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Summary: The CAIRO coalition of experts in the fields of algorithmic theory, artificial intelligence (AI), and
high-performance computing (HPC) aims to transform research and education in the broader field of AI
through the co-design of a new class of higher-order algorithms in conjunction with a secure, scalable, and
accessible advanced cyberinfrastructure (CI) that we anticipate will result in a significant portion of new
and existing AI applications achieving speedup of two to three orders of magnitude.

The extensive library of higher-order algorithms co-developed by CAIRO ’s experts will be made avail-
able through a truly distributed, widely applicable, and openly available system and infrastructure. It will
support a wide variety of target architectures, be easy to deploy and maintain, and provide good portabil-
ity, productivity, and scalability on hardware ranging from laptops, to leadership HPC clusters and CPUs,
to specialized accelerators. Our initial aim will be to provide end users with our algorithms through an API
compatible with NumPy, PyTorch, and Tensorflow, thus ensuring a reasonably simple adoption path for
the majority of users. The CAIRO CI will democratize access to a new optimization system, facilitate its use
within new and existing applications, and provide a platform for training, collaboration, and benchmark-
ing. It will ensure that AI researchers have standards-based tooling capable of empowering them to solve
today’s problems in a fraction of their current times and successfully tackle problems currently beyond the
realm of possibility. The CAIRO CI deliverables will be incorporated into the multi-institution graduate
program, summer AI workshops, and workforce development activities coordinated by the institute.

CAIRO’s innovative partnership with the LSU Ethics Institute will produce project-driven, publishable
research in the areas of AI ethics, AI ethical risk management, and cutting-edge AI Ethics training for our
inter-institutional partners across eight universities.
Intellectual Merit: The proposed AI research is both foundational and use-inspired, driven by four science
drivers in the areas of natural language processing, hurricane forecasting, sustainable energy, and geohaz-
ard simulation. It provides transformative intellectual contributions in areas of AI, distributed systems,
and algorithms that will enable a leap in size, complexity, and accuracy of solvable AI problems, ensuring
a substantial reduction of the time-to-solution for a broad set of AI applications of national importance.

One of the most salient and innovative features is the close coupling of AI, Algorithms, HPC, and visual-
ization tools. CAIRO ’s AI engine, powered by scalable higher-order methods, is based on an optimization
pipeline that communicates between the layers of the software stack. Visualization and performance tools
close the loop, incorporating user feedback. CAIRO answers to the need to develop new algorithmic solu-
tions on a wide spectrum of computing systems. This collaboration between theorists, computer scientists,
and AI researchers will serve as a high-impact use case for how to improve efficiency of AI on HPC and will
inform new approaches to efficient, scalable computing in general. CAIRO ’s advances in AI and paralleliza-
tion technology for higher-order optimization algorithms will significantly impact the science of modeling,
AI, and HPC. The advancements in algorithmic research will directly benefit domains beyond the field of
AI, such as data analysis and modeling, statistics, and the general field of theoretical mathematics.
Broader Impact: CAIRO has the potential to impact domains far beyond those represented by our four sci-
ence drivers. Providing scientists and application developers with new insight and services for optimizing
AI/ML applications with excellent scalability and parallel efficiency, CAIRO will enable new types of appli-
cations to be written and maintained. CAIRO’s proposed workflow is designed so that code will be able to
perform efficiently on current and future architectures. The new, higher-order optimization techniques and
their application to four distinct science domains, combined with novel system implementations ensuring
best possible scalability across a wide range of computing resources, lays the foundation for programmer
productivity and portability of both codes and their performance, greatly reducing maintenance burdens.

CAIRO will also have a number of direct societal benefits. Funding this research fosters the growth and
development of AI and HPC in Louisiana, home of CAIRO (LSU) and an EPSCoR state. Additionally, the
project will directly provide undergraduate, graduate, and post-graduate opportunities to the citizens of
eight States, beyond just Louisiana, which is vital in fostering existing and creating new industries with
AI/ML technology. CAIRO, in particular, lays a solid foundation for technology transfer from academia to
industry. By creating a software layer that industrial partners can confidently rely on, the project will help
fill the gap between academic innovation and commercial application.

CAIRO funds will further support societal values through targeted inventions aimed at broadening par-
ticipation in AI and investing in AI ethics research and training, thus actively building the next generation
of talent for a diverse, well-trained workforce.
Keywords: Advanced Cyberinfrastructure for Artificial Intelligence, Scalable Higher-Order Optimizations



1 Overview and Rationale for Institute Approach
Some of today’s most visible and, indeed, remarkable achievements in artificial intelligence (AI) have come
from advances in deep learning (DL).The formula for the success of DL has been compute power—artificial
neural networks are a decades-old idea, but it was the use of powerful accelerators, mainly GPUs, that truly
enabled DL to blossom into its current form [165]. As significant as the impacts of DL have been, there is
a realization that current approaches are merely scratching the surface of what might be possible and that
researchers could more rapidly conduct exploratory research on ever larger and more complex systems—if
only more compute power could be effectively applied. There are three emerging trends that, if properly
harnessed, could enable a such a boost in compute power applied to AI, thereby enabling another major
advance in AI capabilities.

Optimization algorithms based on higher-order derivatives are well-established numerical methods,
offering superior convergence characteristics and inherently exposing more opportunities for scalable par-
allel performance than first-order methods commonly applied today. Despite their potential advantages,
these algorithms have not yet found their way into mainstream AI applications, as they require significantly
more powerful computational resources and must manage significantly larger amounts of data.

High-performance computing (HPC) brings more compute power to bear via parallel programming
techniques and large-scale hardware clusters and will be required to satisfy the resource requirements of
higher-order methods. That DL is not currently taking advantage of HPC resources is not due to lack of
imagination or lack of initiative in the community. Rather, matching the needs of DL systems with the
capabilities of HPC platforms presents significant challenges that can only be met by coordinated advances
across multiple disciplines.

Hardware architecture advances continue apace, with diversification and specialization increasingly
being seen as a critical mechanism for increased performance. Cyberinfrastructure (CI) and runtime sys-
tems that insulate users from hardware changes, coupled with tools that support performance evaluation
and adaptive optimization of AI applications, are increasingly important to achieving high user productiv-
ity, code portability, and application performance.

Only a use-inspired, synergistic collaboration of research expertise encompassing AI, numerical algo-
rithms, HPC, computer systems, CI, and more will be able to realize the necessary breakthroughs in size,
complexity, and capability to amplify the impact of AI on science, technology, industry, and society. That is,
matching DL to HPC requires a focused national-scale research institute. Accordingly, we propose the “Na-
tional Coalition for Artificial Intelligence Research on Scalable Optimizations (CAIRO)”, a nationwide Research
Institute that will enable AI to take full advantage of current and future HPC platforms via novel scalable
CI specialized for higher-order algorithms.

The Vision of CAIRO is to ensure a significant and transformative reduction of the time-to-solution
by two to three orders of magnitude for a broad set of AI applications by co-designing a new class of algo-
rithms based on higher-order optimization methods alongside new software infrastructure to support their
efficient use across a spectrum of computational resources. This will enable a fundamental advance in the
size, complexity, and accuracy of solvable AI problems, catalyze a fundamental shift in the training and
application of AI models, and create new educational pathways to develop a more diverse AI-savvy STEM
workforce. CAIRO will realize its vision through use-inspired research originating from four challenging
science drivers of national importance.

1.1 Objectives
Program objectives include (see also Figure 1): (1) Development of the next generation of higher-order opti-
mization algorithms, focusing on specific needs of AI; (2) Incorporation of the algorithms into an AI-focused
CI, offering efficiency and scalability on current and next-generation supercomputers; (3) Deployment of
the algorithms and CI in the form of easy-to-use web-services and software libraries, making them available
to the global scientific community; (4) Significant advances in the domain areas of our science drivers; (5)
Education for the next generation of a highly-skilled STEM workforce, all of whom will require AI exper-
tise; and (6) Production of project-driven, publishable research in the area of AI ethics and managing ethical
risks in AI through an innovative partnership with the LSU Ethics Institute. Preliminary performance re-
sults suggest that by the end of the project we can expect to see speedups of our applications by two to
three orders of magnitude, with expected order-of-magnitude increases resulting from each of: the new
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optimization algorithms, our scalable software infrastructure realizing those algorithms, and performance
portability enabled by the infrastructure that will allow applications to rapidly and fully utilize current and
future advanced heterogeneous hardware architectures.

1.2 Overview of Approach
Scalable Optimization Algorithms. The kernels (both for training and inference) in many DL applications
are essentially linear algebra operations that have been highly tuned to take advantage of modern CPU,
GPU, and specialized tensor processing hardware. To a certain extent, inference problems compute effi-
ciently, though their size may be limited by available memory. In contrast, training requires substantially
more computation, and the standard numerical optimization algorithms for training, e.g., stochastic gradi-
ent descent (SGD), appear to have characteristics that inherently limit their scalability beyond a relatively
small number of compute nodes. With the CAIRO project, we propose to advance the theory and practice
of using second-order optimization algorithms for scalable DL training, enabling larger and more complex
models to be trained in significantly less time. We will develop and deploy an extensive library of second-
order algorithms, evaluate and characterize their convergence behavior and numerical performance on
significant problems of interest, and maintain an online dashboard of results and trained networks. Partic-
ular approaches will include Newton-Krylov, quasi-Newton/secant, conjugate direction, inexact Newton,
and other novel methods to be developed during the course of this work. Since materializing the Hessian
that is at the core of second-order methods is not feasible, novel approaches to Hessian-free and limited-
memory variants of these algorithms will be investigated. Approaches for improving global convergence
behavior, such as trust region, line-search, filter methods, and combination/hybrid methods, will also be
developed. Our catalog of algorithms will be available through a set of web services as well as libraries that
can be easily integrated with existing applications and mainstream frameworks.
Scalable Infrastructure. Although second-order approaches offer the potential for better convergence be-
havior, they have the reputation of being more expensive computationally. However, the additional compu-
tational cost is ameliorated by fewer training epochs and reduced communication—and by offering much
more opportunity for scalability—but a suitable infrastructure is required to support it. A truly distributed,
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Figure 1: CAIRO targets broad outreach activities enabling its
integration with other AI institutes, educating the next gener-
ation of a highly-skilled STEM workforce with AI expertise.

widely applicable, and openly available
system and infrastructure for processing
very large amounts of data in the field of
AI has yet to emerge. Such a system must
support a wide variety of target architec-
tures, be easy to deploy and maintain,
and provide good portability, productivity,
and scalability even on the largest HPC re-
sources available. We will develop such a
distributed framework and infrastructure
that exposes a set of high-performance al-
gorithmic primitives, usable by our science
drivers and the broader community.
Science Drivers (SD). Our work in CAIRO
will be use-inspired and informed by four
science drivers: SD1 Natural Language
Processing (see Section 5.1), SD2 Hurri-
cane Storm Surge and Flood forecasting
(see Section 5.2), SD3 Sustainable energy
resource applications (see Section 5.3), and

SD4 Geohazards and volcanological simulations (see Section 5.4). These science drivers reflect previous
strong collaborations among the participating organizations, providing a strong foundation for the pro-
posed research program that relies on close collaboration between theorists, computational scientists, and
domain scientists. The selected applications have a strong impact on different areas of national importance
and will greatly benefit from the results of the proposed work. The Coalition will effect strong synergistic
connections among the researchers, enabling transformative advances in the targeted domains that will
have direct impact on other science and application domains.
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State of the Art Teaching and Training. Our comprehensive education and broadening participation plans
(see Sections 6 and 7) position CAIRO at the nexus of recruiting, retaining, and training a diverse cohort
of undergraduate, graduate, and postdoctoral students, helping to produce the next generation of AI re-
searchers and workers. The distributed structure of CAIRO is a major asset for achieving broader social,
economic, and educational impacts. Led by LSU, an R1 University in an EPSCoR state, we bring together
researchers and research institutions that serve over 220,000 undergraduate and graduate students.

1.3 Institute Capabilities
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Figure 2: CAIRO will be a truly na-
tionwide center of excellence connecting
eight universities across the country.

The CAIRO Institute connects a coherent multidisciplinary
team of scientists, engineers, and educators with internationally-
recognized expertise in machine learning, high-performance
computing, runtime systems, performance analysis and visual-
ization tools, optimization, computational science, and key sci-
entific domains. The members of the Coalition are (see Figure 2):
Louisiana State University (LSU, lead institution, 1 ), George
Mason University (GMU, 2 ), Chapman University (CU, 3 ), Mis-
souri S&T (MST, 4 ), University of Arizona, Tucson (UA, 5 ), Uni-
versity of Washington (UW, 6 ), University of Oregon (UO, 7 ),
and University of Texas at Austin (UT, 8 ) The Coalition will cre-
ate significant new research capabilities by utilizing their exist-
ing leading positions in the field and by building on synergies
between their various domains of expertise. CAIRO also benefits from having access to existing national
and regional HPC resources, e.g., at LSU, CU, and UO. In addition, TACC and LONI have generously of-
fered to allow leveraging their infrastructure (see letters of collaboration). The team has an established track
record of delivering high-quality open-source software (see data management plan).

2 Background
The detection of AI solutions to what were once considered impossible problems is an almost common
occurrence in today’s AI landscape. All of us in the computer science and engineering community can
rightly feel a measure of pride in these accomplishments—they have been made possible because of the
availability of efficiently programmed, immensely powerful hardware. GPU technology in particular has
been noted as being responsible for the current “renaissance” in DL [165]. At the same time, current DL
approaches are not taking advantage of modern HPC platforms to the same extent that scientific computing
is. If DL were to fully use HPC platforms, we would likely see another “punctuational change” in AI, similar
to what was experienced when GPUs arrived on the scene. Enabling this punctuational change will require
coordinated advances in algorithms and cyberinfrastructure. In this section, we review current approaches,
obstacles to scaling them, and opportunities available with higher-order methods.

2.1 First-Order Optimization Methods
Training a DNN is an optimization process that seeks to find the set of parameters θ∗ such that

θ∗ = argmin
θ

J(θ) = argmin
θ

L (N(θ,X),H(X)) = argmin
θ

1

|X|
∑
j

` (n(θ,xj),h(xj))

Here, J : RmL → R is an objective associated with N that encodes the task for which we wish to train
the network. In the case of supervised learning (e.g., which we show here without loss of generality), the
objective is defined in terms of a loss function L that measures the difference between the outputs of the
model and some prescribed targets. Also without loss of generality, we can define L as the average of a
single-sample loss function ` over the training setX .

The general form of optimization algorithms for training is shown in Algorithm 1. The primary com-
putational steps are: (line 2) obtain some number of samples from the data set to create a minibatch, (3)
apply the model to each sample to compute a corresponding output, (4) compute the loss for the outputs,
(5) compute the gradient corresponding to the loss (typically via backpropagation), (6) determine a new
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Algorithm 1 Proto-Optimization loop for DL training.

