SITU

=B sosd
| LISTENER
SIMULATION o
J

Figure 2: SOSflow’s lightweight daemon runs on each node.

ALPINE S0s

modules, it is advisable to place aggregation targets on their own
dedicated node[s], co-located with online analytics codes.

3.1.1 In Situ. Data coming from SOSflow clients moves into the
in situ daemon across a light-weight local socket connection. Any
software that connects in to the SOSflow runtime can be thought
of as a client. Clients connect only to the daemon that is running
on their same node. No client connections are made across node
boundaries, and no special permissions are required to use SOSflow,
as the system considers the SOSflow runtime to be merely another
part of a user’s workflow.

The in situ listener daemon offers the complete functionality
of the SOSflow runtime, including online query and delivery of
results, feedback, or application steering messages. At startup, the
daemon creates an in-memory data store with a file-based mirror
in a user-defined location. Listeners asynchronously store all data
that they receive into this store. The file-based mirror is ideal for
offline analysis and archival. The local data store can be queried
and updated via the SOSflow API, with all information moving
over the daemon’s socket, avoiding dependence on filesystem syn-
chronization or centralized metadata services. Providing the full
spectrum of data collected on node to clients and analytics modules
on node allows for distributed online analytics processing. Analyt-
ics modules running in situ can observe a manageable data set, and
then exchange small intermediate results amongst themselves in
order to compute a final global view. SOSflow also supports running
analytics at the aggregation points for direct query and analysis
of global or enclave data, though it is potentially less scalable to
perform centrally than in a distrubted fashion, depending on the
amount of data being processed by the system.

SOSflow’s internal data processing utilizes unbounded asyn-
chrous queues for all messaging, aggregation, and data storage.
Pervasive design around asynchronous data movement allows for
the SOSflow runtime to efficiently handle requests from clients and

VPA’17, November 2017, Denver, CO

messaging between off-node daemons without incurring synchro-
nization delays. Asynchronous in situ design allows the SOSflow
runtime to scale out beyond the practical limits imposed by globally
synchronous data movement patterns.

3.1.2 Aggregation Targets. A global perspective on application
and system performance is often useful. SOSflow automatically
migrates information it is given into one or more aggregation tar-
gets. This movement of information is transparent to user’s of SOS,
requiring no additional work on their part. Aggregation targets
are fully-functional instances of the SOSflow daemon, except that
their principle data sources are the distributed in situ daemons
rather than local clients. The aggregated data contains identical
information as the in situ data stores, it just has more of it, and it is
assembled into one location. The aggregate daemons are useful for
performing online analysis or information visualization that needs
to include information from multiple nodes.

AGGREGATION TARGETS

sosd

AGGREGATOR

VISUALIZATION

Figure 3: SOSflow supports one or more dedicated aggrega-
tion targets which serve as ideal places to co-locate analysis
and visualization tasks, conserving in situ resources.

SOSflow is not a publish-subscribe system in the traditional
sense, but uses a more scalable push and pull model. Everything
sent into the system will automatically migrate to aggregation
points unless it is explicitly tagged as being node-only. Requests for
information from SOSflow are ad hoc and the scope of the request
is constrained by the location where the request is targeted: in situ
queries are resolved against the in situ database, aggregate queries
are resolved against the aggregate database. If tagged node-only
information is potentially useful for offline analysis or archival,
the in situ data stores can be collected at the end of a job script,
and their contents can be filtered for that node-only information,
which can be simply concatenated together with the aggregate
database[s] into a complete image of all data All information in
SOSflow is tagged with a globally unique identifier (GUID). This
allows SOSflow data to be mixed together while preserving its
provenance and preventing data duplication or namespace collision.

VPA’17, November 2017, Denver, CO

3.2 SOSflow Client Library

Clients can directly interface with the SOSflow runtime system by
calling a library of functions (libsos) through a standardized APIL
Applications can also transparently become clients of SOS by uti-
lizing libraries and performance tools which interact with SOSflow
on their behalf. All communication between the SOSflow library
and daemon are transparent to users. Users do not need to write
any socket code or introduce any state or additional complexity to
their own code.

Information sent through the libsos API is copied into internal
data structures, and can be freed or destroyed by the user after
the SOSflow API function returns. Data provided to the API is
published up to the in situ daemon with an explicit API call, allowing
developers to control the frequency of interactions with the runtime
environment. It also allows the user to register callback functions
that can be triggered and provided data by user-defined analytics
function, creating an end-to-end system for both monitoring as
well as feedback and control.

To maximize compatibility with extant HPC applications, the
SOSflow client library is currently implemented in C99. The use of
C99 allows the library to be linked in with a wide variety of HPC
application codes, performance tools, and operating environments.
There are various custom object types employed by the SOSflow
API, and these custom types can add a layer of complexity when
binding the full API to a language other than C or C++. SOSflow
provides a solution to this challenge by offering a "Simple SOS"
(ssos) wrapper around the full client library, exposing an API that
uses no custom types. The ssos wrapper was used to build a native
Python module for SOSflow. Users can directly interact with the
SOSflow runtime environment from within Python scripts, acting
both as a source for data, but also a consumer of online query
results.

3.3 SOSflow Data

The primary concept around which SOSflow organizes information
is the "publication handle" (pub). Pubs provide a private namespace
where many types and quantities of information can be stored as a
key/value pair. SOSflow automatically annotates values with a vari-
ety of metadata, including a GUID, timestamps, origin application,
node id, etc. This metadata is available in the persistent data store
for online query and analysis. SOSflow’s metadata is useful for a
variety of purposes:

e Performance analysis

e Provenance of captured values for detection of source-specific
patterns of behavior, failing hardware, etc.

e Interpolating values contributed from multiple source appli-
cations or nodes

o Re-examining data after it has been gathered, but organizing
the data by metrics other than those originally used when it
was gathered

The full history of a value, including updates to that value, is
maintained in the daemon’s persistent data store. When a key
is re-used to store some new information that has not yet been
transmitted to the in situ daemon, the client library enqueues it
up as a snapshot of that value, preserving all associated metadata
alongside the historical value. The next time the client publishes

C. Wood et al.

PUB. HANDLE

time.pack
stored by client
time.send
pushed to daemon
time.recv
injected into db

< definitions > <val_snaps >

Figure 4: SOSflow retains the full history of every value.

to the daemon, the current and all enqueued historical values are
transmitted.

SOSflow is built on a model of a global information space. Ag-
gregate data stores are guaranteed to provide eventual consistency
with the data stores of the in situ daemons that are targeting them.
SOSflow’s use of continuous but asynchronous movement of in-
formation through the runtime system does not allow for strict
quality-of-service guarantees about the timeliness of information
being available for analysis. This design constraint reflects the re-
ality of future-scale HPC architectures and the need to elminate
dependence on synchronous behavior to correlate context. SOS-
flow conserves contextual metadata when values are added inside
the client library. This metadata is used during aggregation and
query resolution to compose the asynchronously-transported data
according to its original synchronous creation. The vissictitudes of
asynchronous data migration strategies at scale become entirely
transparent to the user.

SOSflow does not require the use of a domain-specific language
when pushing values into its API. Pubs are self-defining through
use: When a new key is used to pack a value into a pub, the schema
is automatically updated to reflect the name and the type of that
value. When the schema of a pub changes, the changes are auto-
matically announced to the in situ daemon the next time the client
publishes data to it. Once processed and injected into SOSflow’s
data store, values and their metadata are accessible via standardized
SQL queries. SOSflow’s online resolution of SQL queries provides
a high-degree of programmability and online adaptivity to users.
SQL views are built into the data store that mask off the internal
schemas and provide results organized intuitively for grouping by
application rank, node, time series, etc.

SOSflow uses the Alpine in situ visualization infrastructure de-
scribed below to collect simulation geometry that it correlates with
performance data.