1: for k = 0 to |X||B| · epochs do
2: Bk ← S(X) . Sample batch from training setX ‖ Data parallel
3: Y k ←N(θk,Bk) . Feed forward through model N ‖Model parallel
4: qk ←L

(
Y k,H(Bk)

)
. Compute loss against targets H(Bk) ‖ Collective

5: gk ← −∇θqk . Compute gradient, using back prop ‖Model parallel
6: pk ← Akgk . Compute update direction ‖Model/Collective
7: αk ← argminJ(θk + αkpk) . Compute step length ‖ Collective
8: θk+1 ← θk + αkpk . Update θk with update rule ‖ Collective
9: end for

search direction based on the gradient, (7) determine a step size with which to scale the search direction,
and (8) then use the scaled search direction to update the model parameters.

Gradient descent methods seek to choose pk to maximize the local decrease in J from one step to the
next. Using the first order Taylor expansion of J ,

J(θk + αkpk) ≈ J(θk) + αk[∇J(θk)]>pk (1)

we can observe that the decrease will be locally maximized when pk = −∇J(θk) [46,174]. Gradient descent
is realized in Algorithm 1 by choosing Ak = I . Stochastic gradient descent (SGD) is gradient descent
coupled with a stochastic sampling process for formingBk.

Although SGD is the most popular optimizer for training DNNs, in its elementary form it has a num-
ber of notable shortcomings: it is relatively slow to converge, liable to get stuck in saddle points, and
computationally inefficient. Moreover, these issues are inter-related and sensitive to the choice of hyper-
parameters [127,198]. For example, although numerous extensions to SGD have been proposed to mitigate
these issues [58,122,168,268,270], training a DNN with an SGD optimizer is a trial and error tuning process
that intertwines learning rate and minibatch size [71, 198, 214]. These issues are only exacerbated when
attempting distributed training of DNNs with SGD [210].

2.2 Second-Order Optimization Methods
Rather than using the first-order Taylor expansion as in (1), we can choose an update pk to minimize the
second-order expansion:

J(θk + pk) ≈ J(θk) + [∇J(θk)]>pk + 1

2
(pk)>H(θk)pk =⇒ pk = −H(θk)−1∇J(θk).

Here, H(θk) is the Hessian (second derivative) of J . The resulting algorithm is the well-known Newton
method, which can be realized in Algorithm 1 by choosing Ak = H(θk)−1 and setting the batch to be the
entire training set.

Newton’s method has some appealing features. As is well known, since it uses second-order infor-
mation, it converges quadratically (under appropriate conditions). Moreover, Newton’s method offers
multiple opportunities for computational efficiency and parallelization, most notably in that it can use a
“maxibatch”—a minibatch consisting of the entire training set (thus exposing maximum data parallelism).
Parallelization opportunities at each stage of Newton’s method are noted in the right-most column of Al-
gorithm 1 and the different modalities of parallelization for DNN training are shown in Figure 3. Recent
experience with second-order methods has borne out the expectations of improved convergence and larger
batch size in practice [7, 18, 66, 82, 152, 175, 262].

On the other hand, there are some significant difficulties with Newton’s method as-is. Most problem-
atically, and the issue that has likely impeded adoption of second-order methods to this point, forming
the complete Hessian (which is not sparse [8]) is not feasible simply due to the storage requirements for
anything but toy problems. Thus, the linear system solution H(θk)pk = gk (line 6 in Algorithm 1) must
be approximated in some way. Forming the full Hessian has been a long-standing issue in the optimiza-
tion community and a variety of approaches have been developed to deal with it, a selection of which are
described below and summarized in Table 1.
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Method Direction computation Approximation
Newton SolveH(θk)pk = gk for pk

SGD pk = gk H = I
Newton-Krylov SolveH(θk)pk = gk for pk H(θ)p ≈ (∇J(θ + αp)−∇J(θ))/α
Secant (direct) Solve F kpk = gk for pk F is secant approximation toH
Secant (inverse) pk ← Gkgk G is secant approximation toH−1

AdaHessian pk ← diag(H)−1gk diag(H) is the diagonal ofH

Table 1: Selected families of approximate Newton methods.

Inexact Newton methods comprise the general family of methods where H(θk)pk = gk is solved approx-
imately, for example with an iterative linear solver [45], or by using an approximation to H , or both [25].
Newton-Krylov methods combine Newton’s method with a Krylov solver for the linear solution. The impor-
tant matrix-free—or, in our case, Hessian-free—variants note that the matrix-vector product at the core of
all Krylov solvers can be approximated as the difference of two function (resp. gradient) evaluations [25].
(This technique was rediscovered in the ML community where it is known as the “Pearlmutter trick” [179]).

Quasi-Newton methods (or secant methods) comprise a family of methods where the Hessian (in the case of
direct formulations) or the inverse Hessian (in the case of inverse formulations) is approximated through a
series of low-rank updates made to an initial estimate as the Newton iteration proceeds. Different families
of quasi-Newton methods are categorized by regularization constraints imposed on the low-rank update.
The Broyden family update is minimal in Frobenius norm (but loses symmetry of the Hessian). The SR-1
family is symmetric (but may not be minimal). Powell’s symmetric Broyden is minimal and symmetric (but
not necessarily positive definite). The celebrated Davidon-Fletcher-Powell (DFP) and Broyden-Fletcher-
Goldfarb-Shanno are algorithms from the same family, with updates that are symmetric and positive def-
inite. Each of these four families in turn has four formulations (for a total of 16 methods): direct and
dual-inverse, which define updates for the Hessian; and dual and inverse, which define updates for the
inverse of the Hessian. The inverse and dual-inverse forms are derived from the direct and dual forms by
application of the Sherman-Woodbury-Morrison formula [46]. Limited-memory secant methods avoid form-
ing the Hessian explicitly but, instead, store the constituents used for the low-rank updates and apply those
when the Hessian is needed—i.e., when computing a matrix-vector product [169].
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(a) Data parallelism assigns parti-
tions of the batch to separate (repli-
cated) model instances.
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(b) Model pipelining
partitions by layer.
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(c) Model parallelism
partitions the model.

Figure 3: Primary modes of parallelism for training large
DNNs.

Conjugate-Direction methods are exten-
sions of well-known linear solvers to
the nonlinear case. Daniel’s method
can be viewed as an extension of the
conjugate-residual algorithm [199], while
the Fletcher-Reeves algorithm can be viewed
as an extension of the conjugate-gradient
algorithm (the difference between the two
pairs is in the choice of norm under
which minimization takes place) [174]. L-
CG DESCENT is a limited-memory ver-
sion of the benchmark nonlinear conjugate
gradient method CG DESCENT [75–77].

The strong quadratic convergence be-
havior exhibited by Newton methods hap-
pens only when iterates are close to a min-
imum. Hence, a variety of techniques have
been developed to provide better global convergence behavior, including damping, line-search, trust-region,
and homotopy continuation methods [46, 118, 174]. Second-order methods are gaining some recent at-
tention; methods developed specifically for DL include AdaHessian [266], K-FAC [153–155], and Curve-
ball [88]. Most on-going efforts seem to be focused on issues related to convergence with less emphasis on
potential for parallelization. Theoretical work on analytic formulations of the Hessian indicate that it has
an outer-product structure pointing to alternate representations and efficient storage mechanisms [8].
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Property ResNet [82] BERTLarge [52] GPT-2 [186] GPT-3 [26]
|θ| ∼23-60 M 340 M 1.5 B 175 B
Layers 50-152 24 48 96
TFLOPS .004-.011 6.5E5 8.64E8-8.64E9 3.14E11
Training set size 1.28 M images 3.3 B words 10.2 B words 304.7 B words
Mini-batch size 192 images / GPU 256 K words 524 K words 32 K-12 B words
Hardware 8 V100 GPUs 64 TPU chips 1024 TPU chips -
Headroom 835 51.5k 19.5k 25–9M

Table 2: Characteristics of selected large neural networks. “Headroom” indicates the ratio between the
total training set size and the largest minibatch size, an indication of potentially available data parallelism.

2.3 Distributed Computation
Distributed training of Deep Neural Networks (DNN) has become increasingly common in order to keep
up with the training requirements of state-of-the-art models [2, 225, 271]. As illustrated in Figures 3, there
are three main approaches to partitioning for parallelizing DNN training: partitioning the training set (data
parallelism), partitioning across the model (model parallelism or domain parallelism), and partitioning by
layer (pipelining). Any of these approaches can be combined (hybrid parallelism). Data parallelism is
straightforward to implement and is the most common approach used by existing deep learning frame-
works [80]. However, used by itself, it requires that the entire model, as well as the batch partition, fit into
the memory of a single worker; additional parallelization is required for very large-scale models.

Framework Data Par Mod Par Overlap Gran

Mesh-TensorFlow [211] X X
GPipe [91] compat X X
PyTorch DDP [136] X X
Hororvod [207] X compat X
FlexFlow [100] X X X X
Chainer [235] X
BigDL [41] X
MXNET-MPI [150] X
DeepSpeed [189] X compat X X

Table 3: Comparison of distributed deep-learning frameworks.
Data Par indicates support for data parallelism on multiple nodes.
Mod Par indicates support for intra-iteration and/or inter-iteration
model parallelism/pipelining. Overlap indicates ability to compute
and communicate concurrently. Gran indicates parallelism support
down to the granularity of an individual operation.

There are two main challenges in us-
ing a distributed SGD. First is the overhead
of parallelization itself; communication
and synchronization costs are a bottleneck.
Some proposed asynchronous variants of
distributed SGD seek to decrease the rate of
communication, but this later proved not to
be scalable [34,43,102,272]. Others attempt
to design a more communication-efficient
training method [11, 74, 101, 218, 269]. Sec-
ond, and problematically, attaining greater
parallelization requires larger minibatches,
but the convergence of SGD and minibatch
size are inextricably related. That is, the
convergence guarantees provided by dif-
ferent sizes of minibatches have a large
variance in the presence of a constant effec-
tive batch size [14], and large effective minibatch sizes suffer from a generalization gap. Larger batch sizes
per worker allow a larger learning rate and faster training as a result, but the memory constraints of a single
worker limit the growth of minibatch size per worker. The instability of SGD training with large effective
minibatch sizes imposes ad hoc modifications to the optimizer, namely using a warmup technique and/or a
linear scaling rule [139,162]. As of now, the largest reported effective minibatch size (without sparsification)
using a distributed SGD is 64K [99, 162, 267].

The payoff in using larger minibatch sizes enabled by higher-order methods is potentially enormous.
Table 2 shows model characteristics for a few of today’s largest models. For each of the models, we show a
“headroom” number, which is the ratio between the training set size and the largest minibatch published
for that model. This ratio represents how much work could potentially be done in parallel if the entire
training set were to be done as one batch. The consequences of not being able to scale due to minibatch
size limitations is reflected in the relatively small size of hardware used for these problems (relative to the
problem sizes themselves).

Finally, Table 3 shows a comparison of DL frameworks that support distributed memory paralleliza-
tion [81]. As with the current state of second-order methods, these frameworks tend to aim for modest
levels of acceleration rather than HPC scales—and in a very real sense, that is precisely because methods
are not available that could scale. Most are also feature incomplete vis-a-vis providing an actual CI.
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3 Foundational Infrastructure
We describe key extant work that will be used as a foundation for a web-service oriented, end-to-end
environment for scalable and highly-optimized distributed array computing. We start by discussing HPX
and Phylanx which will underlie the CAIRO distributed array computing framework. Next we describe
the technology behind the embedded performance evaluation system, APEX, and its associated interactive
visualization system, Traveler. Finally, we discuss the JetLag science gateway and the Agave Platform
through which we will provide web-based accessibility, automation, and benchmarking to the institute and
its user community.

3.1 The HPX Runtime System
HPX is the C++ Standard Library for Parallelism and Concurrency [84–86, 108, 111, 112], partially funded
by NSF awards (1111888, 1240655, 1339723, and others). It represents an innovative mixture of long-known
ideas and concepts such as static and dynamic dataflow, fine-grained Futures-based synchronization, and
continuation-style programming. It is the combination of these ideas that form the overarching design
principles which make HPX unique [111]. HPX addresses problems of scalability, resiliency, energy effi-
ciency, runtime adaptivity, and dynamic resource management that continue to grow in importance as the
industry faces increasing demands in supporting highly distributed systems with heterogeneous architec-
tures. To achieve these goals, HPX introduces an asynchronous C++ programming model that departs from
today’s prevalent parallel programming models with the aim of increasing parallel efficiency. This pro-
gramming model mitigates common limitations, such as implicit and explicit (global and local) barriers,
coarse-grained parallelism, and lack of easily achievable overlap between computation and communica-
tion.

HPX exposes a coherent programming model unifying all the different types of parallelism available in
today’s computer systems. By modeling the API after the interfaces defined by the C++ standards [226–228],
programmers are able to write fully asynchronous code using hundreds of millions of HPX-threads (tasks)
in a familiar environment. This ease of programming extends to both parallel and distributed applications.
HPX is the first open source runtime system to implement the ParalleX execution model [110,232] on a wide
range of conventional systems. Further, HPX provides services and APIs allow it to coordinate and manage
code execution on GPUs and accelerators in distributed systems. HPX has a worldwide, open, active, and
thriving developer and user community.

In CAIRO, we plan to use HPX because of its dynamic scheduling and global data addressing capa-
bilities and because of its ISO C++ standards conformance. The shared memory abstractions introduced
by HPX have already been adopted in the most recent ISO C++ standard, and HPX’s distributed memory
abstractions are also standards conforming extensions. Using the Futurization concept in HPX, developers
can express complex dataflow execution graphs that generate billions of tasks that are scheduled to execute
only when their dependencies are satisfied [44]. HPX integrates with the APEX performance measurement
and adaptive tuning framework (see Section 3.2).

We expect that many of the core algorithms for CAIRO can be implemented elegantly using HPX’s
higher-level API, which also opens up a natural upgrade path to acceleration. All algorithmic primitives
that already exist and those that will be developed by CAIRO directly target HPX, which ensures the best
possible performance and excellent resource utilization. Our PhySL intermediate representation in Phy-
lanx (see Section 3.4) is directly compiled into a static dataflow execution tree, the nodes in that tree are
comprised of primitive operations. The evaluation of this tree produces a dynamic dependency tree of
scheduled operations that is executed by HPX with minimal synchronization overhead.