4 ALPINE

ALPINE is a project that aims to build an in situ visualization in-
frastructure and analysis targeting leading edge supercomputers.
ALPINE is part of the U.S. Department of Energy’s Exascale Com-
puting Project (ECP) [12], and the ALPINE effort is supported by

Projecting Performance Data Over Simulation Geometry Using SOSflow and Alpine

multiple institutions. The goal of ALPINE is two fold. First, cre-
ate a hybrid-parallel library (i.e., both distributed-memory and
shared-memory parallel) that can be included in other visualization
tools such as ParaView [2] and Vislt [5] thus creating an ecosys-
tem where new hybrid-parallel algorithms are easily deployed into
downstream tools. Second, create a flyweight in situ infrastructure
that directly leverages the hybrid-parallel library. In this work, we
directly interface with the ALPINE in situ infrastructure.

The ALPINE in situ infrastructure is the descendant of Straw-
man [11], and ALPINE it tightly-coupled with simulations, i.e. it
shares the same node resources as the simulation. Strawman is an
in situ visualization mini-app meant to serve as an place to perform
rapid prototyping of in situ visualization algorithms, and to that end,
Strawman, and ALPINE, include three physics proxy-applications
out of the box to allow immediately provide the infrastructure and
algorithms with mesh data to consume. While Strawman’s goal
was to bootstrap in situ visualization research, the ALPINE in situ
infrastructure is intended for production.

The design of the ALPINE in situ infrastructure is meant to be
flexible and provides a means to have interoperability with software
outside the ALPINE project. ALPINE uses the Conduit [10] data ex-
change library to marshal mesh data from simulations into ALPINE.
Conduit provides an intuitive hierarchical model for describing
mesh data, and Conduit provides a simple set of conventions for
describing structured meshes to meshes that contain higher order
elements. Once the simulation describes the mesh data, it publishes
the data into ALPINE’s in situ infrastructure along with a set of
actions to perform (e.g., visualization and analysis) which can be
chained together. Conceptually, the sum of these actions form a
directed acyclic graph (DAG), and to support this execution model,
ALPINE includes the Flow library. Flow is a simple dataflow library
based on the Python dataflow library within VisIt.

Everything within Flow is a filter that can have multiple inputs
and a single output of generic types. Filters have a simple interface
to declare their inputs and output, and filters become available
when they are registered with Flow. ALPINE includes built-in filters
for all of the visualization and analysis algorithms in the hybrid
parallel library. The flexibility of Flow allows for user defined filters,
compiled outside of ALPINE, to be easily inserted into the dataflow,
and when the dataflow network executes, custom filters have access
to all of the simulation mesh data published to ALPINE.

5 EXPERIMENTS
5.1 Evaluation Platform

All results were obtained by running online queries (Figure 3)
against the SOSflow runtime’s aggregation targets using SOSflow’s
built-in Python API. The results of these queries were used to create
input files for the Vislt visualization tool, which was invoked from
within the allocation.

5.2 Experiment Setup
The experiments performed had the following purposes:
e Validation : Demonstrate the coupling of SOSflow with

Alpine and its ability to extracy geometry from simulations
transparently.

VPA’17, November 2017, Denver, CO

¢ Introspection : Examine the overhead incurred by includ-
ing the SOSflow geometry extraction filter in an Alpine vi-
sualization pipeline.

Alpine libraries were used to build a visualization module for online
geometry extraction. Alpine’s JSON configuration file describing
the connectivity of the in situ visualization pipeline was modified
to insert the geometry extraction module. The SOSflow implemen-

[proc

STATS

- B

LULESH gang

‘ simulation cycle x

ALPINE

N\

IN SITU

Figure 5: SOSflow collects runtime information to project
over the simulation geometry.

tation used to conduct these experiments is general-purpose and
was not tailored to the specific deployment environment or the
simulations observed. The study was conducted on two machines,
the details of which are included here —

(1) Quartz : A 2,634-node Penguin supercomputer at Lawrence
Livermore National Laboratory (LLNL). Intel Xeon E5-2695
processors provide 36 cores/node. Each node offers 128 GB
of memory and nodes are connected via Intel OmniPath.

(2) Catalyst : A Cray CS300 supercomputer at LLNL. Each of
the 324 nodes is outfitted with 128 GB of memory and 2x
Intel Xeon E5-2695v2 2.40 GHz 12-core CPUs. Catalyst nodes
transport data to each other using a QLogic InfiniBand QDR
interconnect.