3.2 APEX - Autonomic Performance Environment for Exascale
APEX [94, 95] (Autonomic Performance Environment for Exascale) is a performance measurement library
for distributed, asynchronous multitasking systems such as HPX. It provides lightweight measurements
without perturbing high concurrency through both synchronous and asynchronous interfaces. APEX is
integrated into HPX, timing all scheduled tasks and capturing HPX counters. The policy engine within
APEX provides an API to construct policies that can modify the behavior of the application, execute a
desired function in the runtime, or adjust runtime and application parameters. Typically, APEX policies
are designed to auto-tune systems in cases where so-called “magic number” parameters (set by expert
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Figure 4: Traveler with three views loaded. The histogram (bottom) shows the distribution of task durations
with longer tasks selected (yellow box). This selection is also shown in the individual task timelines (top)
and with respect to total utilization (middle). There are fewer short-duration tasks later in the execution.

knowledge and/or best guesses) are used to control algorithms. Examples include default timeouts, queue
depths, number of workers, or when to switch algorithms. Examples of APEX policies that have been
integrated into HPX include thread throttling during regions of resource contention, concurrency control
under soft power caps, network message coalescing, and task inlining. Policies are typically implemented
with a guided exploration of a predefined search space using Active Harmony [223], a framework for
enabling application adaptation.

To provide policy input, APEX has native support for performance profiling of all tasks scheduled by the
runtime. APEX timers and counters contribute to the performance state, used as input to the policy logic.
At any point during the execution, the profile maintains the number of times each task was executed and
the total time spent executing that type of task. Profile data is also optionally stored to disk in two different
formats for postmortem performance analysis. To perform detailed performance analysis involving task
dependencies and synchronization overhead, full event traces are captured. APEX is integrated with the
OTF2 library [64]—an open, robust format for large scale parallel application event trace data. To capture
full task dependencies in HPX, all tasks are uniquely identified by a GUID (globally unique identifier) and
the GUID of their parent task. These GUIDs are captured as part of the OTF2 trace output. Figure 4 depicts
an execution where OTF2 data is used to capture an HPX benchmark. APEX also captures task dependency
graphs that represent the critical task dependencies in an application.

3.3 Traveler: A Visualization Framework for Asynchronous Many-Task Models
A key component of the CAIRO project will be the effective mechanisms to view and analyze the perfor-
mance of asynchronous paradigms within Phylanx accelerated applications. Traveler is a web-based debug-
ging and performance visualization platform that provides an interactive interface of OTF2 data generated
by APEX. Typically, visualization of distributed resources has assumed a homogeneous environment. For
example, Gantt charts, which are commonly used to visualize traces, represent the timeline of each thread
equally (see Figure 4, top). Many performance visualization platforms do not include explicit support for
tasking runtimes [216, 276]. Representations of resources themselves tend to focus on single, specific archi-
tectures [197, 212], networks [15, 126, 132], or otherwise represent compute units equally [164, 242].

Traveler houses a variety of views of execution and performance. The framework allows users to add
and manipulate views as well as link data across views to provide higher dimensional insights. The imple-
mented views include aggregated task graph and expression tree diagrams [253], Gantt charts, line charts
and histograms of counter data, and source code. Figure 4 shows an example configuration. Additional
views will be added to incorporate data flow and access patterns. In doing so, CAIRO will empower users
with tooling to better tune and understand their application codes, data, and hardware.

3.4 The Phylanx Distributed Array Toolkit
The Phylanx library, funded in part by concluded NSF grant 1737785, supports many NumPy objects and
array operations [109, 234]. These operations are highly parallelized and can also run asynchronously to
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improve machine throughput. These have been made possible by leveraging HPX’s parallel threads, Futur-
ization facilities, and dataflow abstractions. Phylanx also includes distributed implementations of a number
of these operations and makes them available in Python programs through decorators. Application devel-
opers can transparently benefit from all these facilities by adding the Phylanx decorator to any ordinary
Python function. Phylanx transforms the body of the function into a PhySL (Phylanx Specialization Layer)
expression tree which also acts as an intermediate representation suitable for high-level analyses. Once
the PhySL expression tree is compiled down to an HPX expression tree, either explicitly by the user or
implicitly upon the first function call, HPX automatically schedules and runs the tasks.

(a) ALS Scaling, one node (b) ALS Scaling distributed
Figure 5: Distributed Alternating Least Squares (ALS) performance on Queen Bee (Intel Cascade Lake
Xeon 64-bit processor, 2× 24-core 2.4GHz processors per node) [21]. Phylanx ALS implementation exploits
parallelism and is 1.5x faster than the base NumPy implementation on one node (Figure 5a). Beyond that,
Phylanx exhibits improving speedups as the number of nodes and dataset sizes increase (Figure 5b).

In addition to HPX, Phylanx also benefits from other open-source, industry-quality C++ libraries, namely,
the Blaze [16] math library for linear algebra operations, and pybind11 [185] for interoperability between
Python programs and the underlying C++ implementation of Phylanx. We have published performance
results from a Phylanx version of the binary logistic regression analysis (LRA), alternating least squares
(ALS), k-means, decision trees, random forests, latent Dirichlet allocation (topic modeling), and training
of deep neural networks (DNN) [21, 234]. In Figure 5, we show an exemplar comparison of the achieved
performance of the Phylanx ALS implementation and a base NumPy CPU implementation, finding that
Phylanx is faster on a single node and exhibits good scalability and improving speedups as the number of
nodes increases [21]. In CAIRO we expect that Phylanx will serve as the implementation platform for devel-
oping the algorithms, ensuring their scalability and efficiency over a wide range of hardware architectures.

3.5 The Agave Platform ToGo SDK CLI DOCS
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Figure 6: The Agave Platform architecture.

The Agave Platform (Agave) is an open, Science-as-a-Service
(ScaaS) platform for reproducible science [56]. Agave uses
standards-based technologies and community-promoted best
practices to enable users to run code, manage data, collaborate
meaningfully, and integrate anywhere. Since its first launch in
2011 as a proof of concept for what is now the CyVerse project,
Agave has grown to power dozens of production science gate-
ways while extending and enhancing the functionality of hun-
dreds more applications. During that time, a rich technology
ecosystem has developed around the platform to provide client SDK in multiple languages, a command
line interface (CLI), reference web applications, and integrations with many of today’s most popular web
frameworks and cloud services. Agave features a highly flexible, cloud-native architecture as shown in
Figure 6. This has allowed it to power large, multi-institution projects including CyVerse(iPlant) [70], Ara-
port [78], DesignSafe [190], and SD2E [205], while supporting cross-disciplinary use cases for projects such
as the Science Gateway Community Institute (SGCI) [251]. In total, Agave has been a core technology on
projects representing over $150M of funding from NSF and produced two spin-off projects, Abaco [220]
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and Tapis [38], each with their own independent funding from NSF. The core functionality behind JetLag’s
remote execution and data movement capabilities are powered by Agave’s core science APIs. Moving
forward, CAIRO can further leverage Agave’s suite of services to track and publish results, provide auto-
mated CI services to build, test, benchmark, and publish user codes, run application portably across hosts,
incorporate Phylanx codes into existing gateways and workflows, and expose pipelines and applications
as reproducible services for community use. This will provide CAIRO a proven, extensible research CI
platform from which to engage the AI community.

3.6 JetLag – An Interactive Frontend to Remote Execution
Manual use of Phylanx and its technology ecosystem currently requires a measure of setup that could po-
tentially be a barrier for some users. The JetLag [20, 21] is an interactive tool focused on lowering the
barrier to entry for both new and existing users by facilitating the containerization, deployment, and pro-
filing of Phylanx programs using a Jupyter notebook [19]. Through JetLag, users have an environment
preconfigured with Phylanx and its dependencies, active integration with third-party tools and services,
and templates for using Phylanx with existing Python analysis scripts. JetLag also provides a built-in or-
chestration tool to portably package and run user’s code on remote systems using a Phylanx Docker (cloud)
or Singulary (HPC) container, track the job’s lifecycle, collect the performance data, and stage it back to the
client for analysis in Traveler. To achieve this functionality, JetLag leverages the Agave Platform [56], its
TACC-focused spin-off, Tapis [38], the Jupyter notebook environment, and Singularity.

4 Description of the Research Plan of the Institute
This section describes the CAIRO Coalition’s Work Breakdown (WB) planning for fulfilling research objec-
tives outlined in 1 (see also Table 10). CAIRO is committed to excellence and will collaborate with third-
party experts to ensure the quality and reliability of the CAIRO platform as well as developed algorithms
and applications described in this section and the next. We will consult Dr. John Leidel from TCL to rig-
orously evaluate the work; collaborate with Dr. Corey Trahan who will provide test cases for different ML
algorithms applicable to coastal hazards; and collaborate with machine learning group at Radiance Tech-
nologies for optimization of NLP tasks and various Neural Network Schema’s to enhance the combined
efforts at meeting the needs of DARPA, AFRL, ARMY, and other customers. Please see attached letters of
collaboration.

4.1 WB1: Deep Learning via Second-order Optimization
CAIRO will develop a comprehensive catalog of advanced second-order methods and realize them as high-
quality software artifacts. Our work will put these methods in the hands of ML practitioners, significantly
improving their productivity as well as providing a rich toolbox for ML researchers worldwide to investi-
gate and further advance second-order approaches.
Methods. Many techniques for unconstrained optimization appear to be potentially applicable to DL, but
few have been investigated in much depth. We will develop robust implementations of basic Newton
and Gauss-Newton iterations, parameterized in such a way that families of approximate Newton and
Quasi-Newton methods can be efficiently composed. Particular methods that we will initially develop in-
clude Newton-Krylov, Quasi-Newton families include Broyden, SR-1, Powell’s symmetrized Broyden, and
DFP/BFGS, conjugate-direction methods (Fletcher-Reeves, Daniel), nonlinear conjugate gradient methods
(L-CG DESCENT, Hager-Zhang), and approximate Newton methods (AdaHessian). Conjugate gradient
and conjugate residual solvers will be developed for linear system solution, which will also be parame-
terized by “matrix” and “vector” types so that limited-memory secant and Hessian-free techniques can be
applied. We will also support convex combinations of methods. As more experience is gained with the
initial suite of methods, we will investigate new approaches to Hessian initialization in the secant methods,
Hessian update formulae, and preconditioners. More recently-developed second-order approaches (such
as K-FAC [153, 154]) will also be considered.
Towards Global Convergence. To improve the global convergence behavior of second-order methods, we
will define and implement filter, trust region, line-search, and step length selection techniques, composable
with the second-order optimization algorithms. We will also investigate techniques for providing better
initial solution estimates, including “warm up” with SGD and continuation methods.
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Theory. We will seek to formally characterize the convergence behavior of the different methods (Newton-
Krylov as well as quasi-Newton families), beginning with particular model problems. Of particular interest
is understanding the characteristics (e.g., the spectra) of the different approaches to approximating the
Hessian. We will also seek to characterize the impact of batch size on optimizer behavior.
Hessian. We will focus particular attention on developing effective strategies for choosing, approximat-
ing, and constructing the Hessian matrix. We also propose to scrutinize dynamic sampling strategies for
constructing stochastic gradients that not only reduce the variance of those gradients but also provide a nat-
ural way to extract second-order information of the objective function. Since we solve stochastic composite
quadratic subproblems inexactly (refer to subsection 4.1), careful coordination is needed on the dynamic
sampling size, the inexact solution of the composite quadratic subproblem, and the variance reduction
strategies to ensure overall efficiency.
Evaluation.We will conduct extensive experimental evaluations of our catalog of approaches, for well stud-
ied problems, for benchmarks such as MLPerf [158], for our science drivers, and for other problems of
interest that emerge during the course of the institute. To the extent practicable, we will integrate measure-
ments of performance, scalability, and convergence behavior into our continuous-integration process, with
the results available as an on-line dashboard. The results of these evaluations will be used to optimize the
performance of our methods.
Software. Our implementations will be continually updated and made available in a publicly available
repository. This will include compatible libraries for mature ML systems such as PyTorch, Tensorflow,
and MXNet. We will also make selected trained networks (including training history) available to enable
additional studies.
Inexact proximal stochastic second-order methods for nonconvex composite optimization. SI Zhang’s
group proposed a framework of Inexact Proximal Stochastic Second-order (IPSS) methods for solving non-
convex composite optimization, where the objective function consists of the loss function J(θ) and a possi-
bly nonsmooth convex regularization function [246]. This IPSS framework incorporates variance reduction
techniques and allows solving stochastic composite quadratic subproblems inexactly to an adaptive accu-
racy derived from theoretical analysis. The IPSS guarantees global convergence with desired computational
complexity, even when the subproblems are solved inexactly. In particular, given ε > 0, it is shown in [246]
that the number of stochastic gradient evaluations required by IPSS to achieve an ε-accuracy solution, i.e.,
E[‖g(θk)‖2 ≤ ε], can be bounded byO

(
n+ n2/3/ε

)
,which is the best-known complexity bound when J(θ)

is nonconvex [191]. Here, E[·] denotes the expectation, g(θk) is the proximal gradient at iteration θk and n
is the number of elements of dataX . Moreover, when J(θ) is only ν-weakly smooth with ν ∈ (0, 1), for ob-
taining an ε-accuracy solution, IPSS can achieve the stochastic gradient complexity and iteration complexity
as O

(
n+ n

1+ν
2+ν /ε1/ν

)
and O

(
1/ε

1
ν

)
, respectively, which are again the best-known bounds [246]. The

Hessian matrix in the composite quadratic subproblem of IPSS can be used to capture second-order infor-
mation of J(θ). However, efficiently choosing this Hessian matrix and solving the subproblems remains
under investigation. We will also identify the computational cost of each component of IPSS and rigorously
establish the overall computational complexity for solving this target possibly nonconvex optimization.
Preliminary Results: Hessian-free Krylov-Newton Method. We show the scalability and convergence of
a Krylov-Newton method (described in § 2.2), implemented as a PyTorch optimizer and compare its per-
formance with SGD on an image classification task, using multi-layer perceptron (MLP) network with one
hidden layer. Here we use the MNIST dataset, and the hidden layer size is set to 150. For SGD, the learning
rate is 0.333, the momentum is 0.9, and the mini-batch size is 64. Figure 7 demonstrates the scalability of
KN method. Specifically, we compare the throughput of KN and SGD on different numbers of threads. It
can be seen that when using 4 or more threads, KN obtains higher throughput than SGD. When using 32
threads, KN achieves 2.3x better throughput than SGD.

4.2 WB2: Runtime System and Program Optimization
Motivation. Here we consider optimization of CAIRO’s runtime system, computation graphs and data
management schemes. As an example, for DNN compilers, optimizing the computation graph to minimize
communication for distributed execution is a challenging problem. Proposed optimization techniques are
hardware-independent and can be applied to various backend targets [133]. The frontend optimizations
involve data/code passes traversing the nodes of the computation graph. We apply various algorithmic
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(a) SGD and KN Method Scaling (b) SGD and KN Method Convergence
Figure 7: Scalability of a Krylov-Newton (KN) method implemented as a PyTorch optimizer, on an Intel
Cascade Lake Xeon 64-bit processor, 2× 24-core 2.4GHz processors per node. We compare the throughput
of KN with SGD on different numbers of threads (Figure 7a). When using 32 threads, KN obtain 2.3×
higher throughput than SGD (Figure 7b).

techniques to optimize the passes. Four types of optimization problems are considered with respect to
CAIRO and other similar AI-focused HPC systems and layout frameworks for building practical solutions
based on sound and strong theoretical foundations.
Outcome and Evaluation. By creating an optimization toolkit built upon strong theoretical foundations
we hope to make CAIRO adaptable to 1) a wide range of AI and scientific computing solvers, 2) various
hardware architectures and 3) changing user needs. The groups led by co-PI Banerjee and co-PI Li will
emphasize theory and general purpose algorithmic solutions. The Ph.D. students and a postdoc will work
with co-PI Banerjee and co-PI Li to adapt these solutions to CAIRO. Section 4.5 discusses adopting and
implementing some of these techniques as part of optimization policies of CAIRO’s runtime system.
Distributed Data Partitioning and Tensor Tiling. Linear algebra operations involving large matrices and
tensors (which can be either sparse or dense) are important computational drivers in CAIRO. To efficiently
distribute these types of operations, we need to solve several combinatorial optimization problems. Vari-
ous techniques have been proposed [42, 47, 90] for partitioning distributed data to reduce communication.
Underlying theoretical problems can be modeled as partitioning graphs (or hypergraphs) [47,87] which are
known to be inapproximable within a constant factor [3]. Co-PI Banerjee, with the Phylanx team, is devel-
oping a data partitioning framework for dense matrices. As part of this work, we show that the problem
is approximation hard even for simple cases. We also provide a greedy algorithm based on hypergraph
coloring that simultaneously looks at the algorithm selection and partitioning. We plan to extend our work
along two directions: We will 1) apply smoothed analysis [217] to give better theoretical prediction of run-
time and approximation performance of our algorithms. Smoothed analysis is particularly suited in this
regard since unknown program parameters before execution can be modeled as distributions over a collec-
tion of integer programs; and 2) extend data tiling schemes to sparse matrices / tensors as well as their low
rank approximation to reduce communication (see next section). We also plan to consider graphical data
which have gained popularity due the advent of graph neural networks.
Sketching Data Layout and Memory Allocation. We propose using the random sampling method to sketch
and approximate inputs to significantly reduce execution time. We expect that in Phylanx we will be able
to process the data with a much smaller approximation size and provable performance guarantees. The
approach of sketching matrices has been popularized by Frieze, Kannan, and Vempala [69]. In CAIRO,
we will study various combinations of matrix decomposition and preprocess, such combinations offline, to
find the best sketch. We will also incorporate random sampling into machine learning algorithms (such as
perceptron, k-mean). Methods used to evaluate these sampling techniques include smoothed analysis [27,
28,163] and instant-optimality [31,79]. Methods will be evaluated offline and the promising candidates will
be implemented in Phylanx. As a side effect we believe that training with simplified data or NN models
may reduce generalization errors and improve scalability [263].
Minimizing Completion Time for Tasks with Dependencies. We propose to study how to execute tasks
optimally in parallel under hard resource constraints in Phylanx. Our proposed solution is based on the
previous work by co-PI Li: minimizing the number of task execution paths as well as the path costs to
complete a given set of tasks with dependencies in a graph [131, 135]. We have proposed near-optimal
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offline solutions. However, the algorithmic challenge in the proposed work is to consider the online ver-
sion of this problem. One approach that we are taking is to learn task dependencies in an online manner
and incorporate the offline algorithm’s idea to generate a reasonable performance guard. We also consider
multi-criteria optimization techniques [4,233] to solve data partitioning along with several other objectives
such as makespan minimization, algorithm selection, and resource type allocation (e.g., CPU vs GPU vs
TPU). In [9], co-PI Banerjee developed an evolutionary algorithm based on a local interaction model which
can be extended in the multi-objective case. For this part, co-PI Banerjee will closely collaborate with re-
searchers from the Intelligent Systems Center at Missouri S&T.
Boosting Algorithms for Load Distribution. We propose to develop online learning approaches to gen-
erate load distribution for Phylanx in order to improve its weighted throughput. To optimize weighted
throughput for tasks with various CPU and memory requirements, we learn tasks’ resource requirements
in a runtime manner. The challenge is that the tasks arrive and are executed over time, and the learning
procedure should adapt the workload in a dynamic way. This problem is a generalized version of the 2D
online stochastic bin packing problem [145, 209]. In co-PI Li’s previous work [245], we provided a 1.25-
competitive randomized algorithm for a more strict version of this problem against an oblivious adversary.
We also applied boosting algorithms to maximize weighted throughput [274]. In this project, we extend
our previous research to study learning and dispatching CPU-extensive and memory-extensive tasks for
Phylanx. Dr. Songqing Chen at GMU shares training data with co-PI Li for learning algorithms.

4.3 WB3: Phylanx and HPX
Phylanx will be the base implementation framework for CAIRO’s scalable, distributed, higher-order opti-
mization algorithms. We will improve the distributed capabilities of Phylanx by adding more primitives,
prioritized by our science drivers. This will include adding primitives to support new algorithms as well
as alternative implementations of current algorithms. Supporting multiple implementations, optimized for
particular characteristics of the computation and the consumed data, will provide better and more flexi-
ble opportunities for scheduling and optimization at runtime. In the same manner, we will add first-class
support for hardware accelerators.

We will also provide facilities to improve and automatically apply both architecture-oblivious and
architecture-specific optimizations on the PhySL tree (see Section 4.7). Every expression Phylanx evalu-
ates has its own required capabilities, data transfer requirements, and algorithmic complexity. Based on
the research results from Section 4.2, we will develop optimization methods that enable the system to use
that information to (a) select better tiling (blocking) strategies that minimize the amount of data transfer
between nodes, (b) apply additional structural optimizations to the PhySL representation targeting the
reduction of algorithmic operations, and (c) design and implement optimizations specific to the target ar-
chitecture (accelerator devices, etc.) that the code will be running on.
GPU Performance Support. The goals of the accelerator code work are to provide kernels that support
second-order training and provide the performance modeling needed so that the autotuner can find a con-
figuration (kernels set, data partitioning, etc.) that realizes the chosen objective (such as minimize time to
solution or minimize the cost of computation with available resources). Project members have experience
tuning GPU code, as part of a model-driven autotuner for stencil codes [22,89,204] under NSF-1265449 and
the development of accelerated graph analytics code [116, 117] under NRL N00173-16-2-C901.

Here, kernel refers to a parameterized piece of code that can perform some operation, along with a per-
formance model that provides execution time estimates and other data. Kernels’ performance models are
used by an autotuner and scheduler to choose a desirable execution configuration and to make schedul-
ing decisions. The initial work will extend Phylanx so that it can target accelerators, initially GPUs, and
will provide basic support for second-order training workloads. The kernels and kernel models will be ex-
tended to support kernel composition, an increasingly important capability for DNN compilers [134]. That
is, the models will provide a time estimate for a group of dependent kernels in which dependent kernels
specialize their data layouts, computation, and other factors based on the others’ needs. This is especially
important for accelerators which have less forgiving memory hierarchies. The use of composable kernels
for autotuning will result in better configurations.

Distributing a workload across multiple nodes will complicate scheduling due to the irregular timing
of data exchange. For that, autotuning will select kernels’ grain (input) size. A larger grain size favors
efficiency (lower execution overhead) at the expense of lower utilization, and is the typical way workloads
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are executed. This work will extend prior work on dynamic grain sizing in HPX [243]. This work will
include modeling kernel execution, taking into account resources used by other data-driven kernels. HPX
performance counters and APEX timers will provide data to validate the models at runtime.

4.4 WB4: CAIRO and Computing Hardware Evolution
To support ML workloads, CPUs and GPUs have been evolving, and new technologies are being developed,
such as custom tensor-processing chips and devices performing analog computation. Recent generations
of GPUs have added features to accommodate DNN workloads [170, 171], and this trend is expected to
continue. Features include mixed-precision multiply/add units and tensor cores that consist of arithmetic
units interconnected in such a way as to reduce energy-consuming register accesses. Due to the similarity
between the computation-dominating operations in first- and second-order methods these features will be
of equal value to both. In fact, where second-order methods use existing library functions (such as those
provided by cuBLAS and cuDNN), CAIRO will benefit as those libraries are updated. Some low-level,
second-order code may need to be written as part of the project. The project will incorporate new features
and re-tune such code as hardware evolves and becomes available (see Budget and Budget Justification).

The research community for some years has been looking at reducing DNN inference cost by impos-
ing weight sparsity [83, 178]. These ideas reached a commercial product in modest form in the NVidia
A100 [171]. Sparse weights, though primarily intended to realize an inference benefit, must be supported
by training code to be useful. The project will monitor sparsity features and support them as needed.

Google’s TPUs, used for production workloads, feature one or two large systolic arrays [105,106]. They
are available through cloud services where they can be programmed at a fairly low level. The project will
consider targeting these devices. There is a great deal of research on other specialized devices for DNN cal-
culation. Proposed designs differ in how multiply/accumulate units are interconnected and on where data
is buffered [177, 264]. The Cerebras CS-1, an ambitious commercial realization of these ideas, consists of a
wafer-filling 2D mesh of simple cores [195]. Network models that would otherwise span multiple chips can
execute on the CS-1, and so avoid communication and memory access latency, potentially outperforming
less costly devices. The project will monitor the CS-1. Some have looked to more exotic technologies, such
as using analog electronics to perform multiply accumulate operations [57,92]. Though analog technologies
show promise, they are too far from practical implementation to impact CAIRO over the life of the project.

4.5 WB5: Performance Monitoring, Measurement, and Runtime Control
In CAIRO, we will need distributed monitoring at an application-level scope of telemetry that goes beyond
traditional system administration monitoring [1, 156, 176, 215]. We will leverage our experience in past
performance monitoring efforts [93, 121, 255, 258, 273] and integrate performance monitoring from HPX
and APEX into CAIRO’s service infrastructure. APEX already monitors hardware and operating system
data related to networking, filesystems, processors, and memory, and will integrate with tools such as
TensorBoard [257] to ensure algorithmic progress during training. For metrics that aren’t well represented
by TensorBoard, we will integrate with Grafana [72] or other relevant Agave services for effective system
monitoring using a broader application of the work done by [13] on IO monitoring.
Performance Debugging and Runtime Control. In the current APEX implementation, performance data
for policy execution and postmortem analysis is retained locally in memory until the end of execution or
periodically flushed to disk if necessary. As a consequence, performance data is only available for local
policy decisions and analysis. In the CAIRO project, APEX will be extended to optionally aggregate perfor-
mance measurements (using asynchronous HPX futures and communication collectives) for global policy
execution. CAIRO policies that require a global state include general load balancing, evaluation of tiling
and data partitions, and overall algorithmic progress. Detailed performance debugging at runtime is also
not currently available. Event trace data is written to disk on a per-process basis and only unified at the end
of execution. Because of the sheer volume of data that is collected, highly efficient binary file formats such
as OTF2 [64] are typically used exclusively for postmortem processing. We will explore the use state-of-the-
art services and interfaces such as Jaeger Tracing [229], OpenTracing [230] or OpenZipkin [231], although
another streaming binary format may be needed. Task dependency graphs could also be useful at run-
time, and APEX would need a scalable, dynamic graph representation that would aggregate data across
all processes in the application. Typical APEX task dependency graphs only represent dependency classes,
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not discrete task instances, and are, therefore, only on the order of hundreds of nodes. We will evaluate
solutions such as TurboFlux [120] to aggregate streaming data.
Policies. Several dynamic runtime control decisions have been discussed in subsections 4.2 and 4.3. Where
appropriate, these runtime control decisions will be implemented as APEX policies, enabling the CAIRO
infrastructure to optimize for a given metric. While hyperparameter tuning is critical for efficient execution
of first order algorithms, tuning within CAIRO can be implemented as APEX policies, potentially elimi-
nating the need for exhaustive tuning sessions involving hundreds of tuning instances. Finally, we will
implement new Active Harmony plugins that implement new search strategies, such as neural networks
or reinforcement learning (in collaboration with University of Maryland, see letter of support).

4.6 WB6: Visualizing Computation State: Performance, Debugging, Interpretability
Data visualization can aid in understanding and hypothesis generation, especially when little is known
about the data or the questions that should be asked of it. In addition to supporting our science drivers
(see Section 5.2), we aim to address such scenarios at the intersection of AI and parallelism in this project.
We plan to leverage data collected through the coupling of the computational runtime and performance
measurement capabilities to elucidate core structures within our approach, allow exploration of correspon-
dences between models and performance, and expose views to explain model behavior and outcome.

Due to the scale of the data, there will be design trade-offs in what can be shown. Interactivity, auxiliary
views, and semi-automated anomaly detection will be necessary. Our approach, following best practice
methodologies [159, 196, 206], will be to identify what properties need to be preserved and communicated
and then to iteratively develop visual encodings and responsive, scalable methods for rendering them.
We will leverage the web services developed in Sections 4.5 and 4.7 to concurrently process the data for
visual presentation. We will evaluate our solutions both computationally and qualitatively with human
participant studies. The resulting solutions will not only aid our team’s efforts, but those of others working
with large-scale matrices, optimization, or distributed computing. We foresee the following major topics:
Scalable Representations of Multi-dimensional Arrays. Multi-dimensional arrays are a core data type in
CAIRO. A mental model of these arrays or, for some approaches, how their array-less counterparts relate
to the array, can aid research, e.g., understanding structures in the data for more efficient algorithms. Un-
derstanding the distribution of tiles (Section 4.2) and their performance may help improve our tiling cost
functions. We will design new interactive multi-dimensional array visualizations to serve these tasks and
integrate them with our existing performance visualization framework (Section 3.3). We expect the design
will require focus+context [39] and row/column re-ordering [12, 181] techniques and build on prior work
in large matrix visualization [62, 63, 130].
Combining Performance and Model Data. By collecting performance and model behavior data together,
we have an opportunity to debug issues that manifest in how the values in a program change over time.
This approach is used by Anteater [67], which traces variable values to reveal issues such as gradient ex-
plosion due to poorly chosen training rates. Bugs like these do not halt computation but lead to divergent
results. We will integrate with existing platforms like TensorBoard [257] that show model progress and
develop additional dashboards showing performance and application behavior in situ where existing tools
are insufficient. Such an interface has the potential to aid in steering, e.g., setting notifications based on
behavior or stopping iterations early.
Visual Components for Interpretability. Another benefit of the integration of measurement capabilities
with our runtime is the ability to collect data used for interpretability—insight into the internals of models
and their state, ultimately to help reason about why they produce the results they do. Several visualizations
of the model state exist [33, 107, 142, 193, 257], but are often geared towards the specifics of the particular
model used. Leveraging our approach as a general framework, we propose to abstract common elements of
existing interpretability visualizations and make them available in a composable front-end that integrates
with data collection capabilities. We expect this approach will provide flexibility to support a wide set of
models while also being familiar and easy to use because of its grounding in the interpretability space.