The following simulated workflows were used —

(1) KRIPKE [9] : A 3D deterministic neutron transport proxy
application that implements a distributed-memory parallel
sweep solver over a rectilinear mesh. At any given simulation
cycle, there are simultaneous sweeps along a set of discrete
directions to calculate angular fluxes. This results in a MPI
communication pattern where ranks receive asynchronous
requests from other ranks for each discrete direction.

VPA’17, November 2017, Denver, CO

(2) LULESH [1] : A 3D Lagrangian shock hydrodynamics proxy
application that models Sedov blast test problem over a curvi-
linear mesh. As the simulation progresses, hexahedral ele-
ments deform to more accurately capture the problem state.

5.3 Overview of Processing Steps

The SOSflow runtime provided a modular filter for the Alpine in
situ visualization framework. This filter was enabled for the sim-
ulation workflow at runtime to allow for the capture of evolving
geometric details as the simulation progressed. The SOSflow run-
time daemon automatically contextualized the geometry it received
alongside the changing application performance metrics. SOSflow’s
API for Python was used to extract both geometry information and
correlated performance metrics from the SOSflow runtime. This
data set was used to generate sequences of input files to the VisIt
scientific data visualization tool corresponding to the cycle of a the
distributed simulation.

Each input file contained the geometric extents of every simu-
lation rank, the portion of the simulated space that each part of
the application was working within. Alongside that volumetric de-
scriptions for that cycle, SOSflow integrated attribute dictionaries
of all plottable numeric values it was provided during that cycle,
grouped by simulation rank. Performance metrics could then be in-
teractively selected and combined in VisIt with customizable plots,
presenting an application rank’s state and activity incident to its
simulation effort, projected over the relevant spatial extent.

5.4 Evaluation of Geometry Extraction

The geometry extracted by Alpine’s SOSflow filter was rendered
and compared with existing visualizations of its simulation. Per-
formance metrics can be coorelated in SQL queries to the correct
geometric regions by various redundant means such as pub handle
GUID, origin PID or MPI rank, simulation cycle, host node name,
SOSflow publish frame, and creation timestamps.

Our experiments were validated by emperical analysis of projec-
tions rendered for the duration of their source simulation. Projec-
tions were required to reflect their simulation’s expected deforming
of geometry (LULESH) or algorithm-dependent workload imbal-
ance (KRIPKE).

5.5 Evaluation of Overhead

Millisecond-resolution timers were added to the per-cycle execution
method of the SOSflow Alpine geometry extraction filter. Each
rank tracked the amount of time it spent extracting its geometry,
packing the geometry into an SOSflow pub handle, and transmitting
it to the runtime daemon. Every cycle’s individual time cost was
computed and transmitted to SOSflow, as well as a running total of
the time that Alpine had spent in the SOSflow filter. From a region
outside the timers, the timer values were packed into the same
SOSflow publication handle used for the geometric data. Timer
values were transmitted at the end of the following cycle, alongside
that cycle’s geometry. The additional transmission cost of these two
timer values once per simulation cycle had no perceivable impact
on the performance they were measuring.

C. Wood et al.

6 RESULTS

NOTE TO REVIEWERS: Additional and larger runs were not possi-
ble due to machine DATs and time constraints at the time of this
draft, but larger scales may be available for a photo-ready draft.
Further, the projections rendered in this draft will be re-rendered
to increase their clarity.

6.1 Geometry Extraction and Performance
Data Projection

Geometry was successfully extracted (Figures 1, 6, 7, and 8) with

minimal overhead from simulations run at a variety of scales from

2 to 33 nodes. Along with the geometry, performance metrics were
gathered and projected over their correlated domains.

Figure 6: Cumulative user cpu ticks during 440 cycles of 512
KRIPKE ranks on 32 nodes.

6.2 Overhead

When gathering only the simulation geometry, execution never
exceeded 2ms. Collecting 31 unique Alpine performance data and
system metrics within the filter added additional overhead, but
the filter time but did not exceed 4ms for any of the projections
shown in this paper. The filter’s execute time was logged as a metric
alongside the other in situ performance data, and is visualized for
LULESH in Figure 7.