4.7 WB7: Research and Integration Platform
In order to make CAIRO ’s technologies accessible to a broad audience of users, we propose to deploy a
dedicated instance of the Agave Platform to be hosted primarily at LSU, with scale-out capacity available at
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Chapman, and the University of Oregon. We will leverage the Agave technology ecosystem to 1) simplify
and broaden access to CAIRO ’s second order optimization technology and highly efficient trained domain
models available by exposing them as secure, scalable cloud services, 2) provide tools and libraries to
access CAIRO in a wide range of languages and technologies, 3) provide hosted visualization and analysis
services that can be used and shared with others in the community, and 4) provide a SaaS interface for the
community to create, collaborate, and integrate their applications as they see fit.
Hosted Platform Services. The Agave Platform features a collection of REST APIs providing job submis-
sion, data management, application registration, metadata management, high-level access controls, and
collaboration, among its capabilities. We will use Agave’s API Gateway feature to augment these APIs
with microservice wrappers of the high performance ML models developed by CAIRO ’s science drivers.
These services will be registered as first class REST APIs in the CAIRO Agave Platform deployment and
available for use by the project’s science drivers as well as third-party applications. Agave’s existing job
submission service will be extended to support Common Workflow Language (CWL) job submission syn-
tax, thus allowing greater interoperability with other research cyberinfrastructure providers, and a bidirec-
tional path between campus, commercial, and NSF-funded HPC, HTC, and Cloud resource providers. A
natural byproduct of this work will be explicit support for the kind of integration into edge and fog models
of computing necessary to bridge between campus CI and the national cyberinfrastructure ecosystem that
will begin to take shape over the life of this project. To ensure that users have the lowest possible barrier
to entry, CAIRO ’s Agave instance will utilize Custos [188] to provide InCommon [249] identity federation.
This will streamline the onboarding process by allowing users to login with their campus identities. As new
runtime and storage infrastructure technologies emerge over the life of the institute, Agave’s web-service
abstraction will continue to allow CAIRO users to leverage new technology with little or no impact on their
existing workflow. An example of one such technology comes from Gregory Kurtzer’s company Control
Command, Inc. HPCng project (see letters of collaboration).
Platform Tooling and Libraries. By registering the CAIRO services as first class APIs in Agave, we ensure
they will be accessible as extensions to Agave’s existing tooling and interfaces. This includes a command
line interface (CLI), software development kit (SDK) in multiple languages, and REST API. All tooling will
be made available as open source software and distributed through the standard distribution channels of
the target language and environment.
Hosted Visualization Services. The Traveler application described in Sections 3.3 and 4.6 currently focuses
on visualization and interaction of one or more jobs for an individual user. We will use Agave’s Serverless
infrastructure to provide a secure, scalable, multi-user deployment of Traveler that integrates with Agave’s
existing data and job execution capabilities within the institute. This will ensure that anyone seeking to an-
alyze the performance of their Phylanx-enabled applications has a persistent place to publish and reference
their output, ensuring the same degree of privacy for their visualizations as for their data. As support for
OpenTelemetry output in Phylanx matures, we will evolve the visualization service to also support inges-
tion of this data and rendering in familiar, open source, OpenTelemetry-compliant web interfaces such as
Zipkin, Jaeger, and Kibana. This activity will come after year 2 of the project, so we will continue to monitor
the evolution of the state of the art in OpenTelemetry and make a concrete technology choice at that time.
Security. Security of the Platform is of the highest concern. Agave has undergone a successful security
review by the Center for Trustworthy CI. In addition to drawing on leading expertise from the CAIRO
Coalition, the Platform will also benefit from other experts’ knowledge, such as Dr. Irfan Ahmed from
VCU. We are aware that some data sets may contain sensitive or proprietary information and we will take
appropriate measures to ensure that data at rest and in transit is secured against both accidental and inten-
tional exposure or tampering. This will involve using standard data encryption methods and sanitization
techniques, already implemented by default in Agave, to securely wipe data that is no longer in use, both
in the runtime and on non-volatile storage.
Graphical User Interfaces. CAIRO will have two user interfaces through which users can visually interact
with the technology. The primary being a Science Gateway serving as CAIRO ’s hosted SaaS application,
and the other being a Jupyter Notebook. Both will be made available as open source projects that users can
self-host and run for their own needs.
SaaS. The CAIROWeb science gateway will be the primary user-facing web interface for the institute. Build-
ing on top of the server-side version of Agave’s reference science gateway, Agave ToGo, CAIROWeb will al-
low users to login using their campus identities, create, manage, and discover apps, define SciOps pipelines,
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view historical performance data, perform A/B testing, create custom automation, share and manage data,
and aggregate their own heterogeneous collection of resources to construct a bespoke digital lab. We will
integrate the gateway with technologies from the Coastal Emergency Risks Assessment (CERA) tool (see
Figure 8), which is one of the most well-known and recognized web visualization tools to disseminate storm
surge forecasts to stakeholders during tropical storm events. In the context of CAIRO we intend to extend
this technology to (a) serve as a validation tool for the science drivers (see Section 5), (b) help training future
generation of talent to work with AI output (see Section 6), and (c) demonstrate national importance, i.e.
how to bring the results to real end-users.

By building from a mature, existing technology in Agave ToGo, the development time of CAIROWeb
can be significantly shortened. This will allow us to follow an Agile, interactive development cycle, incor-
porating user feedback from the earliest phases of the project and producing a product more aligned with
the needs of our user community.
Jupyter Notebooks. We will build upon the existing work in the JetLag project to provide a preconfigured
Jupyter environment distributed as a Docker image and Helm chart through which users can interactively
build, optimize, and run their applications locally and on a Kubernetes cluster. The image will contain
tutorials introducing the user to CAIRO, teaching them how to instrument an application with the CAIRO
framework, build and run their application on multiple resources using the CAIRO CLI and SDK, construct
multistep ML pipelines utilizing their application, and finally scale up their pipeline to run on CAIRO ’s
campus HPC infrastructure using discretionary allocations provided by the participating institutions.

5 Science Drivers (SD)
Many of today’s AI applications are directly hampered by the amount of data and the size of models that
can be reasonably trained. CAIRO has selected science drivers from four different domains that will serve as
representative applications and which allow us to conduct use-inspired research that both informs foun-
dational AI advances and drives innovations in related sectors of science and engineering. The selected
applications have a strong impact on different aspects of national and societal importance. Specifically,
the outcomes of AI/CI research in the areas of faster learning rates for ML models, physics-informed
surrogate models, robust data-driven closure models, and approximate adjoints for ML models will be
integrated into the science driver domain applications. It is expected that each of the application character-
istics will be exploited in the performance improvements of domain-specific optimizers.

Postdoctoral researchers in each science domain will be designated as CAIRO liaisons to ensure effective
communication and knowledge transfer and exchange between CAIRO-affiliated research units.

5.1 SD1: Natural Language Processing (NLP)
The ultimate goal of NLP in AI is to enable computers to understand human languages so computers can
assist in different language-related tasks, such as important applications for text classification, information
extraction, question answering, and machine translation. NLP research has recently witnessed a major
breakthrough where extremely large language models with deep stacks of Transformer neural networks
(e.g., BERT, GPT-3) [26, 52, 141, 144, 186, 239] are pre-trained on enormous amounts of text data with self-
supervised learning objectives. This has helped to set a new standard for successful systems for almost all
NLP tasks [140,240,275]. Despite such impressive progress, the community is facing at least two limitations
that prevent existing pre-trained language models to have broader impacts. Both of them cannot be solved
with most currently used systems due to their constraints in terms of reasonably supported data and model
sizes, making CAIRO crucial for the development of pre-trained language models.
Domain-specific pre-trained language models: Existing pre-trained language models are mostly trained
on general domain texts, e.g., Wikipedia, [52, 144, 265], without considering domain-specific texts and
knowledge bases to capture valuable knowledge to support various decision making problems, e.g., the
MIMIC-III knowledge base for the medical domain [103] and the National Vulnerability Database for the
cybersecurity domain [17]. This has led to unsatisfactory performance of such pre-trained models for NLP
tasks of domains that involve different word distributions and writing styles (e.g., in biomedical and cyber-
security domains [128, 151]).
Multilingual pre-trained language models: These models are trained on texts of multiple languages (e.g.,
multilingual BERT, XLMR) [40, 52, 104], thus enabling zero-shot cross-lingual transfer learning for NLP
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models [260]. Unfortunately, the distribution of commonly used text data (e.g., Wikipedia) tends to be
highly skewed toward higher-resource languages, causing low-resource languages to be underrepresented
in existing pre-trained language models [261]. Additionally, there is a mismatch between the advances in
mono- and multilingual language models as many recent monolingual language models for English (e.g.,
ELECTRA [37], GPT-3 [26]) have not been explored and evaluated for multilingual settings.

These limitations call for fundamental development of novel technologies to effectively exploit domain-
specific texts and knowledge bases, and efficiently consume texts in low-resource languages, that in all
require significant computational resources and time to support extensive training and evaluation of novel
methods. For instance, the large XLNet model [265] consists of 340 million parameters trained on 330 bil-
lion words in 2.5 days with 512 TPU chips (for a single training time). Owing to its ability to significantly
accelerate the training of deep learning architectures and handle large-scale data sets, the efficient frame-
work for second order optimization in CAIRO will serve as a game changer to make large-scale language
model development for different domains and languages feasible and accessible to the public. Nguyen’s
group at UO has collected domain-specific texts and knowledge bases for medical and cybersecurity do-
mains [147,148,151] and created various NLP systems based pre-trained language models [125,183,184,241]
to serve as the evaluation framework for this research.

5.2 SD2: Hurricane Storm Surge and Flood forecasting
The well-being of all Americans depends on the environmental integrity and sustainable productivity of
the ocean, our coasts, and coastal watersheds. More than half of the population of the United States lives in
coastal watershed counties or parishes, and generate 58% ($8.3 trillion) of the Nation’s GDP, even though
they comprise only 25% of the Nation’s land area [237]. Coastal communities and associated infrastructure
are especially susceptible to wind and flooding due to tropical storms, hurricanes, and heavy rainfall events,
which are increasing in frequency and intensity.

Figure 8: Predicted storm surge from ADCIRC for
hurricane ZETA on Oct 28, 2020, disseminated by the
CERA web visualization tool.

Because of its accuracy and flexibility, the Ad-
vanced Circulation model (ADCIRC [30,54,55]) has
been used extensively by national agencies (e.g.
FEMA, USACE, U.S. Coast Guard, DoT) in predict-
ing and analyzing hurricane storm surge and is—
in conjunction with the CERA visualization frame-
work (see Figure 8)—an important tool for state
emergency management agencies along the U.S.
coast to forecast storms as they approach landfall
and to make decisions about evacuations, deploy-
ment of first-responders, transportation, etc. The
ADCIRC model, however, is only capable of cap-
turing flooding from storm surge. In light of recent
tropical cyclone events on the U.S. coast, such as
Hurricanes Harvey and Florence, it has become ev-
ident that modeling approaches that combine flooding induced by rainfall runoff and storm surge should
be considered to inform real-time decision-making and resilience of coastal regions to future events. No
comprehensive modeling of compound storm surge and rainfall events exists beyond academic research or
region-specific models and have not been systematically coupled over a wide spectrum of flow regimes.
Recent explosive advances in the use of ML algorithms for watershed modeling are a promising avenue for
coupling coastal models with ML models.

In the context of CAIRO, we will investigate three topics using AI for coastal modeling: ML for storm
surge applications: previous work [96, 194] done a decade ago, still promises new avenues for comput-
ing fast and accurate surrogate models that may be used, for example, in parameter estimation [73, 157],
in determining flood risks at particular locations, and in quantifying uncertainties in hurricane track and
intensity (e.g. in a forecast scenario). This is a novel application of ML with medium-risk, high-reward
potential. ML for rainfall runoff modeling: in prior work we have shown that compared to conventional
watershed models, a deep learning sequence model can simultaneously achieve significantly quicker cali-
bration, faster prediction, and improved accuracy [115, 124, 137, 138]. Coupling ML models for time series
data with coastal models such as ADCIRC can provide ADCIRC with critical information needed to sim-
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ulate compound floods. We anticipate that an efficient second order optimization algorithm can notably
speed up the training process of the ML models for watershed modeling. ML algorithms for compound
flooding: Dawson’s group at UT Austin has developed an open-source Python framework, Water Coupler,
for two-way dynamic coupling of ADCIRC, hydrologic models (GSSHA, HEC-RAS), and ML models to
simulate compound flooding events [35, 36].

5.3 SD3: Sustainable Energy Resource Applications
High performance computing applications such as computational fluid dynamics (CFD) and geothermal
reservoir simulations can provide large parametric ensemble data sets for the optimization of specific ob-
jective functions such as the designs for the lowest bed shear stress or the exploration of target subsurface
formations with the highest extraction rates for enthalpy. It is expected that exploiting the curvature infor-
mation in the second-order methods [221, 247] will improve the computational performance of ML surro-
gate training by at least an order of magnitude. Two main engineering applications are proposed here that
can benefit from the development of the scalable AI optimizers from CAIRO research.

Surrogate models using machine learning for fracture network stimulation during geothermal reser-
voir exploration and extraction processes: Parametric study of engineering applications associated with
the sustainable energy resources exploration and extraction are addressed through simulations of coupled
Multiphysics processes in the deep subsurface environments [123].

However, there are large uncertainties and insufficient information to characterize the subsurface en-
vironment accurately, and, therefore, a large ensemble of reservoir simulations must be carried out to un-
derstand the potential of heat extraction [222]. Typically, enhanced geothermal systems require fracture
network stimulation to provide a large heat exchange surface area for increased heat transfer to the fluids
between the injector and producer wells. Peridynamics [213], as well as phase field approaches, will be
adopted for modeling the coupled physics phenomena of creating and evolving a fracture network during
the geothermal heat extraction process. Simulation results will provide image data sets and time series
about multiple fields to build physics informed neural networks (PINNs) via deep learning [97,180]. Using
second-order optimizers for PINNS would involve increased calculations and storage during each epoch
and requires a computationally scalable and efficient ML surrogate development approach [187].

Bayesian optimization for the design of experiments for Offshore Coastal and Petroleum engineer-
ing structures: Coastal engineering structures, offshore petroleum drilling, and production platforms are
subjected to time-varying loads due to waves [172], tides, and frequent hurricanes. The Gulf of Mexico oil
and gas production, as well as coastal sustainability, is of significant national and regional importance in
terms of energy independence, sustainability of dependent industries, and the environment. Specifically,
the development of reduced-order models for the processes related to the sediment bed scour around the
coastal structures using a machine learning approach on high-resolution CFD datasets is proposed [129]
using open-source toolkits such as OpenFOAM [98, 250]. Bayesian Optimization using Gaussian processes
with second-order derivatives information [259] will be used for searching the design space. The CERA
and Traveler visualization frameworks will be adopted in this SD application.

5.4 SD4: Geological Simulations
Explosive volcanic eruptions can inject voluminous amounts of ash into the atmosphere, potentially crip-
pling global infrastructure, as witnessed by the recent relatively small eruption of Eyjafjallajökull in remote
Iceland in 2010. This incident caused losses of over $4.7 billion due to far reaching dispersal of volcanic ash
over European air space [61,219]. Closer to a volcano, volcanic particles and gas can collapse into pyroclas-
tic density currents (PDC) that can rapidly inundate nearby populations (e.g. Fuego, Guatemala 2018). Both
volcanic plumes and PDC are multiphase, often turbulent and compressible, multiscale flows [59]. While
micro-physical interactions between fluids and solids can have significant impacts on the propagation of
these flows [65, 224], fully resolving these flows is not tractable even in the smallest volcanic eruption. Fur-
ther, while high resolution research simulations [167,173,238] have been useful in elucidating the dynamics
of eruptive events, these approaches are too computationally costly and slow to be performed for hazard
analyses during an ongoing volcanic crisis.

In the context of CAIRO we plan to apply the developed AI techniques to improve understanding of
dynamics and in predicting ash dispersal that is currently hampered by a limited description of the prox-
imal dynamics of volcanic eruptions and by our limited understanding of the volcanic processes occurring
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near the vent on spatial scales of constituent particles and gases [248]. A complimentary effort will in-
volve the prediction of the emergent flow behavior of PDC based on integrating discrete element method
approaches as training sets for coarse-graining [23] granular flows and incorporation as a rheological sur-
rogate in continuum approaches.

Efforts are underway in co-PI Dufek’s group to develop a set of libraries of high resolution simulations
that can be used as starting conditions for dispersal models (in collaboration USGS, see letter of support).
These simulations will provide training sets to develop surrogate ML models that can be readily applied
to conditions at a particular volcano. An ML approach offers a solution that is much faster than a suite of
simulations during a crisis, is flexible to better incorporate information from on-going observations (satel-
lite, seismic, infrasound), and provides a platform for more robust quantification of uncertainty that can
be communicated to dispersal simulations. This approach has been applied successfully in related appli-
cations incorporating remote sensing data into Earth systems applications [60, 192]. Much as in the plume
modeling case, applying ML to PDC related simulations enables a quantification of uncertainty, will be
more rapid than concurrent DEM simulations, and will better capture the physical processes at play.

6 Education and Workforce Development
CAIRO is a distributed AI Institute, bringing together 8 institutions, led by LSU. The PIs have extensive expe-
rience in mentoring dozens of graduate students and early career researchers. In our broadening participa-
tion plan (see Section 7), we have outlined ways to foster a diverse pipeline of talent and build awareness of
AI opportunities, including informal summer K-12 programs targeting underrepresented groups in STEM
and a focus on providing structured undergraduate research mentorship at each participating institution.

CAIRO will recruit, retain, and train a diverse cohort of undergraduate, graduate and postdoctoral stu-
dents, helping to produce the next generation of AI researchers and workers. It offers innovative rotational
training opportunities and research-driven pedagogies through a distributed model of delivery. New grad-
uate courses, developed at LSU, will be accessible to center affiliates at any of the CAIRO sites. In addition,
CAIRO emphasizes the ethical use of AI and will foster ethical AI research and train researchers to identify
important risks associated with AI. Please see our Ethics Plan for a detailed roadmap on ethics-centered
education and programming for all institute affiliates.
Graduate and Post-Doctoral Education: Leveraging the Consortium. In addition to these initiatives, CAIRO
offers an innovative model for graduate and post-graduate education, that leverages and integrates the di-
verse research expertise of our affiliates:
• CAIRO will offer its inter-institutional cohort of graduate students bimonthly research seminars (orga-

nized by the postdoctoral fellows) focusing on an area of inquiry, science driver, or applied technique.
• Graduate students will be able to take advantage of summer research rotations, working in the various

CAIRO affiliated institutions and labs under the direction of one of our PIs.
• An annual intra-institute conference will allow graduate students and postdoctoral students to share

their research results and get feedback from leading researchers.
• In year 2-5, CAIRO will roll out three inter-disciplinary, broadly accessible graduate course designs. The

first course, entitled “Applied Distributed AI” will teach interested parties how to use existing AI tools
and workflows. Topics will include training to use distributed AI and ML frameworks, including access-
ing distributed systems, scripting under the frameworks, executing in parallel and obtaining results.

• CAIRO will facilitate industry and lab internships for undergraduates, graduate students, and postdocs.
Please see the letter of collaboration from Dr. Victor Shen offering internship position, for eligible par-
ticipating institutes, at MITRE. Many of our PIs enjoy robust connections with industry leaders. As
an example of industry engagement, co-PI Tyagi was a founding member and co-director of “Enabling
Process Innovation through Computation (EPIC)” consortium that brought in industry-funded research
projects and hosted high-profile seminar speakers during 2013-2018.

• co-PI Dawson and SI C. Kaiser have long term experience in reaching out to regional and national first-
time responders with workshops and tutorials on analyzing hurricane forecasting data. CAIRO will
leverage these efforts to introduce data visualization to postdocs, graduate students, and the wider com-
munity. Please see letter of collaboration from Dr. Robert Twilley from Sea Grant which has a strong
research, education and outreach program to solve problems along the coast.
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7 Broadening Participation Plan
The distributed structure of CAIRO is a major asset for achieving broader social, economic, and educational
impacts. Led by LSU, an R1 University in an EPSCoR state, CAIRO brings together researchers and research
institutions that overall serve over 220,000 undergraduates and graduate students. The CAIRO consortium
is comprised of 8 public and land-grant universities, including one designated Hispanic Serving Institution
(University of Arizona). CAIRO ’s senior personnel are already contributing extensively to inclusion and
diversity efforts in CS and STEM, with a proven track record of outreach efforts, and recruiting/mentoring
women and minority students, e.g.:
• PI Kaiser and SI Diehl have participated in Google Summer of Code program for the past seven years [53],

as well as the LSU REU program, and have mentored over 20 students through these venues. This work
has resulted in several publications and significant student involvement resulting in over 60 pull requests
to HPX and other open source projects, and mentoring.

• Both co-PI Isaacs and co-PI Huck have mentored through PI Kaiser’s Google Summer of Code program.
SI Brandt has overseen the LSU Beowulf Bootcamp, which teaches high school and junior high students
from underrepresented groups about HPC through talks and hands-on activities since 2007.

• co-PI Isaacs (Arizona) is the faculty advisor to the UArizona Women in Information and Computer Sci-
ence (WICS) student organization and hosts students through ASEMS, a STEM diversity program focus-
ing on undergraduate research at Arizona.

• co-PI Banarjee, member of the CS undergraduate committee at MST, works closely with a host of out-
reach and women’s programs including SWE, WIE, SDOWP, and ACM-W to achieve undergraduate
Diversity, Equity, and Inclusion (DEI) goals.

• co-PI Dooley has participated as an undergraduate mentor and guest lecturer to HBCU through the
Science Gateways Summer Institute since 2014.
CAIRO will leverage this collective experience and the networks of our PIs to existing diversity and in-

clusion efforts to execute on the following three foci for broadening participation in AI: (a) fostering inclu-
sive undergraduate research; (b) recruiting and mentoring a diverse cohort of STEM practitioners from un-
dergraduate through post-graduate; (c) Summer educational enrichment initiatives for underrepresented
junior high and high school students. Extensive research supports the “pipeline model” for achieving
reaching diversity and inclusion goals. In this model, practitioners recruit and retain under-represented
groups (including women and BIPOC) at the various stages of the educational lifecycle. CAIRO pursues a
BP approach that will make impactful interventions for K-12, undergraduate, graduate, and postgraduate
levels, with a special focus on driving inclusive undergraduate research in AI and productive mentoring
arrangements for graduate and postgraduates.

Undergraduate Education & Research: Research demonstrates that undergraduate research experi-
ences for undergraduates increase their knowledge and confidence in STEM fields, and leads to students
pursuing STEM graduate degrees and careers at higher rates [146, 208]. Increasing participation in un-
dergraduate research for underrepresented groups is a priority at many of our member institutions, and
programs like McNair Scholars.
Goals: PIs at member institutions will commit to specific goals for supporting inclusive undergraduate
research in their labs. CAIRO affiliates will mentor a minimum of 15 undergraduate researchers distributed
across its 8 campuses. Graduate and postgraduate students affiliated with CAIRO will lead monthly re-
search webinars for our undergraduate researchers and serve as mentors.
Strategy and Evaluation: Working with the offices of undergraduate research at our respective institutions
to ensure diversity, we have identified partners including LSU Aspire and Discover programs, McNair
diversity scholar programs and Distributed Research Experiences for Undergraduates (REU). As the lead
organization, LSU can also draw upon the Halliburton Research Scholar program, which funds experien-
tial learning opportunities to underrepresented undergraduate. EDAB will help senior personnel identify
undergraduate research partnerships and evaluate impacts over the life-cycle of the grant.

Broadening Participation through Recruitment & Retention: In the US, two-year (community) colleges
account for 41% of undergraduate enrollment, including the majority of those students underrepresented
in STEM fields [182]. Because nearly half of all students earning bachelor’s degrees in STEM begin progress
towards their degree at community colleges, broadening participation in AI requires a commitment to
recruiting for AI fields at community colleges [119]. Minority-Serving Institutions (Including HBCUs and
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Hispanic-Serving Institutions-HSI) recruit, retain, and graduate minority undergraduate students in STEM
at impressive rates. “HBCUs represent seven of the top eight institutions that graduate the highest number
of Black undergraduate students who go on to earn S&E doctorates” [256].
Goals: Increase diversity of AI researchers and workforce by recruiting undergraduate and graduate stu-
dents from community colleges and minority-serving institutions into STEM and AI fields.
Strategy and Evaluation: CAIRO PIs will commit to establishing or extending outreach and recruiting
efforts to CS and IT programs at 2-year colleges. co-PI Dooley will coordinate these efforts. CAIRO affiliates
will deliver accessible presentations or webinars at local two-year colleges on AI prospects, problems, and
social impacts. CAIRO PIs will recruit graduate students and postdoctoral students from HBCUs. LSU
will leverage existing strong relationships with Southern University, Xavier, and Dillard State University
(HBCUs). Co-PI Isaacs’ lab is also located at the University of Arizona, a designated HSI. Impact will be
assessed according to the number of outreach efforts initiated and students recruited.

K-12 Informal Education & Outreach: The National Research Council (NRC) reports that informal
learning environments can be effective tools for increasing awareness about STEM and increasing the per-
ception of its value among communities under-represented in STEM, when designed to be intellectually
and emotionally engaging, culturally responsive, and connected to learning experiences (NRC 2009, 2015).
LSU CCT, the lead CAIRO institution, has successfully run a summer CS/IT engagement program aimed
at under-represented junior and senior high school student, Beowulf Bootcamp, for 13 years.
Goals: CAIRO will develop and run (at all member sites) an AI Summer Program (based on the successful
model of LSU Beowulf Bootcamp). The goal of this summer program is to host up to 20 students at each
project site one week each summer, beginning in year 2 of the grant. Topics will include demonstrations of
algorithms, ML and optimization, and explorations of the ethical and social aspects of AI.
Strategy and Evaluation: Building on LSU’s Beowulf experience of successful engagement, the LSU team,
led by SI Diehl and the LSU Ethics Institute, will develop a framework and curriculum for CAIRO AISP that
can then be replicated at the member institutions. Impact will be assessed in terms of number of students
served, inclusive representation, and success of skills transfer.

8 Collaboration and Knowledge Transfer
The synergies possible in CAIRO due to the extensive range of expertise and multifaceted research agenda
will be facilitated by deliberate cross-institute coordination. We will build on the experiences collected dur-
ing long-standing, very successful collaborations between different organizations and individuals involved
with CAIRO. For the structure and responsibilities of the management team and its operation see Section 9.
Intra Institute Coordination. Continuous interaction, data-sharing, and cross-training activities among the
eight institutions, as well as with the wider community, will be conducted using team collaboration tools
such as Slack (or similar). Software development activities will be focused around github and its CI/CD
toolchains. Project meetings will be held using teleconference tools such as Zoom or Microsoft Teams. To
the extent possible we will seek to integrate the various technology platforms used for collaboration so that
information in all its forms can flow freely among CAIRO personnel. The entire group (Project Execution
Team, collaborators, students, and postdocs), as well as relevant invitees, will meet at least once a year (to
include a kickoff meeting at project initiation). Locations for these meetings (including whether they are in-
person or virtual) will be determined as the project progresses. These meetings will include progress reports
as well as discussions and demonstrations of new techniques and approaches. Meeting proceedings and
the availability of CAIRO capabilities will be shared on the project web site, individual PI web pages, and
more broadly via a social media presence that will be established for CAIRO. Smaller, focused, in-person
meetings will also be scheduled in conjunction with major conferences such as SC or NeurIPS.
The Proposed Research in Relation to Other Research Groups. The scale of the proposed research plus
its relationship with other current and planned research projects dictate effective coordination and collab-
oration. For the development of new algorithms and techniques, we are collaborating with other groups
beyond the CAIRO project. Broad collaboration among our groups minimizes redundancy in code devel-
opment while increasing the efficiency of dissemination and analysis of results. CAIRO will actively invite
researchers and leads from other established AI Institutes to exchange the lessons learned and issues to
avoid. Developed algorithms and applications will be of more utility than the scope of the project and
it will be essential to provide detailed information to the research community, beyond releasing the code
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under open source licenses. All source code, data, and additional materials produced by the project will be
made available publicly, through the project website, Github repositories, or other means as outlined in the
Data Management Plan.
Outreach. Multiple mechanisms for inclusion in the group’s activities will be established and these will be
open to all interested parties, fueling CAIRO’s growth into a nation-wide center of excellence and a vital
information dissemination hub. To encourage broader engagement, calls for participation for CAIRO ac-
tivities will be promoted through social media, appropriate professional society SIGs, member institutions,
and institute partners. We will offer tutorials on major pieces of CAIRO technology and establish one or
more regular workshop series on scalable AI and related areas.

9 Key Personnel, Management and Integration Plan
The management structure for CAIRO (Figure 9) is designed to effectively implement and assess the project
goals, promote project-wide participation in leadership, ensure effective communication among collabo-
rating institutions, and establish CAIRO as a vital presence in the national and international AI research
community. PI Kaiser will serve as the overall Project Director (PD) for the duration of the project. The
project director will be assisted by a dedicated project manager (PM) who will reside at LSU and oversee
the day-to-day activities of the project. Co-PI Lumsdaine will serve as the Chief Scientist for the project and
will oversee and coordinate all major technical activities within the Institute.