Figure 7: Filter execution (1-4ms) over 710 LULESH cycles.

7 CONCLUSION

Services from both SOSflow and ALPINE were successfully inte-
grated to provide a scalable in situ (online) geometry extraction
and performance data projection capability.

7.1 Future Work

Workflows that use the Alpine framework but have complex irreg-
ular meshes, feature overlapping "halo regions", or that operate
over non-continuous regions of space within a single process, may
require additional effort to extract geometry from, depending on
the organization of spatial descriptions they employ. The addition
of a general convex hull algorithm to VTK-m will simplify the task

Projecting Performance Data Over Simulation Geometry Using SOSflow and Alpine

250.vik
Time:250

DB: data_set.80.vik
Cycle: 50

DB: data_set.
Cycle: 2

Time:50

£ dota set 5ok

DB: data_set.250.vik
le: 50 ime:50 C

cle: 250 Time:250

DB: data_sef.250.vtk
Cycle: 250 Time:250

DB: data_set.80.vik
Cycle: 50 Time:50

ey e
Nonhua21 2543142017 VenRia 21 zsasss 2017

D
C

Dl

D
C

VPA’17, November 2017, Denver, CO

B: data_set.500.
ycle: 500 Tim

DB: datg_sef.710.vik
Cycle: 710 Time:710

vik
e:500

usacaw
Mo ig21 ssssozon

B: data_set.500.vik
ycle: 500 Time:500

ta_set.710.vik
Time:710

B: data_set.500.vik
ycle: 500 Time:500

DB: datg_sef.710.vik
Cycle: 710 Time:710

e e
Von 21 a0 2017 Von a2 23 sa59 2017

Figure 8: Many metrics can be projected from one run. Here we see (top to bottom) user cpu ticks, system cpu ticks, and bytes
read during 710 cycles of 512 LULESH ranks distributed across 32 nodes.

of uniformly describing any spatial extent[s] being operated on by
a process.

The VisIt UI can be extended to support interactivity with the
SOSflow runtime. This will allow data exploration with VisIt to
engage with HPC applications as they are running, interrogating
the distributed data stores with custom SQL, and enable interactive
code steering based on what is observed.

ACKNOWLEDGMENTS

The research report was supported by a grant (DE-SC0012381) from
the Department of Energy, Scientific Data Management, Analytics,
and Visualization (SDMAV), for “Performance Understanding and
Analysis for Exascale Data Management Workflows.”

Part of this work was performed under the auspices of the U.S.
Department of Energy by Lawrence Livermore National Laboratory
under Contract DE-AC52-07NA27344 (LLNL-CONF-XXXXXX).

REFERENCES

[1] [n. d.]. Hydrodynamics Challenge Problem, Lawrence Livermore National Labora-
tory. Technical Report LLNL-TR-490254. 1-17 pages.
[2] James Ahrens, Berk Geveci, and Charles Law. 2005. Paraview: An end-user tool
for large data visualization. The Visualization Handbook 717 (2005).
David Boehme, Todd Gamblin, David Beckingsale, Peer-Timo Bremer, Alfredo
Gimenez, Matthew LeGendre, Olga Pearce, and Martin Schulz. 2016. Caliper:
performance introspection for HPC software stacks. In High Performance Com-
puting, Networking, Storage and Analysis, SC16: International Conference for. IEEE,
550-560.
David Béhme, David Beckingsdale, and Martin Schulz. 2017. Flexible Data
Aggregation for Performance Profiling. IEEE Cluster (2017).
Hank Childs, Eric Brugger, Brad Whitlock, Jeremy Meredith, Sean Ahern, David
Pugmire, Kathleen Biagas, Mark Miller, Cyrus Harrison, Gunther H. Weber,
Hari Krishnan, Thomas Fogal, Allen Sanderson, Christoph Garth, E. Wes Bethel,
David Camp, Oliver Ritbel, Marc Durant, Jean M. Favre, and Paul Navratil. 2012.
VisIt: An End-User Tool For Visualizing and Analyzing Very Large Data. In
High Performance Visualization—Enabling Extreme-Scale Scientific Insight. CRC
Press/Francis-Taylor Group, 357-372.
Adolfo Alfredo Gimenez, Todd Gamblin, Ilir Jusufi, Abhinav Bhatele, Martin
Schulz, Peer-Timo Bremer, and Bernd Hamann. 2017. MemAxes: Visualization
and Analytics for Characterizing Complex Memory Performance Behaviors. IEEE
Transactions on Visualization and Computer Graphics (2017).
Benafsh Husain, Alfredo Giménez, Joshua A Levine, Todd Gamblin, and Peer-
Timo Bremer. 2015. Relating memory performance data to application domain