A Project Execution Team (PET) for the project will be comprised of the following members, who will
be responsible for defined tasks as follows (see also Figure 9):
• The Project PIs from the universities will oversee the activities related to their respective work items and

will perform the communication and coordination with the science driver teams.
• co-PI Tyagi who will oversee the proposed External Engagement, and SI Diehl will oversee all Workforce

Development activities.
• The Evaluation and Assessment (E&A) will be coordinated by co-PI Isaacs who will assess all activities

of the the PET and be responsible for providing assessment data to the External Review Board.
• SI Goldgaber will serve as the Ethics and Diversity Advisor who will interact regularly with the PET to

assess progress towards achieving project broadening participation and diversity goals and ensuring all
center affiliates complete the ethics requirements.

Project Director Project Manager

Science driver and computational teams

Project Execution Team

Project PIs from
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Figure 9: The CAIRO Management Structure

The Project Execution Team (PET) will oversee the
activities of the project and provide direction and guid-
ance to project participants in each of the science driver
and computational teams. Each science driver team will
have a dedicated postdoc responsible for the coordina-
tion with other groups. The PET members are all experi-
enced scientists with the requisite management skills to
lead large multidisciplinary projects. They will play vi-
tal roles in ensuring effective communications between
and within institutions. The co-leads will assume lead-
ership responsibilities to ensure a smooth succession of
leadership, should it become necessary. The PD will meet with the PM and the PET on a monthly basis.

An External Advisory Board (EAB) comprised of diverse internationally-recognized experts in CAIRO’s
focus areas related to research, diversity, workforce development, external engagement, and assessment
will conduct regular reviews of program activities. A subset of the EAB will be comprised of individuals
from industry to insure CAIRO has that vital perspective. EAB reviews will cover all aspects of the project,
including research conducted by the institute, broader impacts, evaluation, and assessment data provided
by the E&A lead, and will include an annual site visit. The EAB will provide objective guidance, feedback,
and recommendations to the PD and PET to ensuring program goals and objectives are being met.
Qualifications of Key Personnel. PI Kaiser has extensive experience in leading a large research group and
leading successful collaborative efforts involving multi-institutional, inter-disciplinary groups of scientists.
Although a specific individual has yet to be identified as a program manager, the Center of Computation
and Technology at LSU has a long history of hiring exceptional PMs for large projects and empowering
them to lead projects to success. Co-PI Lumsdaine has similarly participated in a variety of large research
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Figure 10: Project work breakdown (WB) structure for research activities. Lead institutions are indicated
with a •, participating institutions are indicated with a

⊙
. Labels: WB1 Deep Learning via Second-order

Optimization (§4.1); WB2 Runtime System and Program Optimization (§4.2); WB3 Phylanx and HPX (§4.3); WB4
CAIRO and Computing Hardware Evolution (§4.4); WB5.1 Performance Monitoring (§4.5); WB5.2 Aggregation and
Streaming (§4.5); WB5.3 CAIRO Policies (§4.5); WB6.1 Matrix Visualization (§4.6); WB6.2 Model and Performance
Visualization (§4.6); WB6.3 Interpretability Visualization (§4.6); WB7.1 Platform API development (§4.7); WB7.2
Tooling and libraries (§4.7); WB7.3 Hosted visualization services (§4.7); WB7.4 SaaS Science Gateway (§4.7); WB7.5
Jupyter environment (§4.7); WB8.1 SD1: Natural Language Processing (NLP) (§5.1); WB8.2 SD2: Hurricane Storm
Surge and Flood forecasting (§5.2); WB8.3 SD3: Sustainable Energy Resource Applications (§5.3); WB8.4 SD4:
Geological Simulations (§5.4); WB9 Workforce Development (§6); and WB10 Broadening Participation (§7).

projects, both as an investigator and in leadership roles. The PIs from CAIRO’s participating institutions
are all leaders in their fields and, significantly, already have a history of working with each other.

In summary, by leveraging current facilities, we will build nationwide interdisciplinary research col-
laborations involving domain scientists, computer experts, applied mathematicians, and theorists. We will
build a sustainable interdisciplinary and inter-institutional AI science graduate program.

10 Broader Impacts
The ultimate goal of CAIRO is to enable a “punctuational change” in AI. If successful, CAIRO will have
far-ranging impacts across science, technology, industry, and society—really, on any researcher, developer,
or consumer of AI. With the expected orders-of-magnitude performance improvements, scientists, AI re-
searchers, and practitioners will be able to develop immensely more sophisticated models and conduct
entirely new classes of explorations. These models will in turn be able to solve entirely new classes of
problems, opening up new scientific vistas and providing new end-user experiences to consumers.

The CAIRO PIs established track record of developing and delivering high-quality open-source software
will ensure that the artifacts resulting from this work will be readily accessible and able to be rapidly
incorporated into end-user applications. By creating a software layer that industrial partners can rely on,
the project will help fill the gap between academic innovation and commercial application.

CAIRO will have numerous direct societal benefits, including those resulting from our Broadening Par-
ticipation plan described in Section 7. Project funds will support societal values through targeted inven-
tions aimed at broadening participation in AI and investing in AI ethics research and training. CAIRO’s
partnership with the LSU Ethics Institute, which includes funding for a postdoctoral researcher, will pro-
duce project-driven, publishable research in the domain of AI ethics and managing ethical risks in AI, from
discrimination and bias in algorithms to privacy and security challenges. This postdoctoral fellow and the
Director of the LSU Ethics Institute (SI Goldgaber) will serve as the Ethics and Diversity Adviser on the
PET.cutting-edge AI Ethics training the inter-institutional partners across 8 universities (see “Ethics Plan”).

The lead institution (LSU) resides in an EPSCoR state. Funding this research will foster the growth
and development of AI and HPC in Louisiana. The project will directly provide undergraduate, graduate,
and post graduate opportunities to institutions in eight states, which is vital to fostering existing industries
and creating new industries with AI/ML technology. CAIRO, in particular, lays a solid foundation for
technology-transfer from academia to industry.
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11 Results from Prior NSF Support
Hartmut Kaiser, LSU, Phylanx: Python-based Array Processing in HPX (NSF grant 1737785, $373,200, 8/15/17
– 31/7/19) that creates an infrastructure for distributed array processing and machine learning. Intellectual
Merit: The project focuses on the interrelationship of parallelism and overhead, ultimately determining the
practical range of attainable scalability and includes immediate impacts in advancing the specific science
domain. It broadly impacts many problems related to machine learning applications and has supported
several graduate students. Research Products: Publications [20, 21, 80] and open source tools [109].
Clint Dawson, UT Austin SI2-SSI: Collaborative Research: STORM: A Scalable Toolkit for an Open Com-
munity Supporting Near Realtime High Resolution Coastal Modeling, ACI-1339801, $540,0000, 09/01/2014-
08/31/2018. Intellectual merit. The project goal is to evolve ADCIRC, a free-surface-flow coastal circula-
tion model, into a dynamic framework that readily admits new/recently-developed solution algorithms.
Broader Impact: The STORM project is expected to have a great impact on the coastal ocean modeling, com-
putational mathematics, and computer science communities. ADCIRC is widely-used with a large and
expanding user base. Products: Publications [5, 24, 29, 160, 161, 200–203, 254] and 3 Ph.D. theses.
Rion Dooley, Chapman University, OAC-1906052, The Agave Platform: An Open Science-as-a-Service Cloud
Platform For Reproducible Science (10/1/2018-7/31/2021; $1,240,246). Intellectual Merit: The goal of this
project is to close the capability gap between academic and commercial infrastructure by hardening the
Agave Platform, an open, Science-as-a-Service cloud platform for reproducible science. Research Products:
18 publications, one Master’s Thesis, over a dozen open source products, two independently funded spin-
off technologies. A key technology recommended by the Science Gateway Community Institute.
Kevin A. Huck, University of Oregon, Phylanx: Python-based Array Processing in HPX (NSF grant 1737785,
$93,300, 8/15/17 – 31/7/19). Built on HPX, the Phylanx project focuses on creating an infrastructure for
distributed array processing and machine learning. Intellectual Merit: This project’s goal is to build a dis-
tributed Machine Learning platform that provides users a high-level Python interface with HPC perfor-
mance. Broader Impacts: Our results have led to a better understanding of the performance ramifications of
solving general array processing and specific machine learning algorithms using a predefined set of paral-
lel operations and employing algorithms which optimize execution and data layout from a user-provided
expression graph. Research Products: Publications [234, 244] and open source software [95].
Katherine E. Isaacs, University of Arizona, IIS-1656958, CRII: III: Scalable and Interactive Dependency Visu-
alization to Accelerate Parallel Program Analysis (7/1/2017 to 6/30/2021; $174,518). Intellectual Merit: This
project’s goal is identifying design factors that increase the efficacy of visual tools for large-scale parallel
program dependency analysis. Broader Impacts: Visualizations developed during this project have aided
researchers understand emergent behavior in program control flow and parallel runtime performance. The
project has supported three students and led to the development of a new human-computer interaction
course. Research Products: Publications [50, 51, 253] and open-source tools [10, 48, 49, 252].
Fei Li, George Mason University, CCF-1216993, Algorithmic Approaches to Energy-Efficient Computing
(08/01/2012 to 07/31/2016; $128,325.00) Intellectual Merit: This project studies algorithmic methods for
improving energy efficiency of data processing and storage in large-scale networked computing systems. It
addressed both specific energy optimization problems and produced new algorithmic techniques, as well
as deepened understanding of the adequacy of standard performance enhancement tools (e.g., caching and
load balancing) for improving energy efficiency. Research Products: More than 20 publications in top journals
and conferences; supported two women Ph.D. students.
Andrew Lumsdaine, University of Washington, ACI 1716828 SI2-SSE: GraphPack: Unified Graph Pro-
cessing with Parallel Boost Graph Library, GraphBLAS, and High-Level Generic Algorithm Interfaces
(10/01/2016 - 09/30/2019, $499,386). Intellectual Merit. This work will provide insight into how aspects
such as graph structure, parallelization, runtime, and hardware have on the performance and scalability of
graph computation and will provide a robust open-source software platform for the larger research com-
munity. Broader Impacts. GraphPack will improve the use of graph algorithms in diverse areas including
knowledge discovery, genomics, proteomics, electronic design automation, power grid management, etc.
with immediate appeal to students, forming a natural path from intuitively familiar things to their compu-
tational underpinnings. Research Products: Publications [6, 32, 68, 113, 114, 143, 149].
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Ethics Plan
The CAIRO Coalition will expect its personnel to uphold the integrity of the Center’s mission and to work
conscientiously in maintaining a respectful, responsible, and professional environment throughout the Cen-
ter’s lifetime. To ensure all staff carry out their research and related work in an ethical way, the Center PIs
have established a three-part plan to aid all personnel in conducting themselves responsibly. In implement-
ing its plan, the Center will rely on several existing resources at Center campuses and from federal agencies
to guarantee its staff carry themselves with integrity. Responsible conduct of research encompasses a wide
variety of issues, including responsible data management and sharing, human subject protection, and ne-
gotiating authorship on scholarly works. The National Science Foundation (NSF) has required Responsible
Conduct of Research (RCR) training information be made available. Moreover, the Center will make use
of NSF’s Online Ethics Center for Science and Engineering, its online collaborative resource, particularly
regarding best practices.

Overview
The commitment of CAIRO to ethical and responsible research (ER2) and ethical innovation is evidenced
by its formal partnership with the LSU Ethics Institute and its investment in a postdoctoral fellowship in
the critical domain of AI Ethics and emerging technologies.

This postdoctoral fellow will play a lead role in: designing the 4 modules for ER2-AI (below); coordi-
nating the AI Ethics webinar series for the institute affiliates (below); designing the educational resources
for the CAIRO AISP enrichment program for junior and high school students (see broader impacts/BPAI).
Also, the postdoctoral fellow will pursue an independent research project in the domain of AI ethics and
social risk. Working directly with CAIRO and Ethics Institute affiliates, this research aims to identify a
framework for ethical AI research design, to include operational definitions of fairness, bias, and privacy.
This sort of normative research is crucial to the future of not only AI and ML but human society as well.
Academic, industry, and policy leaders lament the absence of “big think” in AI research, and CAIRO is
investing in normative as well as technical innovation.

Certifications
Certification in Ethics and Responsible Conduct of Research in AI (ER2-AI) is required for all CAIRO affili-
ates. This certification is managed by the Ethics and Diversity Advisory Board (EDAB).
The ER2-AI Ethics Requirement may be satisfied by:
1. completion of four ethics training modules (offered annually, both synchronously and asynchronously),

OR;
2. an approved course on AI/Applied Ethics at affiliates’ home institution (list provided to participants

upon request) + Module 4
(a) Module 1. Values in Science, Research Ethics & Integrity, Intellectual Property: Roles and Responsi-

bilities for Researchers
(b) Module 2. ‘Ethically Aligned Design’ and Responsible Innovation; Transparent, Interpretable, Trust-

worthy AI
(c) Module 3. Mitigating bias and discrimination in AI; Ethics of Big Data; Privacy and Security Chal-

lenges
(d) Module 4. Strategies for Inclusion and Diversity in AI Research

Additional Ethics Resources for CAIRO Affiliates
Webinar Series: biannual synchronous, zoom-based talks (synchronous) on issues in the Ethics and Social
Impact of AI.
Consultative support in the following areas: mitigating ethical risks, ethical research design and ethics
auditing (organized through EDAB).
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Postdoctoral Researcher Mentoring Plan
As part of this project, the involved institutions will support, mentor, and train postdoctoral researchers.
Postdocs will be based at their respective universities and will interact with other collaborators, senior
personnel, postdocs, and students in the CAIRO project as well at their home institutions. The PIs on this
project have previous experience mentoring postdoctoral researchers.

Assist in career development, planning, and research vision: Starting from the beginning of the postdoc-
toral term, the PIs will help the postdocs develop well-defined, creative, and ambitious but realistic career
and research goals, and work towards those goals. To help the postdocs formulate these goals, the PIs will
meet with them to discuss interests and long-term goals, and break down those goals into feasible projects.
Recommended background reading will be suggested and discussed. Postdocs will be encouraged to sub-
mit their own proposals and be supported in their submission. Based on the long-term goals and specific
aims of the proposal, the group will work together to shape short-term goals. Postdocs will be advised in
seeking out opportunities, preparing application materials, and preparing for interviews.

Broaden postdocs’ visualization and computer science: Postdocs will be exposed to broad training oppor-
tunities to encounter new research areas that supplement and complement their own, thereby enhancing
their ability to make the kind of important connections that lead to new discoveries. The postdoc will be
encouraged to attend relevant interdisciplinary seminars and participate in journal clubs. In addition, the
postdoc will have the opportunity to engage in interdisciplinary projects with collaborators in high per-
formance computing, statistics, or environmental science. Guidance on how to effectively collaborate with
researchers from diverse backgrounds and disciplinary areas is inherent in this interdisciplinary project and
will be emphasized in interactions with PI and their collaborators.

Gain training in professional research ethics: Each institution has online courses that employees are re-
quired to complete regarding ethical conduct in the workplace.

Participate in professional development activities: Postdocs will be advised to participate in exceptional
training opportunities specific to postdoctoral researchers available at their home institutions (and virtually
with collaborative institutions when possible). Postdocs will also present their research findings in lab
meeting and conferences, and they will participate in training workshops.

Obtain mentoring and outreach experience: Postdocs will contribute to the supervision of graduate and
undergraduate students. They will shadow all student meetings related to the CAIRO project, and men-
toring and management strategies will be discussed in the postdocs’ recurring meetings with the PIs. They
will also have the opportunity to work with other students and through the outreach activities.

Provide personal support: Finally, the PIs will provide a supportive environment where postdocs are com-
fortable discussing work-life balance issues, career options, as well as any gender, ethnic, or cultural con-
cerns.
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Data Management Plan
This section explains the specific actions that will be taken in this project to conform to NSF policy on
the dissemination and sharing of research results. In accordance with NSF proposal guidelines, all data
and other supplementary materials for future research and educational outreach will be stored and made
accessible to other researchers, and the following text will detail the archiving and dissemination methods.
Types of Data This project will manage various types of data as follows:
• Software developed, including tools, compilers, and frameworks will be optimized and used by the

project team. Since many of them are open-source projects under open-source licenses (e.g., BSD), PIs
will use them and archive different versions of releases on GitHub (https://github.com) for public access
(see Section ‘Deliverables’ for more details below).

• Results and experimental data from each research project that uses this project will be disseminated
through publications and products. In general, the investigators expect that intellectual property issues
on contributions from the PI, co-PIs, senior personnel, and collaborators will follow their license terms.
All contributions will be reviewed and approved, providing a means to detect violations.
Furthermore, the project expects to support multidisciplinary research projects that would produce un-

precedented amounts of data. In general, each collaborator’s research project will follow its original data
management plan.

In addition to the public information, the project will maintain social and relational information among
researchers and research groups; and technical information on each instrument and equipment. Since such
information is related to security and privacy, it will be stored on the system management server secured
by a security system. Only personnel including the PI, co-PIs, senior personnel, and project administrators
will have an access to such data.

Source code repositories
The PI and Co-PIs plan to manage and archive source codes, data and results at Git repositories maintained
on Github (https://github.com). Access to any data at the Git repository can be allowed or restricted on a
per folder basis to everyone, anyone, or a group. The data from the project will be stored throughput the
life of the project. As all data and source codes are updated, Git will handle versioning automatically.

Project/User Discussions
The project team will maintain a Slack team and a wiki website to keep all discussions from users and
developers regarding the project, such as questions and experiments. The wiki website will also contain
training materials, such as examples of scripts for experimentation and tutorials on how to use the hardware
and software (e.g., systems research, different domains’ applications research).

Storage Systems for Preservation and Archiving
The long-term data storage and archival needs of the CAIRO project researchers will be served by CCT in
conjunction with LSU’s Office of Information Technology Services (ITS). PIs expect that this system will
satisfy the primary big data storage needs of researchers associated with CAIRO. In addition to those large
storage systems, CCT maintains SVN and Git repositories and wiki services for research projects, and those
services are expected to be supported long after the life of the project. These servers are routinely backed
up, protecting against system failure and vandalism. CCT is regularly updating its data management plan
in concert with the needs of LSU’s research community and NSF guidelines.

Access, Sharing, and Intellectual Property Issues
With few exceptions data will be publicly available. This includes anonymous read-only access to the code
depository. Any user will be able to obtain development versions as well as release versions of the code.
The majority of software elements we have produced in the past are licensed under the 3-clause BSD or
similar licenses, and we plan to use the same license for this project. This license is one of the most permis-
sive licenses. It is widely used and analyzed by legal experts, making it friendly to both commercial and
academic users. All contributions will be reviewed and approved, providing a means to detect violations.
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Privacy
A privacy statement will be provided to users of this project wiki and repository. That statement will
explain that posts are public, which should be obvious to users. Code contributors will be made aware of
the license.

Deliverables
Our intention with delivering our software is not simply to make it available for download, but to create a
real and vital user community. To that end, our development process will be hosted on github.com, which
provides and integrates a number of important tools and features for creating and supporting the kind of
community we envision.
Code and Documentation Repository Of course, Github functions as a repository for source code as well
as for high-quality documentation, and this provides the simplest engagement mechanism for end-users:
anyone is able to download and use the code, per the associated license (described below).
Continuous Integration Continuous Integration / Continuous Delivery (CI/CD) pipelines comprise a set
of software development practices and tools for shortening development cycles and removing barriers
between developers and end users. The Github CI/CD pipelines are fully customizable but typically consist
of three phases: a build phase to check for successful compilation, a test phase to check that unit tests
run successfully, and a deployment phase which releases a successful production pipeline to users of the
software. These builds are run inside of containers hosted by github and can be configured with a variety
of compilers and library support. That is, the build phase may consist of builds under multiple compilers,
operating systems, etc. Github can choose to create CI/CD pipelines whenever developers change the
codebase, at prescheduled times, or when invoked by a developer.
Community-Based DevelopmentAn open-source code repository is a two-way street, enabling users to not
only download code but to contribute to the code base as well. There are different levels of involvement
that a user may have, from making suggestions on the issues list to becoming a full-fledged member of the
development team. To facilitate communication among developers through all stages of the development
process, Github provides an issues tracker, a wiki, Gists, and notifications and feeds. Our development
process will include code contributions via pull requests and code review will be conducted via Github.
User Engagement. Outside of the development environment itself, we will conduct events such as work-
shops, BoFs, demonstrations, poster sessions, and participate in standardization bodies. Furthermore, we
plan to organize at least one workshop (additional NSF funds) when the software reaches a level of matu-
rity. We will reach out to other communities by organizing BoFs, demos, and presenting posters at related
events.

Metrics
We will gather metrics from the hosting environment used for development, which are provided directly
by Github’s tools. These will include code quality metrics, such as results from code-quality tools (e.g.,
clang-tidy), build tests, unit tests, integration tests, and bug reports. In addition, we will gather metrics
for developer activity, such as number of commits, number of external developers, number of mailing list
messages, and amount of contribution to collaborative environments (e.g., wiki). As software for which
mathematical accuracy and computational performance are critical issues, we will also implement and
monitor a number of micro and macro kernels for verification and validation as well as performance. Fi-
nally, we will gather metrics regarding the effectiveness of our process, e.g., outstanding time between bug
reporting and bug fixing. All metrics will be published on our Github site.
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Facilities
LSU Center for Computation & Technology (CCT) hosts a small research cluster named Rostam. This
cluster is mainly used by researchers for the development and test of their codes before moving to bigger
clusters. CCT will make this cluster and its storage available to all members of the project. The resources
include (https://wiki.rostam.cct.lsu.edu/en/cluster/hardware):

Resource Description

Compute

Number Cores Memory Accelerator OS
16 40 (Skylake) 96 GB None CentOS 8
16 16 (Sandy Bridge) 48 GB None CentOS 8
1 40 (Skylake) 386 GB 4 x V100 CentOS 8
1 20 (Haswell) 256 GB 2 x V100 CentOS 8
1 20 (Haswell) 128 GB 4 x K80 CentOS 8
1 20 (Ivy Bridge) 128 GB 2 x R9 Fury CentOS 8
1 20 (Ivy Bridge) 128 GB K40 + R9 Fury CentOS 8
1 16 (Sandy Bridge) 64 GB None CentOS 8
4 4 (Cortex-A72) 4 GB None Ubuntu 20.04
8 4 (Cortex-A53) 1 GB None Ubuntu 20.04

Storage 120 TB ZFS
Ethernet 25 Gb

Infiniband 56 Gb
Authentication LDAP + Two-Factor Authentication

Others Jenkins Build System, SLURM work Scheduler, Wiki

In order to support the goal of the CAIRO coalition to adapt the produced CI infrastructure to the most
modern accelerator hardware we plan to extend the Rostam cluster by purchasing additional nodes in years
one and three as outlined in the budget and budget justification:
• First year:

– Two servers with four Nvidia A100 GPUs, 60 CPU cores, 512GB memory and infiniband connectivity.
These servers give us the capability of testing the scalability of the project, both on a single locality and
also on a minimal distributed environment. These types of machines (2 cpu, 4 gpu) are more inline
with current HPC environments such as SUMMIT and give us the opportunity to test our programs
before moving on to any external HPC system.

– An storage solution with 100TB capacity.
In AI problems the raw input data and intermediate and final results could sum up terabytes of data.
We would need a fast and reliable storage solution in close proximity to be able to store these data
locally.

• Third year:
– Two servers with four next generation Nvidia GPUs (or similar), two next generation CPUs.

We will repeat our experiments and test our progress with the next generation of GPUs and CPUs, we
plan for two similar machines with next generation hardware.

Also Louisiana State University (LSU) and LONI (Louisiana Optical Network Initiative) will make their
high-performance computing and storage resources, hosted by “HPC@LSU” available for all members of
this project. These computing and storage resources, operated by LSU’s Information Technology Services
(ITS) and the LSU Center for Computation & Technology (CCT), include (see: http://www.hpc.lsu.
edu/resources/hpc/index.php) the following.
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System Description SUs Peak
SuperMIC
(NSF-funded; An
XSEDE resource)

Include 382 nodes, each with two 10-core 2.8GHz Intel
Ivy Bridge-EP processors. 380 compute nodes have 64 GB
of SuperMIC memory and 500 GB of local HDD storage,
FDR InfiniBand. 360 compute nodes have 2 Intel Xeon
Phi 7120P coprocessors. 20 compute nodes have 1 Intel
Xeon Phi 7120P coprocessor and 1 NVIDIA Tesla K20X.
840 TB Lustre high-performance disk storage subsystem.

66,576,000 1050 TF

SuperMike-II Includes 443 node (7,424 total cores) Red Hat Enterprise
Linux (RHEL v6) cluster (Intel 2.6 GHz 64-bit Sandy
Bridge processors). 50 nodes have dual NVIDIA M2090
GPUs. 32 GB RAM each for 404 nodes, 64 GB RAM each
for 52 GPU nodes, 256 GB RAM each on 8 nodes. QDR
InfiniBand interconnect. 1 node with 40 cores and 1 TB
memory. 400 TB Lustre high-performance disk storage
subsystem.

65,034,240 228 TF

QB3
(LONI resource)

QB-3 is an 856 TFLOPS peak performance cluster: 202
nodes, each with two 24-core 2.4GHz Intel Xeon Platinum
8260 64-bit processors (9696 total cores). Each node con-
tains 192GB RAM and has a HDR100 InfiniBand inter-
connect. Eight compute nodes contain 2 V100 NVIDIA
accelerators per node. Two big memory nodes have
1.5TB RAM each. The cluster has a 1.7 PB Lustre high-
performance storage subsystem.

84,936,960 856 TF

QB2
(LONI resource)

A 1.5 PFLOPS peak performance, 504 nodes, each with
two 10-core 2.8GHz Intel Ivy Bridge-EP 64-bit processors
(10,080 total cores). Each node contains 64GB RAM. 480
compute nodes contain 2 NVIDIA Tesla K20X accelera-
tors per node, FDR InfiniBand interconnect. 16 compute
nodes have 2 Intel Xeon Phi 7120P coprocessors per node.
4 big memory nodes have 1.5TB RAM each. 4 visualiza-
tion nodes contain 2 NVIDIA Tesla K40 accelerators. 2.8
PB Lustre high-performance storage subsystem.

88,300,800 1530 TF

TOTAL: 304,848,000

Storage Description Total
LSU Storage 1240 TB of high-performance storage running Lustre;

200 TB of long-term storage running Lustre.
1,440 TB

LONI Storage 4300 TB of high-performance storage running Lustre (1.5PB on QB3) 4,300 TB
TOTAL: 5,740 TB

Networking:The LSU Center for Computation & Technology has spearheaded an initiative (LONI: Louisiana
Optical Network Initiative) in Louisiana to improve statewide networking and computing resources via the
installation of a 100 Gigabit optical network connecting all major Louisiana research sites. The LONI net-
work provides a 100 Gb/s connection to Internet2. The LSU SuperMIC and SuperMike-II, and LONI’s QB3
and QB2 are connected by 40 Gb/s circuits to both LONI and Internet2; other clusters like Eric are con-
nected by 10 Gb/s circuits. CCT itself is currently connected by 4x10 Gb/s connections to the LSU network
core, and by two 40 Gb/s to LONI and Internet2 giving an aggregate bandwidth of over 100Gb/s.
Visualization and Display: The Center for Computation & Technology has built an advanced visualization
and digital arts auditorium housed in the Digital Media Center (DMC). Central to this facility is the DMC
Theatre, a 202 seat, 5700 square foot auditorium designed for visualization and teleconferencing. A Cisco
C90 VTC teleconferencing unit that includes multiple inputs and outputs for up to 1080p HD video is used
for simultaneous broadcasting of audio, video and presentation materials to multiple sites using H.323
teleconferencing standards. The main function of this unit is for distance learning.
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Other Facilities and Resources: LSU’s Center for Computation & Technology is housed in a 94,000 square
foot Louisiana Digital Media Center that is also home to 400 video game development workers who work
for EA Sports’ North American Testing Center. This three-story structure on LSU’s main campus provide
a contemporary, permanent home for the CCT’s research and computing facilities. In addition, the new
building contains a 22-rack data center with 40Gb/s connectivity to the building core, nine multimedia
conference rooms, four multimedia classrooms and four research laboratories.

CCT has a strong internal computing infrastructure including fault-tolerant virtualized hosts that pro-
vide mail, web, code management (SVN), DB, Wiki, and LDAP servers. The Web and wiki servers are used
for the Center portal, and the SVN server supports Center code development. The internal computing re-
sources include a large storage space of 100 TB that can be used by all the users at CCT and affiliates. CCT
has wired and wireless networks, with approximately 500 Gigabit Ethernet Drops and 50+ Wireless Ac-
cess points (a/b/g/n bands). There are approximately one hundred 10Gb/s ports available in the research
spaces (both fiber and copper) and the number can be expanded with need.

The Center for Computation and Technology at LSU will provide administrative support to the PIs for
managing this project, and for dissemination and event planning through the center’s Event Coordination
programs. The Visitor Program at the Center for Computation and Technology will be available for hosting
visits of contributing members and collaborators to LSU.
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