[3]

[4

flas

[5

—

G

=

[7

—

VPA’17, November 2017, Denver, CO

8

=

[9

=

[10

[11]

[12]

(13

[14

[15]

data using an integration APL In Proceedings of the 2nd Workshop on Visual
Performance Analysis. ACM, 5.

Katherine E Isaacs, Aaditya G Landge, Todd Gamblin, Peer-Timo Bremer, Valerio
Pascucci, and Bernd Hamann. 2012. Exploring performance data with boxfish. In
High Performance Computing, Networking, Storage and Analysis (SCC), 2012 SC
Companion:. IEEE, 1380-1381.

AJ Kunen, TS Bailey, and PN Brown. 2015. KRIPKE-a massively parallel transport
mini-app. Technical Report. Lawrence Livermore National Laboratory (LLNL),
Livermore, CA.

Lawrence Livermore National Laboratory. 2017. Conduit: Simplified Data Ex-
change for HPC Simulations. (2017). https://software.llnl.gov/conduit/
Matthew Larsen, Eric Brugger, Hank Childs, Jim Eliot, Kevin Griffin, and Cyrus
Harrison. 2015. Strawman: A Batch In Situ Visualization and Analysis Infras-
tructure for Multi-Physics Simulation Codes. In Proceedings of the First Workshop
on In Situ Infrastructures for Enabling Extreme-Scale Analysis and Visualization
(ISAV2015). ACM, New York, NY, USA, 30-35. https://doi.org/10.1145/2828612.
2828625

Paul Messina. 2017. The Exascale Computing Project. Computing in Science &
Engineering 19, 3 (2017), 63-67.

Martin Schulz, Abhinav Bhatele, David B6hme, Peer-Timo Bremer, Todd Gamblin,
Alfredo Gimenez, and Kate Isaacs. 2015. A Flexible Data Model to Support Multi-
domain Performance Analysis. In Tools for High Performance Computing 2014.
Springer, 211-229.

Martin Schulz, Joshua A Levine, Peer-Timo Bremer, Todd Gamblin, and Valerio
Pascucci. 2011. Interpreting performance data across intuitive domains. In Parallel
Processing (ICPP), 2011 International Conference on. IEEE, 206-215.

Chad Wood, Sudhanshu Sane, Daniel Ellsworth, Alfredo Gimenez, Kevin Huck,
Todd Gamblin, and Allen Malony. 2016. A scalable observation system for
introspection and in situ analytics. In Proceedings of the 5th Workshop on Extreme-
Scale Programming Tools. IEEE Press, 42-49.

C. Wood et al.

https://software.llnl.gov/conduit/
https://doi.org/10.1145/2828612.2828625
https://doi.org/10.1145/2828612.2828625

	Abstract
	1 Introduction
	1.1 Research Contributions

	2 Related Work
	3 SOSflow
	3.1 SOSflow Daemons
	3.2 SOSflow Client Library
	3.3 SOSflow Data

	4 ALPINE
	5 Experiments
	5.1 Evaluation Platform
	5.2 Experiment Setup
	5.3 Overview of Processing Steps
	5.4 Evaluation of Geometry Extraction
	5.5 Evaluation of Overhead

	6 Results
	6.1 Geometry Extraction and Performance Data Projection
	6.2 Overhead

	7 Conclusion
	7.1 Future Work

	Acknowledgments
	References

